Borghesi A, Marzollo A, Michev A, Fellay J. Susceptibility to infection in early life: a growing role for human genetics.
Hum Genet 2020;
139:733-743. [PMID:
31932884 DOI:
10.1007/s00439-019-02109-2]
[Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/30/2019] [Indexed: 12/23/2022]
Abstract
The unique vulnerability to infection of newborns and young infants is generally explained by a constellation of differences between early-life immune responses and immune responses at later ages, often referred to as neonatal immune immaturity. This developmental view, corroborated by robust evidence, offers a plausible, population-level description of the pathogenesis of life-threatening infectious diseases during the early-life period, but provides little explanation on the wide inter-individual differences in susceptibility and resistance to specific infections during the first months of life. In this context, the role of individual human genetic variation is increasingly recognized. A life-threatening infection caused by an opportunistic pathogen in an otherwise healthy infant likely represents the first manifestation of an inborn error of immunity. Single-gene disorders may also underlie common infections in full-term infants with no comorbidities or in preterm infants. In addition, there is increasing evidence of a possible role for common genetic variation in the pathogenesis of infection in preterm infants. Over the past years, a unified theory of infectious diseases emerged, supporting a hypothetical, age-dependent general model of genetic architecture of human infectious diseases. We discuss here how the proposed genetic model can be reconciled with the widely accepted developmental view of early-life infections in humans.
Collapse