1
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
2
|
Arul J, Kommu PPK, Kasinathan A, Ray L, Krishnan L. Zinc Status and Febrile Seizures: Results from a Cross-sectional Study. J Neurosci Rural Pract 2020; 11:597-600. [PMID: 33144797 PMCID: PMC7595794 DOI: 10.1055/s-0040-1715992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Objective To estimate the serum zinc levels in children under the age of 5 years with febrile seizures and febrile children without seizures Materials and Methods In this cross-sectional study from 2017 to 2018, 40 children with febrile seizures (simple and complex) were taken as cases. Forty age- and sex-matched febrile children without convulsions were recruited as controls. Serum zinc estimates were analyzed using a spectrophotometer (Biolis 50i-Autoanalyzer). Statistical Analysis The demographic variables and serum zinc estimates were analyzed using the Mann-Whitney test. The odds ratio was used to calculate the association of zinc deficiency in febrile seizures; 5% level of significance was considered. Results The mean serum concentrations of zinc in the cases and controls were 83.8 ± 33.1 μg/dL and 116.3 ± 30.3 μg/dL, respectively ( p = 0.002). Hypozincemia defined by "a serum zinc level of less than 63 μg/dL" was found in 12 (30%) cases and 2(5%) controls with an odds ratio of 8:1. Conclusion Children with febrile seizures had significantly reduced concentrations of zinc in the serum.
Collapse
Affiliation(s)
- Janani Arul
- Department of Pediatrics, Pondicherry Institute of Medical Sciences, Puducherry, India
| | | | | | - Lopamudhra Ray
- Department of Biochemistry, Pondicherry Institute of Medical Sciences, Puducherry, India
| | - Lalitha Krishnan
- Department of Pediatrics, Pondicherry Institute of Medical Sciences, Puducherry, India
| |
Collapse
|
3
|
Frye RE, Casanova MF, Fatemi SH, Folsom TD, Reutiman TJ, Brown GL, Edelson SM, Slattery JC, Adams JB. Neuropathological Mechanisms of Seizures in Autism Spectrum Disorder. Front Neurosci 2016; 10:192. [PMID: 27242398 PMCID: PMC4861974 DOI: 10.3389/fnins.2016.00192] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/18/2016] [Indexed: 01/09/2023] Open
Abstract
This manuscript reviews biological abnormalities shared by autism spectrum disorder (ASD) and epilepsy. Two neuropathological findings are shared by ASD and epilepsy: abnormalities in minicolumn architecture and γ-aminobutyric acid (GABA) neurotransmission. The peripheral neuropil, which is the region that contains the inhibition circuits of the minicolumns, has been found to be decreased in the post-mortem ASD brain. ASD and epilepsy are associated with inhibitory GABA neurotransmission abnormalities including reduced GABAA and GABAB subunit expression. These abnormalities can elevate the excitation-to-inhibition balance, resulting in hyperexcitablity of the cortex and, in turn, increase the risk of seizures. Medical abnormalities associated with both epilepsy and ASD are discussed. These include specific genetic syndromes, specific metabolic disorders including disorders of energy metabolism and GABA and glutamate neurotransmission, mineral and vitamin deficiencies, heavy metal exposures and immune dysfunction. Many of these medical abnormalities can result in an elevation of the excitatory-to-inhibitory balance. Fragile X is linked to dysfunction of the mGluR5 receptor and Fragile X, Angelman and Rett syndromes are linked to a reduction in GABAA receptor expression. Defects in energy metabolism can reduce GABA interneuron function. Both pyridoxine dependent seizures and succinic semialdehyde dehydrogenase deficiency cause GABA deficiencies while urea cycle defects and phenylketonuria cause abnormalities in glutamate neurotransmission. Mineral deficiencies can cause glutamate and GABA neurotransmission abnormalities and heavy metals can cause mitochondrial dysfunction which disrupts GABA metabolism. Thus, both ASD and epilepsy are associated with similar abnormalities that may alter the excitatory-to-inhibitory balance of the cortex. These parallels may explain the high prevalence of epilepsy in ASD and the elevated prevalence of ASD features in individuals with epilepsy.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Research Program, Arkansas Children's Research InstituteLittle Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| | - Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Greenville, SC, USA
| | - S Hossein Fatemi
- Department of Psychiatry, University of Minnesota Medical School Minneapolis, MN, USA
| | - Timothy D Folsom
- Department of Psychiatry, University of Minnesota Medical School Minneapolis, MN, USA
| | - Teri J Reutiman
- Department of Psychiatry, University of Minnesota Medical School Minneapolis, MN, USA
| | | | | | - John C Slattery
- Autism Research Program, Arkansas Children's Research InstituteLittle Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| | - James B Adams
- School for Engineering of Matter, Transport, and Energy, Arizona State University Tempe, AZ, USA
| |
Collapse
|
4
|
Khan MZ. A possible significant role of zinc and GPR39 zinc sensing receptor in Alzheimer disease and epilepsy. Biomed Pharmacother 2016; 79:263-72. [PMID: 27044837 DOI: 10.1016/j.biopha.2016.02.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/14/2022] Open
Abstract
Zinc the essential trace element, plays a significant role in the brain development and in the proper brain functions at every stage of life. Misbalance of zinc (Zn(2+)) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as Alzheimer's disease, Depression, and Epilepsy. In brain, Zn(2+) has been identified as a ligand, capable of activating and inhibiting the receptors including the NMDA-type glutamate receptors (NMDARs), GABAA receptors, nicotinic acetylcholine receptors (nAChRs), glycine receptors (glyR) and serotonin receptors (5-HT3). Recently GPR39 has been identified as a zinc-specific receptor, widely expressed in brain tissues including the frontal cortex, amygdala, and hippocampus. GPR39, when binding with Zn(2+) has shown promising therapeutic potentials. This review presents current knowledge regarding the role of GPR39 zinc sensing receptor in brain, with a focus on Alzheimer's disease and Epilepsy. Although the results are encouraging, further research is needed to clarify zinc and GPR39 role in the treatment of Alzheimer's disease and Epilepsy.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Saghazadeh A, Mahmoudi M, Meysamie A, Gharedaghi M, Zamponi GW, Rezaei N. Possible role of trace elements in epilepsy and febrile seizures: a meta-analysis. Nutr Rev 2015; 73:760-79. [DOI: 10.1093/nutrit/nuv026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
6
|
Fallah R, Sabbaghzadegan S, Karbasi SA, Binesh F. Efficacy of zinc sulfate supplement on febrile seizure recurrence prevention in children with normal serum zinc level: A randomised clinical trial. Nutrition 2015; 31:1358-61. [PMID: 26429655 DOI: 10.1016/j.nut.2015.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/28/2015] [Accepted: 05/25/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Serum zinc level might be related to pathogenesis of febrile seizure (FS). The purpose of this study was to evaluate efficacy and safety of oral zinc supplementation on FS recurrence prevention in non-zinc-deficient children. MATERIALS AND METHODS In a randomized clinical study, one hundred 18 to 60 mo old children with normal zinc level with first simple FS were referred to Shahid Sadoughi Hospital, Yazd, Iran from May 2012 to June 2013, were randomly assigned to two groups to receive 2 mg/kg/d zinc sulfate for six consecutive months or placebo as control group and were followed up for 1 y for FS recurrence. RESULTS 41 girls and 59 boys with mean age of 2.47 ± 1.01 y were evaluated. Race, mean weight, height and body fat were similar in both groups. FS recurrence occurred in 19 children (38%) in the control group [95% confidence interval (CI): 19.45%-53.95%] and in 11 children (22%) in the zinc sulfate (95% CI: 57.47%-89.13%) groups, respectively; and the zinc group had lower FS recurrence (P = 0.03). The mean serum zinc level before intervention was lower in children with FS recurrence (72.43 ± 14.58 μg/dL versus 96.33 ± 12.69 μg/dL, P = 0.04). Gastrointestinal side effects (vomiting in five children, heartburn in two children and abdominal pain in one child) were seen in 16% of the zinc group and vomiting occurred in two children (4%) in control group and frequency of adverse events was similar in the two groups (P = 0.1). CONCLUSION Zinc supplementation should be considered as effective and safe in prevention of FS recurrence.
Collapse
Affiliation(s)
- Razieh Fallah
- Pediatric neurologist, Associate Professor, Department of Pediatrics, Growth Disorders of Children Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saeideh Sabbaghzadegan
- Interne, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sedighah Akhavan Karbasi
- Pediatrician, Associate Professor, Department of Pediatrics, Growth Disorders of Children Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fariba Binesh
- Pathologist, Associate Professor, Department of Pathology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
7
|
Lehotzky A, Oláh J, Szunyogh S, Szabó A, Berki T, Ovádi J. Zinc-induced structural changes of the disordered tppp/p25 inhibits its degradation by the proteasome. Biochim Biophys Acta Mol Basis Dis 2014; 1852:83-91. [PMID: 25445539 DOI: 10.1016/j.bbadis.2014.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023]
Abstract
Tubulin Polymerization Promoting Protein/p25 (TPPP/p25), a neomorphic moonlighting protein displaying both physiological and pathological functions, plays a crucial role in the differentiation of the zinc-rich oligodendrocytes, the major constituent of myelin sheath; and it is enriched and co-localizes with α-synuclein in brain inclusions hallmarking Parkinson's disease and other synucleinopathies. In this work we showed that the binding of Zn(2+) to TPPP/p25 promotes its dimerization resulting in increased tubulin polymerization promoting activity. We also demonstrated that the Zn(2+) increases the intracellular TPPP/p25 level resulting in a more decorated microtubule network in CHO10 and CG-4 cells expressing TPPP/p25 ectopically and endogenously, respectively. This stabilization effect is crucial for the differentiation and aggresome formation under physiological and pathological conditions, respectively. The Zn(2+)-mediated effect was similar to that produced by treatment of the cells with MG132, a proteasome inhibitor or Zn(2+) plus MG132 as quantified by cellular ELISA. The enhancing effect of zinc ion on the level of TPPP/p25 was independent of the expression level of the protein produced by doxycycline induction at different levels or inhibition of the protein synthesis by cycloheximide. Thus, we suggest that the zinc as a specific divalent cation could be involved in the fine-tuning of the physiological TPPP/p25 level counteracting both the enrichment and the lack of this protein leading to distinct central nervous system diseases.
Collapse
Affiliation(s)
- Attila Lehotzky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Sándor Szunyogh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Adél Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pécs, Pécs, Hungary.
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
8
|
Frye RE, Rossignol D, Casanova MF, Brown GL, Martin V, Edelson S, Coben R, Lewine J, Slattery JC, Lau C, Hardy P, Fatemi SH, Folsom TD, MacFabe D, Adams JB. A review of traditional and novel treatments for seizures in autism spectrum disorder: findings from a systematic review and expert panel. Front Public Health 2013; 1:31. [PMID: 24350200 PMCID: PMC3859980 DOI: 10.3389/fpubh.2013.00031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 08/20/2013] [Indexed: 01/20/2023] Open
Abstract
Despite the fact that seizures are commonly associated with autism spectrum disorder (ASD), the effectiveness of treatments for seizures has not been well studied in individuals with ASD. This manuscript reviews both traditional and novel treatments for seizures associated with ASD. Studies were selected by systematically searching major electronic databases and by a panel of experts that treat ASD individuals. Only a few anti-epileptic drugs (AEDs) have undergone carefully controlled trials in ASD, but these trials examined outcomes other than seizures. Several lines of evidence point to valproate, lamotrigine, and levetiracetam as the most effective and tolerable AEDs for individuals with ASD. Limited evidence supports the use of traditional non-AED treatments, such as the ketogenic and modified Atkins diet, multiple subpial transections, immunomodulation, and neurofeedback treatments. Although specific treatments may be more appropriate for specific genetic and metabolic syndromes associated with ASD and seizures, there are few studies which have documented the effectiveness of treatments for seizures for specific syndromes. Limited evidence supports l-carnitine, multivitamins, and N-acetyl-l-cysteine in mitochondrial disease and dysfunction, folinic acid in cerebral folate abnormalities and early treatment with vigabatrin in tuberous sclerosis complex. Finally, there is limited evidence for a number of novel treatments, particularly magnesium with pyridoxine, omega-3 fatty acids, the gluten-free casein-free diet, and low-frequency repetitive transcranial magnetic simulation. Zinc and l-carnosine are potential novel treatments supported by basic research but not clinical studies. This review demonstrates the wide variety of treatments used to treat seizures in individuals with ASD as well as the striking lack of clinical trials performed to support the use of these treatments. Additional studies concerning these treatments for controlling seizures in individuals with ASD are warranted.
Collapse
Affiliation(s)
- Richard E. Frye
- Arkansas Children’s Hospital Research Institute, Little Rock, AR, USA
| | | | | | - Gregory L. Brown
- Autism Recovery and Comprehensive Health Medical Center, Franklin, WI, USA
| | - Victoria Martin
- Autism Recovery and Comprehensive Health Medical Center, Franklin, WI, USA
| | | | - Robert Coben
- New York University Brain Research Laboratory, New York, NY, USA
| | - Jeffrey Lewine
- MIND Research Network, University of New Mexico, Albuquerque, NM, USA
| | - John C. Slattery
- Arkansas Children’s Hospital Research Institute, Little Rock, AR, USA
| | - Chrystal Lau
- Arkansas Children’s Hospital Research Institute, Little Rock, AR, USA
| | - Paul Hardy
- Hardy Healthcare Associates, Hingham, MA, USA
| | | | | | | | | |
Collapse
|