1
|
Wang X, Zhang Y, Zhou X, Xia X, Teng W, Sheng L, Ding J. Soy isoflavone reduces LPS-induced acute lung injury via increasing aquaporin 1 and aquaporin 5 in rats. Open Life Sci 2023; 18:20220560. [PMID: 36820212 PMCID: PMC9938540 DOI: 10.1515/biol-2022-0560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 02/12/2023] Open
Abstract
Acute lung injury (ALI) followed with severe inflammation and oxidative stress. Anti-inflammatory and antioxidant are the properties of aquaporin 1 (AQP1) and aquaporin 5 (AQP5). The goal of this study was to see if soy isoflavone can diminish lipopolysaccharide (LPS)-induced ALI and the underling mechanism. LPS-induced ALI was given to Sprague-Dawley rats 14 days following oophorectomy. One hour before the LPS challenge, estradiol (1 mg/kg) was administered subcutaneously as positive control and soy isoflavone was intragastric administration for 14 days prior to LPS challenge with different doses. Six hours after LPS challenge, the pulmonary edema, pathophysiology, inflammation, and the oxidative stress in lung tissues of rats were discovered. We found that soy isoflavone can reduce pulmonary edema and the lung pathology in a dose-dependent manner. Furthermore, tumor necrosis factor-alpha, interleukin-1β, and interleukin-6 were decreased in rats treated with soy isoflavone. Meanwhile, soy isoflavone reduced pulmonary oxidative stress by decreasing malondialdehyde levels, while increasing superoxide dismutase levels in lung tissues in a dose-dependent manner. Mechanically, we found that the mRNA and protein level of AQP1 and AOP5 were increased in lung tissues of rats treated with soy isoflavone compared the LPS-treated rats. Thus, soy isoflavone alleviates LPS-induced ALI through inducing AQP1 and AQP5.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Yili Zhang
- Department of Health Management Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Xiuyun Zhou
- Department of Blood Purification Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Xiumei Xia
- Department of Imaging Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Weijun Teng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Lin Sheng
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Jing Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| |
Collapse
|
2
|
Wang X, Zhou X, Xia X, Zhang Y. Estradiol attenuates LPS-induced acute lung injury via induction of aquaporins AQP1 and AQP5. EUR J INFLAMM 2021; 19:205873922110491. [DOI: 10.1177/20587392211049197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Background Acute lung injury (ALI) is associated with increased inflammation and oxidative stress. Estradiol is produced by the ovaries and is the most active hormone of estrogen. Our aim was to investigate whether estradiol contributes to protect against lipopolysaccharide (LPS)-induced ALI via induction of aquaporins AQP1 and AQP5 and the underlying mechanisms. Methods and results For induction of ALI, LPS was applied once by intraperitoneal injection in SD rats 14 days after oophorectomy. To assess the therapeutic effects of estradiol on LPS-induced ALI, estradiol was subcutaneously injected for 1 h prior to LPS challenge. Estradiol can significantly attenuate the lung edema reflected by decreasing wet-to-dry weight ratio and permeability of lung and total protein concentration of bronchial lavage fluid (BALF). Results of histological detection showed that estradiol attenuated the lung injury reflected by reducing edema, congestion, and thickening pulmonary septal of lung tissues. In addition, estradiol attenuated TNF-α, IL-1β, and IL-6 and oxidative stress in lung tissues. Estradiol was more effective than estradiol associated with ERα antagonist or ERβ antagonist in protecting against LPS-induced ALI in rats. Mechanistically, we investigate whether estradiol regulates the expression of AQP1 and AQP5 in lung tissues. Of interest, estradiol upregulates AQP1 and AQP5 mRNA and protein expression. Taken together, these results demonstrate that estradiol can increase the expression of AQP1 and AQP5, which plays a critical role in ameliorating oxidative stress and downregulating inflammatory responses induced by LPS.Conclusion Therefore, these findings strongly suggest that AQP1 and AQP5 mediate the anti-inflammatory and antioxidant effects of estradiol.
Collapse
Affiliation(s)
- Xiaobo Wang
- Internal Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiuyun Zhou
- Blood Purification Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiumei Xia
- Department of Imaging Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yili Zhang
- Health Management Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|