1
|
Seatamanoch N, Kongdachalert S, Sunantaraporn S, Siriyasatien P, Brownell N. Microsporidia, a Highly Adaptive Organism and Its Host Expansion to Humans. Front Cell Infect Microbiol 2022; 12:924007. [PMID: 35782144 PMCID: PMC9245026 DOI: 10.3389/fcimb.2022.924007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Emerging infectious disease has become the center of attention since the outbreak of COVID-19. For the coronavirus, bats are suspected to be the origin of the pandemic. Consequently, the spotlight has fallen on zoonotic diseases, and the focus now expands to organisms other than viruses. Microsporidia is a single-cell organism that can infect a wide range of hosts such as insects, mammals, and humans. Its pathogenicity differs among species, and host immunological status plays an important role in infectivity and disease severity. Disseminated disease from microsporidiosis can be fatal, especially among patients with a defective immune system. Recently, there were two Trachipleistophora hominis, a microsporidia species which can survive in insects, case reports in Thailand, one patient had disseminated microsporidiosis. This review gathered data of disseminated microsporidiosis and T. hominis infections in humans covering the biological and clinical aspects. There was a total of 22 cases of disseminated microsporidiosis reports worldwide. Ten microsporidia species were identified. Maximum likelihood tree results showed some possible correlations with zoonotic transmissions. For T. hominis, there are currently eight case reports in humans, seven of which had Human Immunodeficiency Virus (HIV) infection. It is observed that risks are higher for the immunocompromised to acquire such infections, however, future studies should look into the entire life cycle, to identify the route of transmission and establish preventive measures, especially among the high-risk groups.
Collapse
Affiliation(s)
- Nirin Seatamanoch
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Switt Kongdachalert
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sakone Sunantaraporn
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Padet Siriyasatien
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Narisa Brownell
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Narisa Brownell,
| |
Collapse
|
2
|
Abstract
Microsporidia are pathogenic organism related to fungi. They cause infections in a wide variety of mammals as well as in avian, amphibian, and reptilian hosts. Many microsporidia species play an important role in the development of serious diseases that have significant implications in human and veterinary medicine. While microsporidia were originally considered to be opportunistic pathogens in humans, it is now understood that infections also occur in immune competent humans. Encephalitozoon cuniculi, Encephalitozoon intestinalis, and Enterocytozoon bieneusi are primarily mammalian pathogens. However, many other species of microsporidia that have some other primary host that is not a mammal have been reported to cause sporadic mammalian infections. Experimental models and observations in natural infections have demonstrated that microsporidia can cause a latent infection in mammalian hosts. This chapter reviews the published studies on mammalian microsporidiosis and the data on chronic infections due to these enigmatic pathogens.
Collapse
Affiliation(s)
- Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Abstract
Microsporidia are obligate intracellular pathogens identified ∼150 years ago as the cause of pébrine, an economically important infection in silkworms. There are about 220 genera and 1,700 species of microsporidia, which are classified based on their ultrastructural features, developmental cycle, host-parasite relationship, and molecular analysis. Phylogenetic analysis suggests that microsporidia are related to the fungi, being grouped with the Cryptomycota as a basal branch or sister group to the fungi. Microsporidia can be transmitted by food and water and are likely zoonotic, as they parasitize a wide range of invertebrate and vertebrate hosts. Infection in humans occurs in both immunocompetent and immunodeficient hosts, e.g., in patients with organ transplantation, patients with advanced human immunodeficiency virus (HIV) infection, and patients receiving immune modulatory therapy such as anti-tumor necrosis factor alpha antibody. Clusters of infections due to latent infection in transplanted organs have also been demonstrated. Gastrointestinal infection is the most common manifestation; however, microsporidia can infect virtually any organ system, and infection has resulted in keratitis, myositis, cholecystitis, sinusitis, and encephalitis. Both albendazole and fumagillin have efficacy for the treatment of various species of microsporidia; however, albendazole has limited efficacy for the treatment of Enterocytozoon bieneusi. In addition, immune restoration can lead to resolution of infection. While the prevalence rate of microsporidiosis in patients with AIDS has fallen in the United States, due to the widespread use of combination antiretroviral therapy (cART), infection continues to occur throughout the world and is still seen in the United States in the setting of cART if a low CD4 count persists.
Collapse
|
4
|
Leitch GJ, Ward TL, Shaw AP, Newman G. Apical spore phagocytosis is not a significant route of infection of differentiated enterocytes by Encephalitozoon intestinalis. Infect Immun 2005; 73:7697-704. [PMID: 16239574 PMCID: PMC1273909 DOI: 10.1128/iai.73.11.7697-7704.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Encephalitozoon intestinalis is a microsporidian species that infects the intestinal mucosal epithelium, primarily in immunodeficient individuals. The present study employed undifferentiated and differentiated human colonic carcinoma cell lines to determine if this parasite species infected polarized epithelial cells by spore phagocytosis or by impalement with the deployed spore polar tube. Apical surface spore attachment differed between cell lines such that SW480>HT-29>Caco-2>HCT-8, with attachment being greater to undifferentiated Caco-2 cells than differentiated cells and greater to partially differentiated HCT-8 cells than differentiated HCT-8 cells. Attachment was inhibited by chondroitin sulfate A, suggesting that it was mediated by host cell sulfated glycoaminoglycans. Infection rates 3 days postinfection paralleled spore attachment in the various cell lines. The undifferentiated cell line SW480 and undifferentiated Caco-2 and HCT-8 cells exhibited modest spore phagocytosis while the more differentiated cell line HT29 and differentiated Caco-2 and HCT-8 cells did not. All cell lines were impaled by the polar tubes of germinating spores. When normalized to the number of spores attached to the apical membrane, such impalement was greatest in the more differentiated Caco-2 and HCT-8 cells. The host cell apical surface influenced parasite spore germination, as in populations of large undifferentiated Caco-2 cells to which >3 spores had attached, the frequency distribution of the percentages of spores germinated per cell was bimodal, indicating that the surface of some cells favored germination, while others did not. This study suggests that phagocytosis is not a biologically significant mode of infection in differentiated intestinal epithelial cells.
Collapse
Affiliation(s)
- Gordon J Leitch
- Department of Physiology, Morehouse School of Medicine, 720 Westview Dr., Atlanta, GA 30310, USA.
| | | | | | | |
Collapse
|
5
|
Abstract
Although attempts to develop methods for the in vitro cultivation of microsporidia began as early as 1937, the interest in the culture of these organisms was confined mostly to microsporidia that infect insects. The successful cultivation in 1969 of Encephalitozoon cuniculi, a microsporidium of mammalian origin, and the subsequent identification of these organisms as agents of human disease heightened interest in the cultivation of microsporidia. I describe the methodology as well as the cell lines, the culture media, and culture conditions used in the in vitro culture of microsporidia such as Brachiola (Nosema) algerae, Encephalitozoon cuniculi, E. hellem, E. intestinalis, Enterocytozoon bieneusi, Trachipleistophora hominis, and Vittaforma corneae that cause human disease.
Collapse
Affiliation(s)
- Govinda S Visvesvara
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341-3724, USA.
| |
Collapse
|
6
|
Xiao L, Li L, Moura H, Sulaiman I, Lal AA, Gatti S, Scaglia M, Didier ES, Visvesvara GS. Genotyping Encephalitozoon hellem isolates by analysis of the polar tube protein gene. J Clin Microbiol 2001; 39:2191-6. [PMID: 11376056 PMCID: PMC88110 DOI: 10.1128/jcm.39.6.2191-2196.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To develop an alternative genotyping tool, the genetic diversity of Encephalitozoon hellem was examined at the polar tube protein (PTP) locus. Nucleotide sequence analysis of the PTP gene divided 24 E. hellem isolates into four genotypes, compared to two genotypes identified by analysis of the internal transcribed spacer of the rRNA gene. The four PTP genotypes differed from each other by the copy number of the 60-bp central repeat as well as by point mutations. A simple PCR test was developed to differentiate E. hellem genotypes based on the difference in the size of PTP PCR products, which should facilitate the genotyping of E. hellem in clinical samples.
Collapse
Affiliation(s)
- L Xiao
- Immunology Branch, National Center for Infectious Diseases, Centers for Disease Control and Prevention/PHS, U.S. Department of Health and Human Services, 4770 Buford Highway, Atlanta, GA 30341, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Delarbre S, Gatti S, Scaglia M, Drancour M. Genetic diversity in the microsporidian Encephalitozoon hellem demonstrated by pulsed-field gel electrophoresis. J Eukaryot Microbiol 2001; 48:471-4. [PMID: 11456324 DOI: 10.1111/j.1550-7408.2001.tb00181.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Encephalitozoon hellem is a microsporidian species responsible for opportunistic infections in AIDS patients. Use of a novel chitinase-based method allowed unsheared chromosomal DNA to be recovered from eleven E. hellem isolates derived from three geographic regions. All isolates were typed by 18S rDNA sequencing, which showed that they belonged to intemal transcribed spacer type 1. After ethidium bromide staining, pulsed-field gel electrophoresis (PFGE) analysis discriminated two new karyotypes comprising 7 and 8 chromosomal bands respectively, ranging in size from 205- to 272-kb pairs. Genomic size was estimated to be 2.39 Mb. Our data indicate PFGE is useful for typing E. hellem and confirms genetic diversity among E. hellem genotypes.
Collapse
Affiliation(s)
- S Delarbre
- Unité des Rickettsies CNRS UPRES-A 6020, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | | | |
Collapse
|
8
|
Wolk DM, Johnson CH, Rice EW, Marshall MM, Grahn KF, Plummer CB, Sterling CR. A spore counting method and cell culture model for chlorine disinfection studies of Encephalitozoon syn. Septata intestinalis. Appl Environ Microbiol 2000; 66:1266-73. [PMID: 10742198 PMCID: PMC91979 DOI: 10.1128/aem.66.4.1266-1273.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1999] [Accepted: 12/15/1999] [Indexed: 11/20/2022] Open
Abstract
The microsporidia have recently been recognized as a group of pathogens that have potential for waterborne transmission; however, little is known about the effects of routine disinfection on microsporidian spore viability. In this study, in vitro growth of Encephalitozoon syn. Septata intestinalis, a microsporidium found in the human gut, was used as a model to assess the effect of chlorine on the infectivity and viability of microsporidian spores. Spore inoculum concentrations were determined by using spectrophotometric measurements (percent transmittance at 625 nm) and by traditional hemacytometer counting. To determine quantitative dose-response data for spore infectivity, we optimized a rabbit kidney cell culture system in 24-well plates, which facilitated calculation of a 50% tissue culture infective dose (TCID(50)) and a minimal infective dose (MID) for E. intestinalis. The TCID(50) is a quantitative measure of infectivity and growth and is the number of organisms that must be present to infect 50% of the cell culture wells tested. The MID is as a measure of a system's permissiveness to infection and a measure of spore infectivity. A standardized MID and a standardized TCID(50) have not been reported previously for any microsporidian species. Both types of doses are reported in this paper, and the values were used to evaluate the effects of chlorine disinfection on the in vitro growth of microsporidia. Spores were treated with chlorine at concentrations of 0, 1, 2, 5, and 10 mg/liter. The exposure times ranged from 0 to 80 min at 25 degrees C and pH 7. MID data for E. intestinalis were compared before and after chlorine disinfection. A 3-log reduction (99.9% inhibition) in the E. intestinalis MID was observed at a chlorine concentration of 2 mg/liter after a minimum exposure time of 16 min. The log(10) reduction results based on percent transmittance-derived spore counts were equivalent to the results based on hemacytometer-derived spore counts. Our data suggest that chlorine treatment may be an effective water treatment for E. intestinalis and that spectrophotometric methods may be substituted for labor-intensive hemacytometer methods when spores are counted in laboratory-based chlorine disinfection studies.
Collapse
Affiliation(s)
- D M Wolk
- University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Franzen C, Müller A. Molecular techniques for detection, species differentiation, and phylogenetic analysis of microsporidia. Clin Microbiol Rev 1999; 12:243-85. [PMID: 10194459 PMCID: PMC88917 DOI: 10.1128/cmr.12.2.243] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microsporidia are obligate intracellular protozoan parasites that infect a broad range of vertebrates and invertebrates. These parasites are now recognized as one of the most common pathogens in human immunodeficiency virus-infected patients. For most patients with infectious diseases, microbiological isolation and identification techniques offer the most rapid and specific determination of the etiologic agent. This is not a suitable procedure for microsporidia, which are obligate intracellular parasites requiring cell culture systems for growth. Therefore, the diagnosis of microsporidiosis currently depends on morphological demonstration of the organisms themselves. Although the diagnosis of microsporidiosis and identification of microsporidia by light microscopy have greatly improved during the last few years, species differentiation by these techniques is usually impossible and transmission electron microscopy may be necessary. Immunfluorescent-staining techniques have been developed for species differentiation of microsporidia, but the antibodies used in these procedures are available only at research laboratories at present. During the last 10 years, the detection of infectious disease agents has begun to include the use of nucleic acid-based technologies. Diagnosis of infection caused by parasitic organisms is the last field of clinical microbiology to incorporate these techniques and molecular techniques (e.g., PCR and hybridization assays) have recently been developed for the detection, species differentiation, and phylogenetic analysis of microsporidia. In this paper we review human microsporidial infections and describe and discuss these newly developed molecular techniques.
Collapse
Affiliation(s)
- C Franzen
- Department of Internal Medicine I, University of Cologne, 50924 Cologne,
| | | |
Collapse
|
10
|
Rossi P, La Rosa G, Ludovisi A, Tamburrini A, Gomez Morales MA, Pozio E. Identification of a human isolate of Encephalitozoon cuniculi type I from Italy. Int J Parasitol 1998; 28:1361-6. [PMID: 9770621 DOI: 10.1016/s0020-7519(98)00122-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A microsporidial strain, obtained from a person with AIDS living in Italy was isolated and cultivated on RK13 (rabbit kidney) cell monolayers. Identification at the species level was performed by immunological and molecular methods. Western blot analysis showed that the human isolate and the Encephalitozoon cuniculi reference strain had similar banding patterns. The small subunit rRNA sequence analysis confirmed the identification of the isolate as E. cuniculi, which is a widespread microsporidian species infecting a wide range of natural hosts, including humans. Moreover, based on the sequence of the rDNA internal transcribed spacer region, this isolate was classified as E. cuniculi type I (rabbit strain), previously reported in six persons with AIDS living in Switzerland. These results provide further information on the geographical distribution of E. cuniculi types.
Collapse
Affiliation(s)
- P Rossi
- Laboratory of Parasitology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Hung HW, Lo CF, Tseng CC, Peng SE, Chou CM, Kou GH. The small subunit ribosomal RNA gene sequence of Pleistophora anguillarum and the use of PCR primers for diagnostic detection of the parasite. J Eukaryot Microbiol 1998; 45:556-60. [PMID: 9783458 DOI: 10.1111/j.1550-7408.1998.tb05116.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using the polymerase chain reaction (PCR) and two primers for conserved regions of the small subunit ribosomal RNA (SSU-rRNA) of Microsporidia, a DNA segment about 1,195 base pairs long was amplified from a DNA template prepared from purified spores of the microsporidian species Pleistophora anguillarum. These spores had been isolated from adult eels (Anguilla japonica) with "Beko Disease." A comparison of sequence data from other microsporidian species showed P. anguillarum SSU-rRNA to be most similar to Vavraia oncoperae. When juvenile eels were artificially infected with P. anguillarum, enzyme-linked immunosorbent assay could detect a positive infection only 12 days post-infection. However, when suitable PCR primers were used, a DNA fragment of about 0.8 kb was detected from these juvenile eels after only 3 days post infection. No PCR product was obtained with templates prepared from clinically healthy control animals.
Collapse
MESH Headings
- Anguilla/parasitology
- Animals
- Base Sequence
- DNA Primers
- DNA, Protozoan/genetics
- DNA, Protozoan/isolation & purification
- DNA, Ribosomal/genetics
- DNA, Ribosomal/isolation & purification
- Fish Diseases/diagnosis
- Fish Diseases/parasitology
- Genes, Protozoan
- Microsporida/genetics
- Microsporida/isolation & purification
- Microsporida/physiology
- Molecular Sequence Data
- Polymerase Chain Reaction/methods
- Protozoan Infections, Animal/diagnosis
- RNA, Protozoan/genetics
- RNA, Protozoan/isolation & purification
- RNA, Ribosomal/genetics
- RNA, Ribosomal/isolation & purification
- Spores
Collapse
Affiliation(s)
- H W Hung
- Department of Zoology, National Taiwan University, Taipei, ROC
| | | | | | | | | | | |
Collapse
|
12
|
Croppo GP, Croppo GP, Moura H, Da Silva AJ, Leitch GJ, Moss DM, Wallace S, Slemenda SB, Pieniazek NJ, Visvesvara GS. Ultrastructure, immunofluorescence, western blot, and PCR analysis of eight isolates of Encephalitozoon (Septata) intestinalis established in culture from sputum and urine samples and duodenal aspirates of five patients with AIDS. J Clin Microbiol 1998; 36:1201-8. [PMID: 9574677 PMCID: PMC104800 DOI: 10.1128/jcm.36.5.1201-1208.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microsporidia are ancient, intracellular, eukaryotic protozoan parasites that form spores and that lack mitochondria. Currently, as many as eight species included under six genera are known to infect humans, mostly patients with AIDS. Among these, Enterocytozoon bieneusi, the agent of gastrointestinal (GI) disease, is the most frequently identified microsporidian in clinical laboratories in the United States. Encephalitozoon (Septata) intestinalis, the agent that causes a disseminated infection including infection of the GI tract, is the second most frequently identified microsporidian parasite. In spite of this, not many isolates of E. intestinalis have been established in culture. We describe here the continuous cultivation of eight isolates of E. intestinalis obtained from different samples including the urine, sputum, and duodenal aspirate or biopsy specimens from five AIDS patients originating from California, Colorado, and Georgia. The specific identification was made on the bases of ultrastructural, antigenic, and PCR analyses.
Collapse
Affiliation(s)
- G P Croppo
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341-3724, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gatti S, Sacchi L, Novati S, Corona S, Bernuzzi AM, Moura H, Pieniazek NJ, Visvesvara GS, Scaglia M. Extraintestinal microsporidiosis in AIDS patients: clinical features and advanced protocols for diagnosis and characterization of the isolates. J Eukaryot Microbiol 1997; 44:79S. [PMID: 9508459 DOI: 10.1111/j.1550-7408.1997.tb05793.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- S Gatti
- Lab. Parasitology, Virology Serv., IRCCS Matteo, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Scaglia M, Sacchi L, Croppo GP, da Silva A, Gatti S, Corona S, Orani A, Bernuzzi AM, Pieniazek NJ, Slemenda SB, Wallace S, Visvesvara GS. Pulmonary microsporidiosis due to Encephalitozoon hellem in a patient with AIDS. J Infect 1997; 34:119-26. [PMID: 9138134 DOI: 10.1016/s0163-4453(97)92414-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The microsporidian Encephalitozoon hellem is being reported with increasing frequency in HIV-positive subjects, as an agent of disseminated microsporidiosis without involving the gastrointestinal tract. We describe a case of pulmonary microsporidiosis in a 27-year-old Italian man with AIDS who developed fever, cough, and dyspnea. A chest X-ray showed multiple bilateral pulmonary opacities and mediastinal lymph-node enlargement. Stained smears of bronchoalveolar lavage sediment showed oval structures consistent with microsporidian spores. Viral, bacterial and fungal cultures were repeatedly negative, whereas microsporidia were successfully cultured in human and bovine fibroblast cell lines. Analysis of electron micrographs indicated that the isolate belonged to the genus Encephalitozoon. Based on further immunological, biochemical and molecular studies it was characterized as E. hellem. Even though a temporary improvement with albendazole therapy was noticed, the patient deteriorated clinically and died of severe respiratory distress.
Collapse
Affiliation(s)
- M Scaglia
- Laboratory of Clinical Parasitology, University-IRCCS S. Matteo, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bigliardi E, Selmi MG, Lupetti P, Corona S, Gatti S, Scaglia M, Sacchi L. Microsporidian spore wall: ultrastructural findings on Encephalitozoon hellem exospore. J Eukaryot Microbiol 1996; 43:181-6. [PMID: 8640188 DOI: 10.1111/j.1550-7408.1996.tb01388.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A study of the spore wall of Encephalitozoon hellem was performed on thin sections, freeze-fracture, and deep-etched samples to obtain information on spore wall organization and composition. Our observations demonstrate that the spore wall is formed by an inner 30-35 nm electron-lucent endospore and an outer 25-30 nm electron-dense exospore. The exospore is a complex of three layers: an outer spiny layer, an electron-lucent intermediate lamina and an inner fibrous layer. Freeze-fracture and deep-etching techniques reveal that the intermediate lamina and the inner fibrous layer result from the different spatial disposition of the same 4-nm thick fibrils. In thin sections the endospore reveals a scattered electron-dense material that appears in the form of trabecular structures when analyzed in deep-etched samples. The presence of chitin in the exospore is discussed.
Collapse
Affiliation(s)
- E Bigliardi
- Department of Evolutionary Biology, University, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|