1
|
Ye X, Gu Y, Bai Y, Xia S, Zhang Y, Lou Y, Zhu Y, Dai Y, Tsoi JKH, Wang S. Does Low-Magnitude High-Frequency Vibration (LMHFV) Worth for Clinical Trial on Dental Implant? A Systematic Review and Meta-Analysis on Animal Studies. Front Bioeng Biotechnol 2021; 9:626892. [PMID: 33987172 PMCID: PMC8111077 DOI: 10.3389/fbioe.2021.626892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
Being as a non-pharmacological medical intervention, low-magnitude high-frequency vibration (LMHFV) has shown a positive effect on bone induction and remodeling for various muscle diseases in animal studies, among which dental implants osteointegration were reported to be improved as well. However, whether LMHFV can be clinically used in dental implant is still unknown. In this study, efficacy, parameters and side effects of LMHFV were analyzed via data before 15th July 2020, collecting from MEDLINE/PubMed, Embase, Ovid and Cochrane Library databases. In the screened 1,742 abstracts and 45 articles, 15 animal studies involving 972 implants were included. SYRCLE's tool was performed to assess the possible risk of bias for each study. The GRADE approach was applied to evaluate the quality of evidence. Random effects meta-analysis detected statistically significant in total BIC (P < 0.0001) and BV/TV (P = 0.001) upon loading LMHFV on implants. To conclude, LMHFV played an active role on BIC and BV/TV data according to the GRADE analysis results (medium and low quality of evidence). This might illustrate LMHFV to be a worthy way in improving osseointegration clinically, especially for osteoporosis. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO, identifier: NCT02612389
Collapse
Affiliation(s)
- Xinjian Ye
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Gu
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yijing Bai
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siqi Xia
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujia Zhang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuwei Lou
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuchi Zhu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuwei Dai
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - James Kit-Hon Tsoi
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shuhua Wang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China.,Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Bilgin HM, Çelik F, Gem M, Akpolat V, Yıldız İ, Ekinci A, Özerdem MS, Tunik S. Effects of local vibration and pulsed electromagnetic field on bone fracture: A comparative study. Bioelectromagnetics 2017; 38:339-348. [DOI: 10.1002/bem.22043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Hakkı Murat Bilgin
- Department of Physiology; Faculty of Medicine; Dicle University; Diyarbakir Turkey
| | - Ferhat Çelik
- Department of Physiology; Faculty of Medicine; Dicle University; Diyarbakir Turkey
| | - Mehmet Gem
- Orthopedics and Traumatology; Dicle University; Diyarbakir Turkey
| | | | | | - Aysun Ekinci
- Biochemistry; Dicle University; Diyarbakir Turkey
| | - Mehmet Siraç Özerdem
- Department of Electrical & Electronics Engineering; Faculty of Engineering; Dicle University; Diyarbakir Turkey
| | - Selçuk Tunik
- Histology and Embryology; Dicle University; Diyarbakir Turkey
| |
Collapse
|
3
|
Wang S, Liu Y, Tang Y, Zhao W, Li J, Yang Y, Du W, Yu H. Direct Radial LMHF Microvibration Induced Bone Formation and Promoted Implant Osseointegration. Clin Implant Dent Relat Res 2014; 18:401-9. [PMID: 24852608 DOI: 10.1111/cid.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Mechanical loading is known to play an important role in bone remodeling. PURPOSE This study aimed to evaluate the effect of direct low-magnitude high-frequency (LMHF) microvibration on dental implant bone formation and osseointegration. MATERIALS AND METHODS Titanium implants were installed in rabbit tibiae. The implants in the left legs were loaded with mechanical vibration (15 μm) at 10, 20, 30, and 40 Hz (10, 20, 30, and 40 Hz groups, respectively) for 30 minutes every day. The implants on the right legs were used as a sham control and did not receive a vibration load. RESULTS After 20 days, the 10, 20, and 30 Hz groups showed significantly greater newly formed bone volume, density, ratio of the bone surface area to the trabecular bone surface area, and ratio of the bone surface area in direct contact with osteoclasts versus the total bone surface area in the region of interest compared with the sham control group, especially the 20 Hz group. However, the 40 Hz group did not. CONCLUSIONS In conclusion, the application of direct LMHF (10, 20, or 30 Hz) vibration on the implants promoted bone formation and osseointegration, especially at 20 Hz; however, the use of 40 Hz did not result in any significant improvement.
Collapse
Affiliation(s)
- Shirui Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junying Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Zhang X, Torcasio A, Vandamme K, Ogawa T, van Lenthe GH, Naert I, Duyck J. Enhancement of implant osseointegration by high-frequency low-magnitude loading. PLoS One 2012; 7:e40488. [PMID: 22808172 PMCID: PMC3393711 DOI: 10.1371/journal.pone.0040488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
Background Mechanical loading is known to play an important role in bone remodelling. This study aimed to evaluate the effect of high- and low-frequency axial loading, applied directly to the implant, on peri-implant bone healing and implant osseointegration. Methodology Titanium implants were bilaterally installed in rat tibiae. For every animal, one implant was loaded (test) while the other one was not (control). The test implants were randomly divided into 8 groups according to 4 loading regimes and 2 experimental periods (1 and 4 weeks). The loaded implants were subject to an axial displacement. Within the high- (HF, 40 Hz) or low-frequency (LF, 8 Hz) loading category, the displacements varied 2-fold and were ranked as low- or high-magnitude (LM, HM), respectively. The strain rate amplitudes were kept constant between the two frequency groups. This resulted in the following 4 loading regimes: 1) HF-LM, 40 Hz-8 µm; 2) HF-HM, 40 Hz-16 µm; 3) LF-LM, 8 Hz-41 µm; 4) LF-HM, 8 Hz-82 µm. The tissue samples were processed for resin embedding and subjected to histological and histomorphometrical analyses. Data were analyzed statistically with the significance set at p<0.05. Principal Findings After loading for 4 weeks, HF-LM loading (40 Hz-8 µm) induced more bone-to-implant contact (BIC) at the level of the cortex compared to its unloaded control. No significant effect of the four loading regimes on the peri-implant bone fraction (BF) was found in the 2 experimental periods. Conclusions The stimulatory effect of immediate implant loading on bone-to-implant contact was only observed in case of high-frequency (40 Hz) low-magnitude (8 µm) loading. The applied load regimes failed to influence the peri-implant bone mass.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Antonia Torcasio
- Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, University of Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Toru Ogawa
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - G. Harry van Lenthe
- Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, University of Leuven, Leuven, Belgium
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ignace Naert
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Joke Duyck
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
5
|
Zhang X, Vandamme K, Torcasio A, Ogawa T, van Lenthe GH, Naert I, Duyck J. In vivo assessment of the effect of controlled high- and low-frequency mechanical loading on peri-implant bone healing. J R Soc Interface 2012; 9:1697-704. [PMID: 22279157 DOI: 10.1098/rsif.2011.0820] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to investigate the effect of controlled high- (HF) and low-frequency (LF) mechanical loading on peri-implant bone healing. Custom-made titanium implants were inserted in both tibiae of 69 adult Wistar rats. For every animal, one implant was loaded by compression through the axis of tibia (test), whereas the other one was unloaded (control). The test implants were randomly distributed among four groups receiving different loading regimes, which were determined by ex vivo calibration. Within the HF (40 Hz) or LF (2 Hz) loading category, the magnitudes were chosen as low- (LM) and high-magnitude (HM), respectively, leading to constant strain rate amplitudes for the two frequency groups. This resulted in the four loading regimes: (i) HF-LM (40 Hz-0.5 N); (ii) HF-HM (40 Hz-1 N); (iii) LF-LM (2 Hz-10 N); and (iv) LF-HM (2 Hz-20 N) loading. Loading was performed five times per week and lasted for one or four weeks. Tissue samples were processed for histology and histomorphometry (bone-to-implant contact, BIC; and peri-implant bone fraction, BF) at the cortical and medullar level. Data were analysed statistically with ANOVA and paired t-tests with the significance level set at 0.05. For the one-week experiments, an increased BF adjacent to the implant surface at the cortical level was exclusively induced by the LF-HM loading regime (2 Hz-20 N). Four weeks of loading resulted in a significant effect on BIC (and not on BF) in case of HF-LM loading (40 Hz-0.5 N) and LF-HM loading (2 Hz-20 N): BIC at the cortical level significantly increased under both loading regimes, whereas BIC at the medullar level was positively influenced only in case of HF-LM loading. Mechanical loading at both HF and LF affects osseointegration and peri-implant BF. Higher loading magnitudes (and accompanying elevated tissue strains) are required under LF loading to provoke a positive peri-implant bone response, compared with HF loading. A sustained period of loading at HF is needed to result in an overall enhanced osseointegration.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, Biomechanics Section, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|