1
|
MATOS AO, RANGEL EC, BARÃO VAR, GREGORY RL. Antimicrobial behavior of titanium coating with chlorhexidine-doped thin film exposed to a biofilm supplemented with nicotine. Dent Mater J 2023; 42:228-235. [PMID: 36464292 DOI: 10.4012/dmj.2022-168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Because nicotine upregulates the growth of most oral bacteria, this in vitro study investigated the antimicrobial effect of chlorhexidine-doped thin film on commercially pure titanium against Fusobacterium nucleatum (F. nucleatum) biofilm supplemented with different concentrations of nicotine (0, 1, and 2 mg/mL). Biofilms were formed on a chlorhexidine-doped thin film on commercially-pure-titanium discs and compared to the control groups. Biofilm viability, total biofilm growth using a spectrophotometer, extracellular polysaccharide content, and pH variations were assessed as dependent variables. Data were submitted to ANOVA and Tukey honest significant difference tests (α=0.05). F. nucleatum biofilm growth was inhibited when exposed to chlorhexidine-doped thin film (p<0.05). Biofilm supplemented with nicotine did not impact the synthesis of EPS on the same type of treatment (p>0.05). The pH values were significantly increased with the increase of nicotine concentration (p<0.05). Chlorhexidine-doped thin film was effective in reducing F. nucleatum biofilm supplemented with nicotine.
Collapse
Affiliation(s)
| | - Elidiane Cipriano RANGEL
- Laboratory of Technological Plasmas (LaPTec), Engineering College, Sao Paulo State University (UNESP)
| | | | - Richard Lee GREGORY
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry
| |
Collapse
|
2
|
Matos AO, de Almeida AB, Beline T, Tonon CC, Casarin RCV, Windsor LJ, Duarte S, Nociti FH, Rangel EC, Gregory RL, Barão VAR. Synthesis of multifunctional chlorhexidine-doped thin films for titanium-based implant materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111289. [PMID: 32919650 DOI: 10.1016/j.msec.2020.111289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/28/2022]
Abstract
Our goal was to create bio-functional chlorhexidine (CHX)-doped thin films on commercially pure titanium (cpTi) discs using the glow discharge plasma approach. Different plasma deposition times (50, 35 and 20 min) were used to create bio-functional surfaces based on silicon films with CHX that were compared to the control groups [no CHX and bulk cpTi surface (machined)]. Physico-chemical and biological characterizations included: 1. Morphology, roughness, elemental chemical composition, film thickness, contact angle and surface free energy; 2. CHX-release rate; 3. Antibacterial effect on Streptococcus sanguinis biofilms at 24, 48 and 72 h; 4. Cytotoxicity and metabolic activity using fibroblasts cell culture (NIH-F3T3 cells) at 1, 2, 3 and 4 days; 5. Protein expression by NIH-F3T3 cells at 1, 2, 3 and 4 days; and 6. Co-culture assay of fibroblasts cells and S. sanguinis to assess live and dead cells on the confocal laser scanning microscopy, mitochondrial activity (XTT), membrane leakage (LDH release), and metabolic activity (WST-1 assay) at 1, 2 and 3 days of co-incubation. Data analysis showed that silicon films, with or without CHX coated cpTi discs, increased surface wettability and free energy (p < 0.05) without affecting surface roughness. CHX release was maintained over a 22-day period and resulted in a significant inhibition of biofilm growth (p < 0.05) at 48 and 72 h of biofilm formation for 50 min and 20 min of plasma deposition time groups, respectively. In general, CHX treatment did not significantly affect NIH-F3T3 cell viability (p > 0.05), whereas cell metabolism (MTT assay) was affected by CHX, with the 35 min of plasma deposition time group displaying the lowest values as compared to bulk cpTi (p < 0.05). Moreover, data analysis showed that films, with or without CHX, significantly affected the expression profile of inflammatory cytokines, including IL-4, IL-6, IL-17, IFN-y and TNF-α by NIH-F3T3 cells (p < 0.05). Co-culture demonstrated that CHX-doped film did not affect the metabolic activity, cytotoxicity and viability of fibroblasts cells (p > 0.05). Altogether, the findings of the current study support the conclusion that silicon films added with CHX can be successfully created on titanium discs and have the potential to affect bacterial growth and inflammatory markers without affecting cell viability/proliferation rates.
Collapse
Affiliation(s)
- Adaias Oliveira Matos
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Amanda Bandeira de Almeida
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Thamara Beline
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Caroline C Tonon
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University, Purdue University Indianapolis, School of Dentistry, Indianapolis, IN, USA
| | - Renato Corrêa Viana Casarin
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Lester Jack Windsor
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Simone Duarte
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University, Purdue University Indianapolis, School of Dentistry, Indianapolis, IN, USA
| | - Francisco Humberto Nociti
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Elidiane Cipriano Rangel
- Laboratory of Technological Plasmas (LaPTec), São Paulo State University (UNESP), Science and Technology Institute of Sorocaba (ICTS), Sorocaba, São Paulo, Brazil
| | - Richard L Gregory
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.
| |
Collapse
|
3
|
Albrektsson T, Wennerberg A. On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res 2019; 21 Suppl 1:4-7. [PMID: 30816639 DOI: 10.1111/cid.12742] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The understanding of mechanisms of osseointegration as well as applied knowledge about oral implant surfaces are of paramount importance for successful clinical results. PURPOSE The aim of the present article is to present an overview of osseointegration mechanisms and an introduction to surface innovations with relevance for osseointegration that will be published in the same supplement of Clinical Implant Dentistry and Related Research. MATERIALS AND METHODS The present article is a narrative review of some osseointegration and implant surface-related details. RESULTS AND CONCLUSIONS Osseointegration has a changed definition since it is realized today that oral implants are but foreign bodies and that this fact explains osseointegration as a protection mechanism of the tissues. Given adequate stability, bone tissue is formed around titanium implants to shield them from the tissues. Oral implant surfaces may be characterized by microroughness and nanoroughness, by surface chemical composition and by physical and mechanical parameters. An isotropic, moderately rough implant surface such as seen on the TiUnite device has displayed improved clinical results compared to previously used minimally rough or rough surfaces. However, there is a lack of clinical evidence supporting any particular type of nanoroughness pattern that, at best, is documented with results from animal studies. It is possible, but as yet unproven, that clinical results may be supported by a certain chemical composition of the implant surface. The same can be said with respect to hydrophilicity of implant surfaces; positive animal data may suggest some promise, but there is a lack of clinical evidence that hydrophilic implants result in improved clinical outcome of more hydrophobic surfaces. With respect to mechanical properties, it seems obvious that those must be encompassing the loading of oral implants, but we need more research on the mechanically ideal implant surface from a clinical aspect.
Collapse
Affiliation(s)
- Tomas Albrektsson
- Department of Biomaterials, University of Gothenburg, Gothenburg, Sweden.,Department of Prosthodontics, University of Malmö, Malmö, Sweden
| | - Ann Wennerberg
- Department of Prosthodontics, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Pham MH, Haugen HJ, Rinna A, Ellingsen JE, Reseland JE. Hydrofluoric acid treatment of titanium surfaces enhances the proliferation of human gingival fibroblasts. J Tissue Eng 2019; 10:2041731419828950. [PMID: 30800262 PMCID: PMC6378639 DOI: 10.1177/2041731419828950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/16/2019] [Indexed: 12/23/2022] Open
Abstract
The attachment of implants relies on bone and soft tissue biocompatibility. The aim of this article is to investigate the effect of fluoride-modified metallic titanium (Ti) surfaces (Ti-F) on proliferation and differentiation of human gingival fibroblasts. Human gingival fibroblast cells were exposed to hydrofluoric acid-modified Ti coins (Ti-F) for 1, 3, 7, 14 and 21 days, and untreated coins were used as controls. A five- to six-fold increase in the proliferation of human gingival fibroblasts on Ti-F compared to Ti surfaces was observed. Enhanced gene expression of interleukin-6 and osteoprotegerin was found at 7 days. Increased levels of sclerostin, interleukin-6 and osteoprotegerin in the media from human gingival fibroblasts cultured on Ti-F coins were found compared to controls. Our results confirm that hydrofluoric acid-modified surface may indirectly enhance the firm attachment of implant surface to junction epithelium, soft tissue epithelium, which would give protection for underlying osseous structures making osseointegration of the dental implant possible.
Collapse
Affiliation(s)
- Maria H Pham
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Alessandra Rinna
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Jan Eirik Ellingsen
- Department of Prosthodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
TARDELLI JDC, VALENTE MLDC, DOS REIS AC. Influência da topografia de superfície nanométrica na estabilidade primária de mini-implantes dentários. REVISTA DE ODONTOLOGIA DA UNESP 2019. [DOI: 10.1590/1807-2577.01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo Introdução A modificação físico-química da superfície de mini-implantes utilizados no suporte de overdentures pode influenciar o desempenho mecânico dos mesmos. Objetivo Avaliar a influência de um tratamento de superfície do tipo nanométrico no desempenho mecânico de novos designs de mini-implantes. Material e método Foram utilizados 40 mini-implantes (Ti-6Al-4V), com Ø 2 mm × 10 mm de comprimento e dois designs diferentes, rosqueado e helicoidal, divididos em quatro grupos (n=10), de acordo com o modelo e a presença ou a ausência de tratamento superficial. O desempenho mecânico foi avaliado por meio de torque de inserção e ensaio de arrancamento em cilindros ósseos suínos. Análise de variância ANOVA e teste de Tukey, com significância de 5%, foram utilizados para análise estatística dos dados. Resultado Foi observada diferença estatisticamente significante entre os grupos com e sem tratamento para torque de inserção (p<0,001), e ensaio de arrancamento (p=0,006), sendo a maior média para o grupo com tratamento, independentemente do design. Na comparação entre os designs, o rosqueado apresentou média significativamente maior (p<0,001) que o helicoidal. Conclusão: O tratamento de superfície nanométrico viabilizou melhor desempenho mecânico dos mini-implantes avaliados. Com relação aos novos designs testados, o rosqueado apresentou resultados superiores ao helicoidal.
Collapse
|
6
|
Carmo Filho LCD, Marcello-Machado RM, Castilhos EDD, Del Bel Cury AA, Faot F. Can implant surfaces affect implant stability during osseointegration? A randomized clinical trial. Braz Oral Res 2018; 32:e110. [PMID: 30379212 DOI: 10.1590/1807-3107bor-2018.vol32.0110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022] Open
Abstract
This randomized clinical trial evaluated the insertion torque (IT), primary, and secondary stability of dental implants with different surface treatments during the osseointegration period. Nineteen patients with bilateral partial edentulism in the posterior mandibular region were randomly allocated to two implant brand groups and received implants with different surface treatments in the opposite site of the arch: Osseotite and Nanotite or SLA and SLActive. During implant placement, the maximum IT was recorded using a surgical motor equipped with a graphical user interface. The implant stability quotient (ISQ) was assessed immediately after the IT, and was measured weekly via resonance frequency analysis during 3 months. The data were analyzed by a one-way ANOVA, the Bonferroni test, paired t tests and Pearson's correlation coefficient. The IT values were similar (p > 0.05) for all implant types ranging from 43.82 ± 6.50 to 46.84 ± 5.06. All implant types behaved similarly until the 28th day (p > 0.05). Between 35 and 56 days, Osseotite and SLActive showed lower ISQ values (p < 0.001) compared to Nanotite and SLA implants. After 56 days, only Osseotite maintained significantly lower ISQ values than the other implants (p < 0.05). After 91 days the ISQ values were significantly higher than the baseline for all four implant types (p < 0.001). The ISQ and IT values were significantly correlated at the baseline and at the final evaluation for Osseotite, Nanotite, and SLActive implants (p < 0.001). After 91 days, ISQ and IT values were only significantly correlated for the Osseotite implants (p < 0.05). All implants types exhibited acceptable primary and secondary stability.
Collapse
Affiliation(s)
- Luiz Carlos do Carmo Filho
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Prosthodontics and Periodontology, Piracicaba, SP, Brazil
| | - Raissa Micaella Marcello-Machado
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Prosthodontics and Periodontology, Piracicaba, SP, Brazil
| | - Eduardo Dickie de Castilhos
- Universidade Federal de Pelotas - UFPel, School of Dentistry, Department of Social and Preventive Dentistry, elotas, RS, Brazil.,University of Campinas, Piracicaba, Brazil
| | - Altair Antoninha Del Bel Cury
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Prosthodontics and Periodontology, Piracicaba, SP, Brazil
| | - Fernanda Faot
- Universidade Federal de Pelotas - UFPel, School of Dentistry, Department of Restorative Dentistry, Pelotas, RS, Brazil
| |
Collapse
|
7
|
Coelho PG, Zavanelli RA, Salles MB, Yeniyol S, Tovar N, Jimbo R. Enhanced Bone Bonding to Nanotextured Implant Surfaces at a Short Healing Period: A Biomechanical Tensile Testing in the Rat Femur. IMPLANT DENT 2017; 25:322-7. [PMID: 27213527 DOI: 10.1097/id.0000000000000436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare the bone bonding capabilities of 2 different surface treatments at an early healing period. Titanium alloy (Ti6Al4V) custom-made rectangular plates (1.4 × 2.4 × 4 mm) were either dual acid etched (Ti6Al4V-DAE) or DAE/nanotextured blasted (Ti6Al4V-NTB). MATERIALS AND METHODS Implants were placed in the distal femurs of 10 Wistar rats and were allowed to heal for 9 days. After euthanasia, the bone immediately proximal and distal to the implant was removed to test the bone bonding force with a universal testing machine. Ultrastructure of the bone/implant interface was assessed by scanning electron microscopy. RESULTS Ti6Al4V-NTB samples exhibited significantly greater bond strength than Ti6Al4V-DAE samples. Morphologically, the Ti6Al4V-NTB surfaces presented intimate interaction with bone, whereas little interaction between the Ti6Al4V-DAE surface and bone was observed. CONCLUSION The results of this study indicated a significant increase in bone bonding for the DAE/nanotextured blasted surface, which is suggested to be the outcome of the nanotexturing.
Collapse
Affiliation(s)
- Paulo G Coelho
- *Associate Professor, Biomaterials and Biomimetics and Director for Research, Department of Periodontology and Implant Dentistry, New York University College of Dentistry, NY. †Professor, Department of Prevention and Oral Rehabilitation, Federal University of Goias School of Dentistry, Goiania, GO, Brazil. ‡Researcher, Biomaterials and Biomimetics and Director for Research, Department of Periodontology and Implant Dentistry, New York University College of Dentistry, NY. §Professor, Department of Anatomy, University of Sao Paulo, Sao Paulo, Brazil. ¶Assistant Professor, Department of Oral Implantology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey. ‖Researcher, Department of Biomaterials and Biomimetics, New York University College of Dentistry, NY. #Associate Professor, Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
8
|
dos Santos A, Araujo JR, Landi SM, Kuznetsov A, Granjeiro JM, de Sena LÁ, Achete CA. A study of the physical, chemical and biological properties of TiO2 coatings produced by micro-arc oxidation in a Ca-P-based electrolyte. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1769-1780. [PMID: 24710979 DOI: 10.1007/s10856-014-5207-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 03/28/2014] [Indexed: 06/03/2023]
Abstract
In this work, a porous and homogeneous titanium dioxide layer was grown on commercially pure titanium substrate using a micro-arc oxidation (MAO) process and Ca-P-based electrolyte. The structure and morphology of the TiO2 coatings were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and profilometry. The chemical properties were studied using electron dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy. The wettability of the coating was evaluated using contact angle measurements. During the MAO process, Ca and P ions were incorporated into the oxide layer. The TiO2 coating was composed of a mixture of crystalline and amorphous structures. The crystalline part of the sample consisted of a major anatase phase and a minor rutile phase. A cross-sectional image of the coating-substrate interface reveals the presence of voids elongated along the interface. An osteoblast culture was performed to verify the cytocompatibility of the anodized surface. The results of the cytotoxicity tests show satisfactory cell viability of the titanium dioxide films produced in this study.
Collapse
Affiliation(s)
- Amanda dos Santos
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ, 25250-020, Brazil,
| | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Kang SN, Jeong CM, Jeon YC, Byon ES, Jeong YS, Cho LR. Effects of Mg-ion and Ca-ion implantations on P. gingivalis and F. nucleatum adhesion. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-013-1104-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Bougas K, Jimbo R, Vandeweghe S, Hayashi M, Bryington M, Kozai Y, Schwartz-Filho H, Tovar N, Adolfsson E, Ono D, Coelho P, Wennerberg A. Bone apposition to laminin-1 coated implants: histologic and 3D evaluation. Int J Oral Maxillofac Surg 2013; 42:677-82. [DOI: 10.1016/j.ijom.2012.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 11/04/2012] [Accepted: 11/08/2012] [Indexed: 01/30/2023]
|
12
|
Krząkała A, Kazek-Kęsik A, Simka W. Application of plasma electrolytic oxidation to bioactive surface formation on titanium and its alloys. RSC Adv 2013. [DOI: 10.1039/c3ra43465f] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
13
|
Jimbo R, Coelho PG, Vandeweghe S, Schwartz-Filho HO, Hayashi M, Ono D, Andersson M, Wennerberg A. Histological and three-dimensional evaluation of osseointegration to nanostructured calcium phosphate-coated implants. Acta Biomater 2011; 7:4229-34. [PMID: 21816237 DOI: 10.1016/j.actbio.2011.07.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 07/08/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022]
Abstract
Nanostructures on implant surfaces have been shown to enhance osseointegration; however, commonly used evaluation techniques are probably not sufficiently sensitive to fully determine the effects of this process. This study aimed to observe the osseointegration properties of nanostructured calcium phosphate (CaP)-coated implants, by using a combination of three-dimensional imaging and conventional histology. Titanium implants were coated with stable CaP nanoparticles using an immersion technique followed by heat treatment. Uncoated implants were used as the control. After topographical and chemical characterizations, implants were inserted into the rabbit femur. After 2 and 4weeks, the samples were retrieved for micro-computed tomography and histomorphometric evaluation. Scanning electron microscopy evaluation indicated that the implant surface was modified at the nanoscale by CaP to obtain surface textured with rod-shaped structures. Relative to the control, the bone-to-implant contact for the CaP-coated implant was significantly higher at 4weeks after the implant surgery. Further, corresponding 3-D images showed active bone formation surrounding the implant. 3-D quantification and 2-D histology demonstrated statistical correlation; moreover, 3-D quantification indicated a statistical decrease in bone density in the non-coated control implant group between 2 and 4weeks after the surgery. The application of 3-D evaluation further clarified the temporal characteristics and biological reaction of implants in bone.
Collapse
Affiliation(s)
- Ryo Jimbo
- Surface Biology Group, Department of Prosthodontics, Faculty of Odontology, Malmö University, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jimbo R, Xue Y, Hayashi M, Schwartz-Filho HO, Andersson M, Mustafa K, Wennerberg A. Genetic responses to nanostructured calcium-phosphate-coated implants. J Dent Res 2011; 90:1422-7. [PMID: 21933935 DOI: 10.1177/0022034511422911] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nanostructured calcium phosphate (CaP) has been histologically and biomechanically proven to enhance osseointegration of implants; however, conventional techniques were not sufficiently sensitive to capture its biological effects fully. Here, we compared the conventional removal torque (RTQ) evaluation and gene expression in tissues around nanostructured CaP-coated implants, using real-time RT-PCR, with those of uncoated implants, in a rabbit model. At 2 wks, RTQ values were significantly higher, alkaline phosphatase (ALP) expression was significantly higher, and runt-related transcription factor 2 and tumor necrosis factor-α expressions were significantly lower in the coated than in the uncoated implants. This indicates that inflammatory responses were suppressed and osteoprogenitor activity increased around the CaP-coated surface. At 4 wks, although RTQ values did not significantly differ between the 2 groups, ALP and osteocalcin (OCN) were significantly up-regulated in the coated group, indicating progressive mineralization of the bone around the implant. Moreover, an osteoclast marker, adenosine triphosphatase, which indicates acidification of the resorption lacunae, was significantly higher for the coated implants, suggesting gradual resorption of the CaP coating. This study reveals detailed genetic responses to nanostructured CaP-coated implants and provides evidence that the effect of nanotopography is significant during the osseointegration cascade.
Collapse
Affiliation(s)
- R Jimbo
- Surface Biology Group, Department of Prosthodontics, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden.
| | | | | | | | | | | | | |
Collapse
|
15
|
Fröjd V, Chávez de Paz L, Andersson M, Wennerberg A, Davies J, Svensäter G. In situ analysis of multispecies biofilm formation on customized titanium surfaces. Mol Oral Microbiol 2011; 26:241-52. [DOI: 10.1111/j.2041-1014.2011.00610.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Fröjd V, Linderbäck P, Wennerberg A, Chávez de Paz L, Svensäter G, Davies JR. Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation. BMC Oral Health 2011; 11:8. [PMID: 21385428 PMCID: PMC3061963 DOI: 10.1186/1472-6831-11-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/08/2011] [Indexed: 11/30/2022] Open
Abstract
Background The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown. Methods We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy. Results Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm). Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth. Conclusions Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm formation by the two oral commensal species tested than the other surfaces.
Collapse
Affiliation(s)
- Victoria Fröjd
- Department of Prosthodontics, Malmo University, Malmo, Sweden
| | | | | | | | | | | |
Collapse
|