1
|
Aljafery AMA, Fatalla AA, Haider J. Osseointegration and Histopathological Evaluation of Titanium-Titanium Diboride Composite Compared to Pure Titanium Implant Materials Prepared by Powder Metallurgy (In Vivo Study). J Biomed Mater Res B Appl Biomater 2024; 112:e35490. [PMID: 39314157 DOI: 10.1002/jbm.b.35490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
The efficacy and osseointegration rate of an implant depend on its biocompatibility. Modern implantology seeks fast and reliable osseointegration, which is essential for clinical success. The objective of this research was to assess the osseointegration and biocompatibility of a titanium-titanium diboride composite (Ti-TiB2) in rabbits in contrast to those of pure titanium (Ti). A total of 64 cylindrical implant specimens were fabricated, consisting of two sets: pure Ti (32 implants) and Ti-TiB2 composite (32 implants). In this study, two implants were implanted per tibia (left and right tibias) in 16 white male New Zealand rabbits, for a total of four implants per rabbit (4 × 16 = 64 implants). A pushout test was used to assess implant specimen-bone bonding after 2 and 6 weeks of healing. The experiment utilized five rabbits per healing phase, which means that 20 implants per time point were used for the pushout tests. (10 for pure Ti and 10 for the composite). Histology was used to examine the tissue response to biocompatibility, and histomorphometry was used to measure new bone growth at the two time points. With three rabbits per time point, 12 implants were employed for the histological analyses. After implantation, the pushout shear strength results revealed that the mean shear strength of the Ti-TiB2 implant specimens (5.4 ± 0.029 MPa for 2 weeks, 7.9 ± 0.029 MPa for 6 weeks) was statistically greater (p < 0.0001) than that of the pure Ti implant specimens (5.1 ± 0.015 MPa for 2 weeks, 6.6 ± 0.047 MPa for 6 weeks). After 2 weeks, woven bone tissues were observed around the pure titanium implants, and active osteoid tissue around the composite implants exhibited significant differences in new bone formation areas (NBFAs) (0.54 ± 0.004 mm2 for Ti and 0.65 ± 0.003 mm2 for the composite). After 6 weeks, there was new bone formation with osteocytes around the pure titanium implants (NBFA of 2.44 mm2) and osteoid maturation with the observation of reversal lines around the composite implants (NBFA of 2.89 mm2). The developed Ti-TiB2 material was biocompatible and demonstrated superior bone growth compared to that of the pure Ti materials after 2 and 6 weeks.
Collapse
Affiliation(s)
- Ali Mohammad Ali Aljafery
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
- Department of Prosthodontic, College of Dentistry, University of Kufa, Najaf, Iraq
| | - Abdalbseet A Fatalla
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Julfikar Haider
- Department of Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
2
|
Sung HH, Kwon HH, Stephan C, Reynolds SM, Dai Z, Van der Kraan PM, Caird MS, Blaney Davidson EN, Kozloff KM. Sclerostin antibody enhances implant osseointegration in bone with Col1a1 mutation. Bone 2024; 186:117167. [PMID: 38876270 PMCID: PMC11243590 DOI: 10.1016/j.bone.2024.117167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
We evaluated the potential of sclerostin antibody (SclAb) therapy to enhance osseointegration of dental and orthopaedic implants in a mouse model (Brtl/+) mimicking moderate to severe Osteogenesis Imperfecta (OI). To address the challenges in achieving stable implant integration in compromised bone conditions, our aim was to determine the effectiveness of sclerostin antibody (SclAb) at improving bone-to-implant contact and implant fixation strength. Utilizing a combination of micro-computed tomography, mechanical push-in testing, immunohistochemistry, and Western blot analysis, we observed that SclAb treatment significantly enhances bone volume fraction (BV/TV) and bone-implant contact (BIC) in Brtl/+ mice, suggesting a normalization of bone structure toward WT levels. Despite variations in implant survival rates between the maxilla and tibia, SclAb treatment consistently improved implant stability and resistance to mechanical forces, highlighting its potential to overcome the inherent challenges of OI in dental and orthopaedic implant integration. These results suggest that SclAb could be a valuable therapeutic approach for enhancing implant success in compromised bone conditions.
Collapse
Affiliation(s)
- Hsiao H Sung
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI, USA; Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, the Netherlands
| | - Hanna H Kwon
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Chris Stephan
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Skylar M Reynolds
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Zongrui Dai
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Peter M Van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, the Netherlands
| | - Michelle S Caird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Sayed O, Abdalla MM, Elsayed A, El-Mahallawy Y, Al-Mahalawy H. Does strontium coated titanium implants enhance the osseointegration in animal models under osteoporotic condition? A systematic review and meta-analysis. BDJ Open 2024; 10:69. [PMID: 39181895 PMCID: PMC11344846 DOI: 10.1038/s41405-024-00220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 08/27/2024] Open
Abstract
PURPOSE The aim of this study was to systematically review the literature to address the effect of strontium modified titanium implants on the osseointegration in the presence of osteoporotic conditions through animal models. MATERIALS AND METHODS The databases (PubMed, Scopus, Web of Science, and EBSCO) were searched electronically, and manual searches were performed till December 2022 to identify preclinical studies on the osseointegration of strontium coated titanium implants in animals with induced osteoporotic conditions. The primary outcomes were the bone-implant contact percentage (BIC%), bone area (BA) from the histomorphometric analysis, and the osseointegration parameters from biomechanical tests; the secondary outcomes were the osseointegration parameters from the micro computed tomography. RESULTS Nineteen articles were included for the quantitative analysis on basis of the inclusion criteria. The results revealed that Sr-modified implants showed a significant 19.05% increase in BIC, and 15.01% increase in BA. The results of biomechanical tests indicated a significant effect in favor of Sr-coated implants. Furthermore, Results of the secondary outcomes supported the significant advantages of Sr-coated implants over the un-coated implants. The overall, systematic analysis of implants osteointegration parameters proved a significant increase in favor of Sr-coated titanium implants (P < 0.01). CONCLUSION The present results provide evidence that strontium-coated titanium implants enhanced the osseointegration in animal models under osteoporotic condition as this surface modification techniques have improved the mechanical and biological properties of the titanium implants.
Collapse
Affiliation(s)
- Osama Sayed
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| | - Mohamed Mahmoud Abdalla
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Dental Biomaterials, Faculty of Dental Medicine Al-Azhar University, Cairo, Egypt
| | - Ayman Elsayed
- Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Yehia El-Mahallawy
- Assistant Professor, Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Haytham Al-Mahalawy
- Professor and head of the Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| |
Collapse
|
4
|
Bruns S, Krüger D, Galli S, Wieland DF, Hammel JU, Beckmann F, Wennerberg A, Willumeit-Römer R, Zeller-Plumhoff B, Moosmann J. On the material dependency of peri-implant morphology and stability in healing bone. Bioact Mater 2023; 28:155-166. [PMID: 37250865 PMCID: PMC10212791 DOI: 10.1016/j.bioactmat.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
The microstructural architecture of remodeled bone in the peri-implant region of screw implants plays a vital role in the distribution of strain energy and implant stability. We present a study in which screw implants made from titanium, polyetheretherketone and biodegradable magnesium-gadolinium alloys were implanted into rat tibia and subjected to a push-out test four, eight and twelve weeks after implantation. Screws were 4 mm in length and with an M2 thread. The loading experiment was accompanied by simultaneous three-dimensional imaging using synchrotron-radiation microcomputed tomography at 5 μm resolution. Bone deformation and strains were tracked by applying optical flow-based digital volume correlation to the recorded image sequences. Implant stabilities measured for screws of biodegradable alloys were comparable to pins whereas non-degradable biomaterials experienced additional mechanical stabilization. Peri-implant bone morphology and strain transfer from the loaded implant site depended heavily on the biomaterial utilized. Titanium implants stimulated rapid callus formation displaying a consistent monomodal strain profile whereas the bone volume fraction in the vicinity of magnesium-gadolinium alloys exhibited a minimum close to the interface of the implant and less ordered strain transfer. Correlations in our data suggest that implant stability benefits from disparate bone morphological properties depending on the biomaterial utilized. This leaves the choice of biomaterial as situational depending on local tissue properties.
Collapse
Affiliation(s)
- Stefan Bruns
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Diana Krüger
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Silvia Galli
- University of Malmö, Faculty of Odontology, Department of Prosthodontics, Carl Gustafs Väg 34, Klerken, 20506, Malmö, Sweden
| | - D.C. Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Felix Beckmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Ann Wennerberg
- University of Gothenburg, Institute of Odontology, Department of Prosthodontics, Medicinaregatan 12 f, 41390, Göteborg, Sweden
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Julian Moosmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| |
Collapse
|
5
|
Hériveaux Y, Le Cann S, Immel K, Vennat E, Nguyen VH, Brailovski V, Karasinski P, Sauer RA, Haïat G. Debonding of coin-shaped osseointegrated implants: Coupling of experimental and numerical approaches. J Mech Behav Biomed Mater 2023; 141:105787. [PMID: 36989873 DOI: 10.1016/j.jmbbm.2023.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
While cementless implants are now widely used clinically, implant debonding still occur and is difficult to anticipate. Assessing the biomechanical strength of the bone-implant interface can help improving the understanding of osseointegration phenomena and thus preventing surgical failures. A dedicated and standardized implant model was considered. The samples were tested using a mode III cleavage device to assess the mechanical strength of the bone-implant interface by combining experimental and numerical approaches. Four rough (Sa = 24.5 μm) osseointegrated coin-shaped implants were left in sheep cortical bone during 15 weeks of healing time. Each sample was experimentally rotated at 0.03°/sec until complete rupture of the interface. The maximum values of the torque were comprised between 0.48 and 0.72 N m, while a significant increase of the normal force from 7-12 N to 31-43 N was observed during the bone-implant interface debonding, suggesting the generation of bone debris at the bone-implant interface. The experimental results were compared to an isogeometric finite element model describing the adhesion and debonding phenomena through a modified Coulomb's law, based on a varying friction coefficient to represent the transition from an unbroken to a broken bone-implant interface. A good agreement was found between numerical and experimental torques, with numerical friction coefficients decreasing from 8.93 to 1.23 during the bone-implant interface rupture, which constitutes a validation of this model to simulate the debonding of an osseointegrated bone-implant interface subjected to torsion.
Collapse
|
6
|
Hydrothermal Synthesis of Fluorapatite Coatings over Titanium Implants for Enhanced Osseointegration-An In Vivo Study in the Rabbit. J Funct Biomater 2022; 13:jfb13040241. [PMID: 36412882 PMCID: PMC9680447 DOI: 10.3390/jfb13040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
This work aims at the development and characterization of fluorapatite coatings, innovatively prepared by the hydrothermal method, aiming for enhanced osseointegration of titanium implants. Fluoride-containing coatings were prepared and characterized by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy-attenuated total reflectance, and X-ray photoelectron spectroscopy. The biological response was characterized by microtomographic evaluation and histomorphometric analysis upon orthotopic implantation in a translational rabbit experimental model. Physic-chemical analysis revealed the inclusion of fluoride in the apatite lattice with fluorapatite formation, associated with the presence of citrate species. The in vivo biological assessment of coated implants revealed an enhanced bone formation process-with increased bone-to-implant contact and bone volume. The attained enhancement of the osteogenic process may be attributable to the conjoined modulatory activity of selected fluoride and citrate levels within the produced coatings. In this regard, the production of fluorapatite coatings with citrate, through the hydrothermal method, entails a promising approach for enhanced osseointegration in implant dentistry and orthopedic applications.
Collapse
|
7
|
Current interpretations on the in vivo response of bone to additively manufactured metallic porous scaffolds: A review. BIOMATERIALS AND BIOSYSTEMS 2021; 2:100013. [PMID: 36824658 PMCID: PMC9934422 DOI: 10.1016/j.bbiosy.2021.100013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/20/2021] [Accepted: 02/13/2021] [Indexed: 01/08/2023] Open
Abstract
Recent advances in the field of metallic additive manufacturing have expanded production capabilities for bone implants to include porous lattice structures. While traditional models of de novo bone formation can be applied to fully dense implant materials, their applicability to the interior of porous materials has not been well-characterized. Unlike other reviews that focus on materials and mechanical properties of lattice structures, this review compiles biological performance from in vivo studies in pre-clinical models only. First, we introduce the most common lattice geometry designs employed in vivo and discuss some of their fabrication advantages and limitations. Then lattice geometry is correlated to quantitative (histomorphometric) and qualitative (histological) assessments of osseointegration. We group studies according to two common implant variables: pore size and percent porosity, and explore the extent of osseointegration using common measures, including bone-implant contact (BIC), bone area (BA), bone volume/total volume (BV/TV) and biomechanical stability, for various animal models and implantation times. Based on this, trends related to in vivo bone formation on the interior of lattice structures are presented. Common challenges with lattice structures are highlighted, including nonuniformity of bone growth through the entirety of the lattice structure due to occlusion effects and avascularity. This review paper identifies a lack of systematic in vivo studies on porous AM implants to target optimum geometric design, including pore shape, size, and percent porosity in controlled animal models and critical-sized defects. Further work focusing on surface modification strategies and systematic geometric studies to homogenize in vivo bone growth through the scaffold interior are recommended to increase implant stability in the early stages of osseointegration.
Collapse
|
8
|
Dewey MJ, Nosatov AV, Subedi K, Shah R, Jakus A, Harley BAC. Inclusion of a 3D-printed Hyperelastic Bone mesh improves mechanical and osteogenic performance of a mineralized collagen scaffold. Acta Biomater 2021; 121:224-236. [PMID: 33227483 PMCID: PMC7856202 DOI: 10.1016/j.actbio.2020.11.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
Regenerative repair of craniomaxillofacial bone injuries is challenging due to both the large size and irregular shape of many defects. Mineralized collagen scaffolds have previously been shown to be a promising biomaterial implant to accelerate craniofacial bone regeneration in vivo. Here we describe inclusion of a 3D-printed polymer or ceramic-based mesh into a mineralized collagen scaffold to improve mechanical and biological activity. Mineralized collagen scaffolds were reinforced with 3D-printed Fluffy-PLG (ultraporous polylactide-co-glycolide co-polymer) or Hyperelastic Bone (90wt% calcium phosphate in PLG) meshes. We show degradation byproducts and acidic release from the printed structures have limited negative impact on the viability of mesenchymal stem cells. Further, inclusion of a mesh formed from Hyperelastic Bone generates a reinforced composite with significantly improved mechanical performance (elastic modulus, push-out strength). Composites formed from the mineralized collagen scaffold and either Hyperelastic Bone or Fluffy-PLG reinforcement both supported human bone-marrow derived mesenchymal stem cell osteogenesis and new bone formation. This was observed by increased mineral formation in Fluffy-PLG composites and increased cell viability and upregulation of RUNX2, Osterix, and COL1A2 genes in both composites. Strikingly, composites reinforced with Hyperelastic Bone mesh elicited significantly increased secretion of osteoprotegerin, a soluble glycoprotein and endogenous inhibitor of osteoclast activity. These results suggest that architectured meshes can be integrated into collagen scaffolds to boost mechanical performance and actively instruct cell processes that aid osteogenicity; specifically, secretion of a factor crucial to inhibiting osteoclast-mediated bone resorption. Future work will focus on further adapting the polymer mesh architecture to confer improved shape-fitting capacity as well as to investigate the role of polymer reinforcement on MSC-osteoclast interactions as a means to increase regenerative potential.
Collapse
Affiliation(s)
- Marley J Dewey
- Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Andrey V Nosatov
- Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Kiran Subedi
- College of Agriculture and Environmental Sciences, North Carolina Agriculture and Technical State University, Greensboro, NC 27411, United States; Dimension Inx, Chicago, IL 60616, United States.
| | | | - Adam Jakus
- Dimension Inx, Chicago, IL 60616, United States
| | - Brendan A C Harley
- Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
9
|
Valente MLDC, Castro DTD, Shimano AC, Reis ACD. Influence of an Alternative Implant Design and Surgical Protocol on Primary Stability. Braz Dent J 2019; 30:47-51. [PMID: 30864647 DOI: 10.1590/0103-6440201902324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022] Open
Abstract
The purpose of thisin vitrostudy was to evaluate the influence of a new proposal of implant design and surgical protocol on primary stability in different bone densities. Four groups were tested (n=9): G1 - tapered, cone morse, Ø 4.3 mm x 10 mm in length (Alvim CM); G2 - experimental tapered; G3 - cylindrical, cone morse, Ø 4.0 mm x 11 mm in length (Titamax CM) and G4 - experimental cylindrical. The experimental implants were obtained from a design change in the respective commercial models. The insertion was performed in polyurethane (PU) blocks 0.24 g/cm3(20 pcf) and 0.64 g/cm3(40 pcf), according to different surgical protocols. The primary stability was measured by means of insertion torque (IT) and pullout test. Data were analyzed by ANOVA, Tukey's test (α=0.05) and Pearson's correlation. For IT and pullout, conventional and experimental implants showed no difference between them when inserted in the 20 pcf PU (p>0.05). In the 40 pcf PU, the modified implants exhibited greater IT (p<0.05) and lower pullout (p<0.05) compared to the respective conventional models. The implant design tested associated with the surgical protocol, positively influenced primary stability in higher density bones.
Collapse
Affiliation(s)
| | - Denise Tornavoi de Castro
- Department of Dental Materials and Prosthesis, USP - Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antônio Carlos Shimano
- Department of Biomechanics, Medicine, and Rehabilitation of Locomotive Apparatus, USP - Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthesis, USP - Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Rizzo P. A review on the latest advancements in the non-invasive evaluation/monitoring of dental and trans-femoral implants. Biomed Eng Lett 2019; 10:83-102. [PMID: 32175131 DOI: 10.1007/s13534-019-00126-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/05/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Dental implants and transcutaneous prostheses (trans-femoral implants) improve the quality of life of millions of people because they represent the optimal treatments to edentulism and amputation, respectively. The clinical procedures adopted by surgeons to insert these implants are well established. However, there is uncertainty on the outcomes of the post-operation recovery because of the uncertainty associated with the osseointegration process, which is defined as the direct, structural and functional contact between the living bone and the fixture. To guarantee the long-term survivability of dental or trans-femoral implants doctors sometimes implement non-invasive techniques to monitor and evaluate the progress of osseointegration. This may be done by measuring the stability of the fixture or by assessing the quality of the bone-fixture interface. In addition, care providers may need to quantify the structural integrity of the bone-implant system at various moments during the patients recovery. The accuracy of such non-invasive methods reduce recovery and rehabilitation time, and may increase the survival rate of the therapies with undisputable benefits for the patients. This paper provides a comprehensive review of clinically-approved and emerging non-invasive methods to evaluate/monitor the osseointegration of dental and orthopedic implants. A discussion about advantages and limitations of each method is provided based on the outcomes of the cases presented. The review on the emerging technologies covers the developments of the last decade, while the discussion about the clinically approved systems focuses mostly on the latest (2017-2018) findings. At last, the review also provides some suggestions for future researches and developments in the area of implant monitoring.
Collapse
Affiliation(s)
- Piervincenzo Rizzo
- Department of Civil and Environmental Engineering, University of Pittsburgh, 729 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15261 USA
| |
Collapse
|
11
|
Wu Y, Feng F, Xin H, Li K, Tang Z, Guo Y, Qin D, An B, Diao X, Dou C. Fracture Strength and Osseointegration of an Ultrafine-Grained Titanium Mini Dental Implant after Macromorphology Optimization. ACS Biomater Sci Eng 2019; 5:4122-4130. [DOI: 10.1021/acsbiomaterials.9b00406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yulu Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Fan Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Haitao Xin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Kai Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Zhongbin Tang
- School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yazhou Guo
- School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dongyang Qin
- School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Baili An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Xiaoou Diao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Chenyun Dou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
12
|
Procter P, Pujari-Palmer M, Hulsart-Billström G, Wenner D, Insley G, Larsson S, Engqvist H. A biomechanical test model for evaluating osseous and osteochondral tissue adhesives. BMC Biomed Eng 2019; 1:11. [PMID: 32903290 PMCID: PMC7422571 DOI: 10.1186/s42490-019-0011-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/31/2019] [Indexed: 01/01/2023] Open
Abstract
Background Currently there are no standard models with which to evaluate the biomechanical performance of calcified tissue adhesives, in vivo. We present, herein, a pre-clinical murine distal femoral bone model for evaluating tissue adhesives intended for use in both osseous and osteochondral tissue reconstruction. Results Cylindrical cores (diameter (Ø) 2 mm (mm) × 2 mm depth), containing both cancellous and cortical bone, were fractured out from the distal femur and then reattached using one of two tissue adhesives. The adhesiveness of fibrin glue (Tisseeltm), and a novel, biocompatible, calcium phosphate-based tissue adhesive (OsStictm) were evaluated by pullout testing, in which glued cores were extracted and the peak force at failure recorded. The results show that Tisseel weakly bonded the metaphyseal bone cores, while OsStic produced > 30-fold higher mean peak forces at failure (7.64 Newtons (N) vs. 0.21 N). The failure modes were consistently disparate, with Tisseel failing gradually, while OsStic failed abruptly, as would be expected with a calcium-based material. Imaging of the bone/adhesive interface with microcomputed tomography revealed that, for OsStic, failure occurred more often within cancellous bone (75% of tested samples) rather than at the adhesive interface. Conclusions Despite the challenges associated with biomechanical testing in small rodent models the preclinical ex-vivo test model presented herein is both sensitive and accurate. It enabled differences in tissue adhesive strength to be quantified even for very small osseous fragments (<Ø4mm). Importantly, this model can easily be scaled to larger animals and adapted to fracture fragment fixation in human bone. The present model is also compatible with other long-term in vivo evaluation methods (i.e. in vivo imaging, histological analysis, etc.).
Collapse
Affiliation(s)
- Philip Procter
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Box 523, 75120 Uppsala, Sweden.,GPBio Ltd, Rathkeale, Ireland
| | - Michael Pujari-Palmer
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Gry Hulsart-Billström
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Box 523, 75120 Uppsala, Sweden.,Department Surgical Sciences, Orthopaedics, Uppsala University Hospital, 75185 Uppsala, Sweden
| | - David Wenner
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Gerard Insley
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Box 523, 75120 Uppsala, Sweden.,GPBio Ltd, Rathkeale, Ireland
| | - Sune Larsson
- Department Surgical Sciences, Orthopaedics, Uppsala University Hospital, 75185 Uppsala, Sweden
| | - Håkan Engqvist
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
13
|
Gan XQ, Xiao Y, Ma RY, Huang CP, Wu Y, Yang BC, Yang Q, Bao CY, Yu HY. [Expert consensus on biomechanical research of dental implant]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:115-123. [PMID: 31168976 PMCID: PMC7030149 DOI: 10.7518/hxkq.2019.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/15/2019] [Indexed: 02/05/2023]
Abstract
Current biomechanical research of dental implants focuses on the mechanical damage and enhancement mechanism of the implant-abutment interface as well as how to obtain better mechanical strength and longer fatigue life of dental implants. The mechanical properties of implants can be comprehensively evaluated by strain gauge analysis, photo elastic stress analysis, digital image correlation, finite element analysis, implant bone bonding strength test, and measurement of mechanical properties. Finite element analysis is the most common method for evaluating stress distribution in dental implants, and static pressure and fatigue tests are commonly used in mechanical strength test. This article reviews biomechanical research methods and evaluation indices of dental implants. Results provide methodology guidelines in the field of biomechanics by introducing principles, ranges of application, advantages, and limitations, thereby benefitting researchers in selecting suitable methods. The influencing factors of the experimental results are presented and discussed to provide implant design ideas for researchers.
Collapse
Affiliation(s)
- Xue-Qi Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases
& Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rui-Yang Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chun-Peng Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases
& Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yao Wu
- Engineering Research Center in Biomaterials, Sichuan University & Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China
| | - Bang-Cheng Yang
- Engineering Research Center in Biomaterials, Sichuan University & Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China
| | - Qi Yang
- Chengdu Puchuan Biomaterials Co., Ltd, Chengdu 611731, China
| | - Chong-Yun Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases
& Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hai-Yang Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Dewey MJ, Johnson EM, Weisgerber DW, Wheeler MB, Harley BAC. Shape-fitting collagen-PLA composite promotes osteogenic differentiation of porcine adipose stem cells. J Mech Behav Biomed Mater 2019; 95:21-33. [PMID: 30953806 DOI: 10.1016/j.jmbbm.2019.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/17/2018] [Accepted: 03/17/2019] [Indexed: 10/27/2022]
Abstract
Craniomaxillofacial bone defects can occur as a result of congenital, post-oncologic, and high-energy impact conditions. The scale and irregularity of such defects motivate new biomaterials to promote regeneration of the damaged bone. We have recently described a mineralized collagen scaffold capable of instructing stem cell osteogenic differentiation and new bone infill in the absence of traditional osteogenic supplements. Herein, we report the integration of a millimeter-scale reinforcing poly (lactic acid) frame fabricated via 3D-printing into the mineralized collagen scaffold with micron-scale porosity to form a multi-scale mineralized collagen-PLA composite. We describe modifications to the PLA frame design to increase the compressive strength (Young's Modulus, ultimate stress and strain) of the composite. A critical challenge beyond increasing the compressive strength of the collagen scaffold is addressing challenges inherent with the irregularity of clinical defects. As a result, we examined the potential for modifying the frame architecture to render the composite with increased compressive strength in one axis or radial compressibility and shape-fitting capacity in an orthogonal axis. A library of mineralized collagen-PLA composites was mechanically characterized via compression testing and push-out test to describe mechanical performance and shape-fitting capacity. We also report in vitro comparison of the bioactivity of porcine adipose derived stem cells in the mineralized collagen-PLA composite versus the mineralized collagen scaffold via metabolic activity, gene expression, and functional matrix synthesis. The results suggest that incorporation of the PLA reinforcing frame does not negatively influence the osteoinductive nature of the mineralized collagen scaffold. Together, these findings suggest a strategy to address often competing bioactivity, mechanical strength, and shape-fitting design requirements for biomaterials for craniomaxillofacial bone regeneration.
Collapse
Affiliation(s)
- Marley J Dewey
- Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eileen M Johnson
- Dept. of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel W Weisgerber
- Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew B Wheeler
- Dept. of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Dept. of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
15
|
Tanaka K, Sailer I, Iwama R, Yamauchi K, Nogami S, Yoda N, Takahashi T. Relationship between cortical bone thickness and implant stability at the time of surgery and secondary stability after osseointegration measured using resonance frequency analysis. J Periodontal Implant Sci 2018; 48:360-372. [PMID: 30619637 PMCID: PMC6312875 DOI: 10.5051/jpis.2018.48.6.360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/22/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose It has been suggested that resonance frequency analysis (RFA) can measure changes in the stability of dental implants during osseointegration. This retrospective study aimed to evaluate dental implant stability at the time of surgery (primary stability; PS) and secondary stability (SS) after ossseointegration using RFA, and to investigate the relationship between implant stability and cortical bone thickness. Methods In total, 113 patients who attended the Tohoku University Hospital Dental Implant Center were included in this study. A total of 229 implants were placed in either the mandibular region (n=118) or the maxilla region (n=111), with bone augmentation procedures used in some cases. RFA was performed in 3 directions, and the lowest value was recorded. The preoperative thickness of cortical bone at the site of implant insertion was measured digitally using computed tomography, excluding cases of bone grafts and immediate implant placements. Results The mean implant stability quotient (ISQ) was 69.34±9.43 for PS and 75.99±6.23 for SS. The mandibular group had significantly higher mean ISQ values than the maxillary group for both PS and SS (P<0.01). A significant difference was found in the mean ISQ values for PS between 1-stage and 2-stage surgery (P<0.5). The mean ISQ values in the non-augmentation group were higher than in the augmentation group for both PS and SS (P<0.01). A weak positive correlation was observed between cortical bone thickness and implant stability for both PS and SS in all cases (P<0.01). Conclusions Based on the present study, the ISQ may be affected by implant position site, the use of a bone graft, and cortical bone thickness before implant therapy.
Collapse
Affiliation(s)
- Kenko Tanaka
- Division of Oral and Maxillofacial Surgery, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Division of Fixed Prosthodontics and Biomaterials, University Clinic, Dental Medicine University of Geneva, Geneva, Switzerland.,Dental Implant Center, Tohoku University Hospital, Sendai, Japan
| | - Irena Sailer
- Division of Fixed Prosthodontics and Biomaterials, University Clinic, Dental Medicine University of Geneva, Geneva, Switzerland
| | - Ryosuke Iwama
- Division of Oral and Maxillofacial Surgery, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kensuke Yamauchi
- Division of Oral and Maxillofacial Surgery, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Dental Implant Center, Tohoku University Hospital, Sendai, Japan
| | - Shinnosuke Nogami
- Division of Oral and Maxillofacial Surgery, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Nobuhiro Yoda
- Dental Implant Center, Tohoku University Hospital, Sendai, Japan
| | - Tetsu Takahashi
- Division of Oral and Maxillofacial Surgery, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Dental Implant Center, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
16
|
Farkasdi S, Pammer D, Rácz R, Hriczó-Koperdák G, Szabó BT, Dobó-Nagy C, Kerémi B, Blazsek J, Cuisinier F, Wu G, Varga G. Development of a quantitative preclinical screening model for implant osseointegration in rat tail vertebra. Clin Oral Investig 2018; 23:2959-2973. [PMID: 30374828 PMCID: PMC7398390 DOI: 10.1007/s00784-018-2661-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/25/2018] [Indexed: 11/24/2022]
Abstract
Objectives Functional tooth replacement and bone regeneration are parts of the daily practice in modern dentistry, but well-reproducible and relatively inexpensive experimental models are still missing. We aimed to develop a new small animal model to monitor osseointegration utilizing the combination of multiple evaluation protocols. Material and methods After cutting the tail between the C4 and C5 vertebrae in Wistar rats, costume made, parallel walled, non-threaded implants were placed into the center of the tail parallel with its longitudinal axis using a surgical guide. Osseointegration of the titanium implants was followed between 4 and 16 weeks after surgery applying axial extraction force, and resonance frequency analysis as functional tests, and histomorphometry and micro-CT as structural evaluations. Results In functional tests, we observed that both methods are suitable for the detection of the time-dependent increase in osseointegration, but the sensitivity of the pull-out technique (an approximately five times increase with rather low standard error) was much higher than that of the resonance frequency analysis. In structural evaluations, changes in the detected bone implant contact values measured by histomorphometry (yielding 1.5 times increase, with low variations of data) were more reliable than micro-CT based evaluations to screen the developments of contact between bone and implant. Conclusion Our results provide evidence that the caudal vertebrae osseointegration model is useful for the preclinical evaluation of implant integration into the bone. Clinical relevance The combination of the biomechanical and structural tests offers a well-reproducible small animal system that can be suitable for studying the integration of various implant materials and surface treatments.
Collapse
Affiliation(s)
- Sándor Farkasdi
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| | - Dávid Pammer
- Department of Materials Science and Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Róbert Rácz
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| | - Gergely Hriczó-Koperdák
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| | - Bence Tamás Szabó
- Department of Oral Diagnostics, Semmelweis University, Budapest, Hungary
| | - Csaba Dobó-Nagy
- Department of Oral Diagnostics, Semmelweis University, Budapest, Hungary
| | - Beáta Kerémi
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| | - József Blazsek
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| | - Frederic Cuisinier
- Laboratoire Bioingénierie et Nanosciences EA4203, Université Montpellier, Montpellier, France
| | - Gang Wu
- Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije University Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary.
| |
Collapse
|
17
|
Immediate mechanical stability of threaded and porous implant systems. Clin Biomech (Bristol, Avon) 2017; 48:110-117. [PMID: 28806591 DOI: 10.1016/j.clinbiomech.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Primary stability of a dental implant system is an essential factor to maintain its long-term success. Thus, the objective of this study was to examine whether primary stability is different between threaded and porous dental implant systems placed in artificial bone blocks and human cadaveric mandibular bone. MATERIALS AND METHODS Forty-two threaded and 42 highly porous dental implants were placed in artificial polyurethane bone foams with 7 different thicknesses (3.5 to 12mm). In addition, 11 threaded and 11 porous implants were installed in 8 edentulous mandibles of human cadavers. Implant stability quotient values, insertion torque, static and dynamic stiffness, and viscoelastic tan δ of each implant system were measured. Mean gray values were obtained at the implantation sites in the human mandible. FINDINGS The porous implant group had substantially lower implant stability quotient values and insertion torque values than the threaded implant group that were equal or >5.5mm in thickness of the artificial bone block (p<0.026) with the exception of 8.5mm thickness, while static and dynamic stiffness values were not different between the two implant groups greater than 5.5mm in thickness (p>0.132). Static and dynamic stiffness values of the porous group were significantly greater than the thread group in the human mandibular bone (p<0.015). INTERPRETATION The porous layer supports axial loading better than lateral and shear loading of the dental implant system. This result indicates that trabecular shaped architecture of the porous layer may provide sufficient anchorage compromising reduction of the axial primary stability of the porous implant system to be comparable with the threaded implant system.
Collapse
|
18
|
Sivolella S, Brunello G, Ferroni L, Berengo M, Meneghello R, Savio G, Piattelli A, Gardin C, Zavan B. A Novel In Vitro Technique for Assessing Dental Implant Osseointegration. Tissue Eng Part C Methods 2016; 22:132-141. [DOI: 10.1089/ten.tec.2015.0158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Stefano Sivolella
- Section of Dentistry, Department of Neurosciences, University of Padova, Padova, Italy
| | - Giulia Brunello
- Section of Dentistry, Department of Neurosciences, University of Padova, Padova, Italy
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mario Berengo
- Section of Dentistry, Department of Neurosciences, University of Padova, Padova, Italy
| | - Roberto Meneghello
- Department of Management and Engineering, University of Padova, Vicenza, Italy
| | - Gianpaolo Savio
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Chiara Gardin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Shen X, Zhang Y, Hu Y, Luo Z, Ma P, Li L, Mu C, Huang L, Pei Y, Cai K. Regulation of local bone remodeling mediated by hybrid multilayer coating embedded with hyaluronan-alendronate/BMP-2 nanoparticles on Ti6Al7Nb implants. J Mater Chem B 2016; 4:7101-7111. [PMID: 32263647 DOI: 10.1039/c6tb01779g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyaluronate-alendronate/BMP-2 nanoparticles were inserted into Gel/Chi multilayers on Ti6Al7Nb for enhancing BMP-2 stability and promoting local osteogenesis under osteoporosis.
Collapse
|
20
|
Stübinger S, Drechsler A, Bürki A, Klein K, Kronen P, von Rechenberg B. Titanium and hydroxyapatite coating of polyetheretherketone and carbon fiber-reinforced polyetheretherketone: A pilot study in sheep. J Biomed Mater Res B Appl Biomater 2015; 104:1182-91. [PMID: 26097161 DOI: 10.1002/jbm.b.33471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 05/11/2015] [Accepted: 05/24/2015] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the bone formation capability of polyetheretherketone (PEEK) and carbon fiber-reinforced PEEK (CFR-PEEK) implants coated with different titanium and hydroxyapatite plasma-sprayed layers after 2 and 12 weeks. METHODS In six sheep 108 implants were placed in the pelvis. Altogether six different surface modifications were tested. After 2 and 12 weeks, n = 3 implants per group were examined histologically and n = 6 implants per group were tested by a pull-out test. RESULTS Biomechanically (p = 0.001) as well as histologically (p > 0.05) surface coating of PEEK/CFR-PEEK led to an increase of osseointegration from 2 to 12 weeks. After 12 weeks, coated implants demonstrated significant (p < 0.001) higher pull-out values in comparison to uncoated implants. Overall, the double coating (titanium bond layer and hydroxyapatite top layer) showed the most favorable results after 2 and 12 weeks. CONCLUSIONS Plasma-sprayed titanium and hydroxyapatite coatings on PEEK or CFR-PEEK demonstrated a significant improvement of osseointegration. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1182-1191, 2016.
Collapse
Affiliation(s)
- Stefan Stübinger
- Hightech Research Center of Cranio-Maxillofacial Surgery, University of Basel, CH-4031, Basel, Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland
| | - Anika Drechsler
- Hightech Research Center of Cranio-Maxillofacial Surgery, University of Basel, CH-4031, Basel, Switzerland
| | - Alexander Bürki
- Institute for Surgical Biotechnology and Biomechanics, University of Bern, CH-3014, Bern, Switzerland
| | - Karina Klein
- Hightech Research Center of Cranio-Maxillofacial Surgery, University of Basel, CH-4031, Basel, Switzerland
| | - Peter Kronen
- Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland.,Veterinary Anaesthesia Services Int (VAS), CH-8400, Winterthur, Switzerland
| | - Brigitte von Rechenberg
- Hightech Research Center of Cranio-Maxillofacial Surgery, University of Basel, CH-4031, Basel, Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland
| |
Collapse
|
21
|
Kim DG, Kwon HJ, Jeong YH, Chien HH, Crance S, Agnew AM, Battula S, Lee JW, Wen HB. Associations of Resonance Frequency Analysis with Dynamic Mechanical Analysis of Dental Implant Systems. Clin Implant Dent Relat Res 2015; 18:332-41. [PMID: 25810026 DOI: 10.1111/cid.12319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Resonance frequency analysis (RFA) has been introduced as a noninvasive method to clinically estimate the stability of dental implant systems. PURPOSE The objective of this study was to examine whether implant stability quotient (ISQ) values of RFA can account for mechanical stability of the dental implant system, which is assessed using dynamic mechanical analysis (DMA). MATERIALS AND METHODS Fifty-seven screw-type titanium dental implants were placed in artificial polyurethane foams with seven different thicknesses (3.5 to 12 mm) and eight edentulous mandibles of human cadavers (four men and four women, 79.11 ± 13.48 years). After the ISQ values, insertion torque, and static stiffness of each implant system were measured, the DMA was performed to assess dynamic stiffness and viscoelastic tan δ. RESULTS The ISQ value had strong positive correlations with thickness, insertion torque, static and dynamic stiffness, and a negative correlation with tan δ of implant systems in artificial bone blocks (r = 0.769 to 0.992, p < .043). However, the ISQ value was correlated with only the insertion torque of implant systems in human mandibles (p < .049). CONCLUSION The ISQ values could reflect mechanical stability of the dental implant system under the controlled condition of homogeneous density in simple dimensions.
Collapse
Affiliation(s)
- Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Hyun-Jung Kwon
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Yong-Hoon Jeong
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Hua-Hong Chien
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Samantha Crance
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Amanda M Agnew
- Division of Anatomy, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Jin Whan Lee
- Dental Research, Zimmer Dental Inc., Carlsbad, CA, USA
| | - Hai Bo Wen
- Dental Research and Clinical Affairs, Zimmer Dental Inc., Carlsbad, CA, USA
| |
Collapse
|
22
|
Takahashi K, Shiraishi N, Ishiko-Uzuka R, Anada T, Suzuki O, Masumoto H, Sasaki K. Biomechanical evaluation of Ti-Nb-Sn alloy implants with a low Young's modulus. Int J Mol Sci 2015; 16:5779-88. [PMID: 25775158 PMCID: PMC4394505 DOI: 10.3390/ijms16035779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/09/2015] [Accepted: 03/04/2015] [Indexed: 11/16/2022] Open
Abstract
Dental implants are widely used and are a predictable treatment in various edentulous cases. Occlusal overload may be causally related to implant bone loss and a loss of integration. Stress concentrations may be diminished using a mechanobiologically integrated implant with bone tissue. The purpose of this study was to investigate the biomechanical behavior, biocompatibility and bioactivity of a Ti-Nb-Sn alloy as a dental implant material. It was compared with cpTi. Cell proliferation and alkaline phosphatase (ALP) activity were quantified. To assess the degree of osseointegration, a push-in test was carried out. Cell proliferation and ALP activity in the cells grown on prepared surfaces were similar for the Ti-Nb-Sn alloy and for cpTi in all the experiments. A comparison between the Ti-Nb-Sn alloy implant and the cpTi implant revealed that no significant difference was apparent for the push-in test values. These results suggest that implants fabricated using Ti-Nb-Sn have a similar biological potential as cpTi and are capable of excellent osseointegration.
Collapse
Affiliation(s)
- Kenta Takahashi
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8577, Japan.
| | - Naru Shiraishi
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8577, Japan.
- Division of Community Oral Health Science, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan.
| | - Risa Ishiko-Uzuka
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8577, Japan.
| | - Takahisa Anada
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8577, Japan.
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8577, Japan.
| | - Hiroshi Masumoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan.
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
23
|
Soares PBF, Nunes SA, Franco SD, Pires RR, Zanetta-Barbosa D, Soares CJ. Measurement of Elastic Modulus and Vickers Hardness of Surround Bone Implant Using Dynamic Microindentation - Parameters Definition. Braz Dent J 2014; 25:385-90. [DOI: 10.1590/0103-6440201300169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 10/20/2014] [Indexed: 01/15/2023] Open
Abstract
The clinical performance of dental implants is strongly defined by biomechanical principles. The aim of this study was to quantify the Vicker's hardness (VHN) and elastic modulus (E) surround bone to dental implant in different regions, and to discuss the parameters of dynamic microindantion test. Ten cylindrical implants with morse taper interface (Titamax CM, Neodent; 3.5 mm diameter and 7 mm a height) were inserted in rabbit tibia. The mechanical properties were analyzed using microhardness dynamic indenter with 200 mN load and 15 s penetration time. Seven continuous indentations were made distancing 0.08 mm between each other perpendicularly to the implant-bone interface towards the external surface, at the limit of low (Lp) and high implant profile (Hp). Data were analyzed by Student's t-test (a=0.05) to compare the E and VHN values obtained on both regions. Mean and standard deviation of E (GPa) were: Lp. 16.6 ± 1.7, Hp. 17.0 ± 2.5 and VHN (N/mm2): Lp. 12.6 ± 40.8, Hp. 120.1 ± 43.7. No statistical difference was found between bone mechanical properties of high and low profile of the surround bone to implant, demonstrating that the bone characterization homogeneously is pertinent. Dynamic microindantion method proved to be highly useful in the characterization of the individual peri-implant bone tissue.
Collapse
|
24
|
Alghamdi H, Cuijpers V, Wolke J, van den Beucken J, Jansen J. Calcium-phosphate-coated Oral Implants Promote Osseointegration in Osteoporosis. J Dent Res 2013; 92:982-8. [DOI: 10.1177/0022034513505769] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteoporotic conditions are anticipated to affect the osseointegration of dental implants. This study aimed to evaluate the effect of a radiofrequent magnetron-sputtered calcium phosphate (CaP) coating on dental implant integration upon installment in the femoral condyles of both healthy and osteoporotic rats. At 8 weeks post-implantation, bone volume and histomorphometric bone area were lower around non-coated implants in osteoporotic rats compared with healthy rats. Interestingly, push-out tests revealed significantly enhanced implant fixation for CaP-coated compared with non-coated implants in both osteoporotic ( i.e., 2.9-fold) and healthy rats ( i.e., 1.5-fold), with similar implant fixation for CaP-coated implants in osteoporotic conditions compared with that of non-coated implants in healthy conditions. Further, the presence of a CaP coating significantly increased bone-to-implant contact compared with that in non-coated implants in both osteoporotic ( i.e., 1.3-fold) and healthy rats ( i.e., 1.4-fold). Sequential administration of fluorochrome labels showed significantly increased bone dynamics close to CaP-coated implants at 3 weeks of implantation in osteoporotic conditions and significantly decreased bone dynamics in osteoporotic compared with healthy conditions. In conclusion, analysis of the data obtained demonstrated that dental implant modification with a thin CaP coating effectively improves osseointegration in both healthy and osteoporotic conditions.
Collapse
Affiliation(s)
- H.S. Alghamdi
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - V.M.J.I. Cuijpers
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - J.G.C. Wolke
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - J.J.J.P. van den Beucken
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - J.A. Jansen
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|