1
|
de Paula YH, Resende M, Chaves RF, Barbosa JA, Garbossa CAP, Costa MDO, Rigo F, Barducci RS, Santos AAD, Pacheco LG, Putarov TC, Cantarelli VDS. A new approach: preventive protocols with yeast products and essential oils can reduce the in-feed use of antibiotics in growing-finishing pigs. Transl Anim Sci 2024; 8:txae104. [PMID: 39185353 PMCID: PMC11344245 DOI: 10.1093/tas/txae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
The objective of this study was to evaluate the effects of yeast products (YP) and essential oils (EO) in total or partial replacement to in-feed antibiotic protocols (growth promoter and prophylactic), both in recommended doses and in overdose of prophylactic antibiotics (PA), on growth performance, and diarrhea incidence in the growing-finishing pigs; and fecal microbiota in market hogs. Four hundred pigs (20.36 ± 2.64 kg) were assigned to five treatments in a randomized block design: diets with prophylactic and growth promoter antibiotics (ANT); ANT with 30% more PA (ANT+30); diets with less PA and YP (ANT+Y); diets with less PA, YP and EO (ANT+Y+EO); and antibiotics-free diets with YP and EO (Y+EO). The content of the active components of the YP was 60% purified β-1,3/1,6-glucans extracted from Saccharomyces cerevisiae yeast (Macrogard), 20% functional water-soluble MOS (HyperGen), and 18% MOS, extracted from Saccharomyces cerevisiae yeast (ActiveMOS). From 0 to 14 d, pigs of the ANT+30, ANT+Y, and ANT+Y+EO treatments showed a greater body weight (BW) and average daily gain (ADG) compared to pigs from the Y+EO group. From 14 to 35 d, pigs of ANT+30 and ANT+Y+EO treatments were heavier than Y+EO group. At 105 d, ANT pigs had a higher BW than the Y+EO group. For the entire period, ADG of ANT pigs was greater, and feed conversion ratio better than Y+EO pigs. From 0 to 35 d, pigs of the Y+EO treatment showed a higher diarrhea incidence compared to pigs of the other groups. From 49 to 70 d, ANT+Y and ANT+Y+EO treatments showed a lower diarrhea incidence than Y+EO group, which remained the case during the overall period. At 105 d, the alpha diversity of fecal microbiota by Shannon Entropy was lower in ANT, ANT+30, and Y+EO groups than observed for ANT+Y+EO group. The abundance of Firmicutes phylum and Firmicutes/Bacteroidetes ratio was higher in ANT than in ANT+Y+EO pigs. Proteobacteria phylum abundance in ANT+Y+EO was higher than ANT, ANT+Y, and Y+EO. Peptostreptococcaceae family abundance was higher in ANT, ANT+30, and ANT+Y groups than in ANT+Y+EO and Y+EO groups. ANT+Y+EO and Y+EO groups show a lower abundance of SMB53 genus than ANT and ANT+30 groups. In conclusion, the use of YP and EO, in partial replacement to the in-feed antibiotic protocols, does not reduce the growth performance, can replace antibiotic growth promotors, and reduce the in-feed use of PA in growing-finishing pigs. The use of YP and EO, together with PA, increases the microbial diversity, despite having important genera for weight gain in less abundance. Overdose of PA does not improve growth performance and reduces microbial diversity, which does not characterize it as an efficient preventive protocol.
Collapse
Affiliation(s)
| | - Maíra Resende
- Animal Science Department, Federal University of Lavras, Lavras, Brazil
| | | | | | - Cesar Augusto Pospissil Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Sun H, Qian Z, Wu Y, Tang J, Shen Q, Li J, Yao X, Wang X. Effects of fermented broccoli stem and leaf residue on growth performance, serum characteristics and meat quality of growing pigs. J Anim Physiol Anim Nutr (Berl) 2023. [PMID: 36591812 DOI: 10.1111/jpn.13804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023]
Abstract
The aim of this study was to evaluate the effects of fermented broccoli stem and leaf residue (FBR) on the growth performance, serum biochemical characteristics, and meat quality of growing pigs. A total of 72 growing pigs (Durox × Landrace × Yorkshire) were subjected to three dietary treatments with different levels (0%, 5% and 10%) of FBR with three replicates for an experimental period of 70 day. The average daily feed intake of growing pigs was higher (p < 0.05) in the 5% FBR treatment compared with the control group (0% FBR). The serum urea nitrogen content in growing pigs was lower (p < 0.05) in the 5% and 10% FBR treatments. The lightness value was higher (p < 0.05) in the longissimus dorsi muscle of pigs fed 5% and 10% FBR diets compared with the control group, and the yellowness value was increased in pigs fed the 10% FBR diet compared with pigs fed the control diet. Overall, the beneficial effects of FBR supplementation on serum biochemical parameters, and meat colour without undermining the growth performance indicate that up to 10% FBR could be used in diets to enhance the production of growing pigs.
Collapse
Affiliation(s)
- Hong Sun
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, P. R. China
| | - Zhongcang Qian
- Institute of Ecological and Environmental Sciences, Taizhou Academy of Agricultural Sciences, Linhai, P. R. China
| | - Yifei Wu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, P. R. China
| | - Jiangwu Tang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, P. R. China
| | - Qi Shen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, P. R. China
| | - Jiahui Li
- Institute of Ecological and Environmental Sciences, Taizhou Academy of Agricultural Sciences, Linhai, P. R. China
| | - Xiaohong Yao
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, P. R. China
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, P. R. China
| |
Collapse
|
3
|
Fermented mixed feed alters growth performance, carcass traits, meat quality and muscle fatty acid and amino acid profiles in finishing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:87-95. [PMID: 36632618 PMCID: PMC9822949 DOI: 10.1016/j.aninu.2022.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 01/14/2023]
Abstract
This study was conducted to investigate the effects of fermented mixed feed (FMF) on growth performance, carcass traits, meat quality, muscle amino acid and fatty acid composition and mRNA expression levels of genes related to lipid metabolism in finishing pigs. In the present study, 144 finishing pigs (Duroc × Berkshire × Jiaxing Black) were randomly allocated to 3 dietary treatments with 4 replicate pens per group and 12 pigs per pen. The dietary treatments included a basal diet (CON), a basal diet + 5% FMF and a basal diet + 10% FMF. The experiment lasted 38 d after 4 d of acclimation. The results showed that 5% and 10% FMF significantly increased the average daily gain (ADG) of the females but not the males (P < 0.05), but FMF supplementation showed no impact on carcass traits. Moreover, 10% FMF supplementation increased the meat color45 min and meat color24 h values, while it decreased the shear force relative to CON (P < 0.05). In addition, 10% FMF significantly increased the contents of flavor amino acids (FAA), total essential AA (EAA), total non-EAA (NEAA) and total AA relative to CON (P < 0.05). Furthermore, the diet supplemented with 10% FMF significantly increased the concentration of n-3 polyunsaturated fatty acids (PUFA), n-6 PUFA and total PUFA, and the PUFA to saturated fatty acids ratio (P < 0.05), suggesting that FMF supplementation increased meat quality. Moreover, compared with the CON, 10% FMF supplementation increased the mRNA expression of lipogenic genes, including CEBPα, PPARγ, SREBP1 and FABP4, and upregulated the expression of unsaturated fatty acid synthesis (ACAA1 and FADS2). Together, our results suggest that 10% FMF dietary supplementation improved the female pigs' growth performance, improved the meat quality and altered the profiles of muscle fatty acids and amino acids in finishing pigs. This study provides a reference for the production of high-quality pork.
Collapse
|
4
|
Aikins-Wilson S, Bohlouli M, Engel P, König S. Effects of an herbal diet, diet x boar line and diet x genotype interactions on skin lesions and on growth performance in post-weaning pigs using a cross-classified experiment. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed.
Part 6: Macrolides: tilmicosin, tylosin and tylvalosin. EFSA J 2021; 19:e06858. [PMID: 34729086 PMCID: PMC8546505 DOI: 10.2903/j.efsa.2021.6858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The specific concentrations of tilmicosin, tylosin and tylvalosin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tilmicosin and tylosin, whilst for tylvalosin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these three antimicrobials.
Collapse
|
6
|
Chen J, Wang F, Yin Y, Ma X. The nutritional applications of garlic ( Allium sativum) as natural feed additives in animals. PeerJ 2021; 9:e11934. [PMID: 34434661 PMCID: PMC8362672 DOI: 10.7717/peerj.11934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/19/2021] [Indexed: 12/18/2022] Open
Abstract
Garlic (Allium sativum) is an essential vegetable that has been widely utilized as seasoning, flavoring, culinary and in herbal remedies. Garlic contains several characteristic organosulfur compounds, such as diallyl sulfide, allicin (diallyl thiosulphate), γ-glutamylcysteine, and S-allyl cysteine (alliin) and ajoene, which garlic has beneficial effects on inflammation, oxidative stress markers, hypertension, hyperlipidaemia and endothelial function in vitro or in animal model. These bioactive molecules are also playing pivotal role in livestock and fisheries production apart from its application in humans. Supplementation of animal feed with garlic and its related products is consistent with the modern agricultural concept of organic animal husbandry. This review compiles the information describing the effects of feeding garlic and its extracts on selected performance parameters in animals (chicken, rabbits, ruminants, pigs and fish). This review may provide reference for scientists and entrepreneurs to investigate the applications of feeds added with garlic and allicin by-products for the improvement of animal husbandry and aquatic production.
Collapse
Affiliation(s)
- Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Fang Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yexin Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaokang Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
7
|
Xu B, Fu J, Zhu L, Li Z, Jin M, Wang Y. Overall assessment of antibiotic substitutes for pigs: a set of meta-analyses. J Anim Sci Biotechnol 2021; 12:3. [PMID: 33413687 PMCID: PMC7792336 DOI: 10.1186/s40104-020-00534-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023] Open
Abstract
Background Antibiotic growth promoters are widely used to improve weight gain. However, the abuse of antibiotics can have many negative effects on people. Developing alternatives to antibiotics is an urgent need in livestock production. We aimed to perform a meta-analysis and network meta-analysis (NMA) to investigate the effects of feed additives as potential antibiotic substitutes (ASs) on bacteriostasis, growth performance, intestinal morphology and immunity. Furthermore, the primary, secondary, and tertiary ASs were defined by comparing their results with the results of antibiotics. Results Among 16,309 identified studies, 37 were summarized to study the bacteriostasis effects of feed additives, and 89 were included in the meta-analysis and NMA (10,228 pigs). We summarized 268 associations of 57 interventions with 32 bacteria. The order of bacteriostasis effects was as follows: antimicrobial peptides (AMPs) ≈ antibiotics>organic acids>plant extracts>oligosaccharides. We detected associations of 11 feed additives and 11 outcomes. Compared with a basal diet, plant extract, AMPs, probiotics, microelements, organic acids, bacteriophages, lysozyme, zymin, and oligosaccharides significantly improved growth performance (P < 0.05); organic acids, probiotics, microelements, lysozyme, and AMPs remarkably increased the villus height:crypt depth ratio (V/C) (P < 0.05); and plant extracts, zymin, microelements, probiotics, and organic acids notably improved immunity (P < 0.05). The optimal AMP, bacteriophage, lysozyme, microelements, oligosaccharides, organic acids, plants, plant extracts, probiotics, and zymin doses were 0.100%, 0.150%, 0.012%, 0.010%, 0.050%, 0.750%, 0.20%, 0.040%, 0.180%, and 0.100%, respectively. Compared with antibiotics, all investigated feed additives exhibited no significant difference in effects on growth performance, IgG, and diarrhoea index/rate (P > 0.05); AMPs and microelements significantly increased V/C (P < 0.05); and zymin significantly improved lymphocyte levels (P < 0.05). Furthermore, linear weighting sum models were used to comprehensively estimate the overall impact of each feed additive on pig growth and health. Conclusions Our findings suggest that AMPs and plant extracts can be used as primary ASs for weaned piglets and growing pigs, respectively. Bacteriophages, zymin, plants, probiotics, oligosaccharides, lysozyme, and microelements can be regarded as secondary ASs. Nucleotides and organic acids can be considered as tertiary ASs. Future studies should further assess the alternative effects of combinational feed additives.
Collapse
Affiliation(s)
- Bocheng Xu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Jie Fu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Luoyi Zhu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Zhi Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Mingliang Jin
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China.
| |
Collapse
|
8
|
Satora M, Magdziarz M, Rząsa A, Rypuła K, Płoneczka-Janeczko K. Insight into the intestinal microbiome of farrowing sows following the administration of garlic (Allium sativum) extract and probiotic bacteria cultures under farming conditions. BMC Vet Res 2020; 16:442. [PMID: 33187511 PMCID: PMC7666521 DOI: 10.1186/s12917-020-02659-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
Background Due to the tendency to reduce antibiotic use in humans and animals, more attention is paid to feed additives as their replacement. Crucial role of feed additives is to improve the health status, production efficiency and performance. In this original research, we estimate the potential influence of garlic (Allium sativum) extract and probiotic formula including Enterococcus faecium, Lactobacillus rhamnosus and Lactobacillus fermentum on the intestinal microbiota of sows, using the next generation sequencing method (NGS). Results Our results indicate that the overall species richness as well as the composition of swine gut microbiota may be shaped by regular feeding with supplemented additives. On the Family and Genus level both additives (garlic extract and probiotics) seem to decrease microbiome diversity and richness. However, when it comes to garlic supplementation, we found the opposite trend on the Species level. Conclusions The analysis of the selected microbial function indicates that both additives used in this study (garlic extract and composition of probiotics) seem to create a greater metabolic potential than estimated in a control group of sows. A general trend of losing or decreasing members of pathogenic species in the swine microbiome seems to occur in relation to both supplemented additives. In the prevention of some bacterial diseases supplemented additives could be considered for future use.
Collapse
Affiliation(s)
- Marta Satora
- Department of Epizootiology with Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 45, Wrocław, Poland
| | - Marcin Magdziarz
- Hugo Steinhaus Center, Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wyspianskiego 27, Wrocław, Poland
| | - Anna Rząsa
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, Wrocław, Poland
| | - Krzysztof Rypuła
- Department of Epizootiology with Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 45, Wrocław, Poland
| | - Katarzyna Płoneczka-Janeczko
- Department of Epizootiology with Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 45, Wrocław, Poland.
| |
Collapse
|
9
|
Qiu Y, Li K, Zhao X, Liu S, Wang L, Yang X, Jiang Z. Fermented Feed Modulates Meat Quality and Promotes the Growth of Longissimus Thoracis of Late-Finishing Pigs. Animals (Basel) 2020; 10:E1682. [PMID: 32957692 PMCID: PMC7552782 DOI: 10.3390/ani10091682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
This study investigated the effect of fermented diet on growth performance, carcass traits, meat quality and growth of longissimus thoracis (LT) of finishing pigs. A total of 48 finishing pigs [Duroc × (Landrace × Large White), male, 126 ± 5-d-old] weighing 98.76 ± 1.27 kg were randomly assigned to two treatments (eight pens per treatment and three pigs per pen) for a 28-d feeding trial, including control diet and fermented diet. Fermented diet significantly increased the loin eye area and lean mass percentage, decreased backfat thickness and improved meat quality of LT by decreasing the shear force and drip loss at 48 h post slaughter and improving meat sensory characteristics compared with control diet. A fermented diet also significantly increased the abundance of insulin, insulin receptor (IR), myoblast determination protein (MyoD) and myosin heavy chain-I (MyHC-I) transcripts, and the phosphorylation levels of AKT, mTORC1, 4EBP1 and S6K1 in LT, while decreasing the expression of muscle atrophy F-box (MAFbx) and forkhead Box O1 (Foxo1) mRNA transcripts. Moreover, proteomic analysis revealed that differentially expressed proteins predominantly involved in protein synthesis and muscle development were modulated by fermented diet. Our results indicated that a fermented diet improved meat quality and enhanced LT growth of finishing pigs by increasing insulin/AKT/mTORC1 protein synthesis cascade and activating the Foxo1/MAFbx pathway, along with the regulation of ribosomal protein and proteins involved in muscle contraction and muscle hypertrophy.
Collapse
Affiliation(s)
- Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Q.); (K.L.); (S.L.); (L.W.); (Z.J.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Kebiao Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Q.); (K.L.); (S.L.); (L.W.); (Z.J.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Xichen Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Shilong Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Q.); (K.L.); (S.L.); (L.W.); (Z.J.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Q.); (K.L.); (S.L.); (L.W.); (Z.J.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Q.); (K.L.); (S.L.); (L.W.); (Z.J.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Q.); (K.L.); (S.L.); (L.W.); (Z.J.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| |
Collapse
|
10
|
Cho J, Liu S, Kim I. Effects of dietary Korean garlic extract aged byLeuconostoc mesenteroidesKCCM35046 on growth performance, digestibility, blood profiles, gas emissions, and microbiota in weanling pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A total of 150 crossbred pigs [(Duroc × Yorkshire) × Landrace; body weight (BW) = 5.74 ± 1.15 kg; weaned at day 21 after birth] were assigned to one of five dietary treatments (six pens per treatment and five pigs per pen) by BW and sex (two barrows and three gilts) for a 6 wk experiment. The pen was considered the experimental unit in the statistical model. Treatments were corn–soybean meal diets supplemented with 0.0033% tiamulin as well as 0%, 0.05%, 0.10%, or 0.20% fermented garlic (FG). The average daily gain, average daily feed intake (ADFI), and feed conversion ratio were linearly (p < 0.05) increased by FG inclusion during days 21–42 and days 0–42. Dietary supplementation of FG linearly increased (p < 0.05) the coefficient of apparent total tract digestibility of dry matter, nitrogen, and gross energy as well as blood immunoglobulin G concentration during week 6. The fecal ammonia (NH3), total mercaptan emissions, and Escherichia coli counts were linearly (p < 0.05) reduced by FG in the diet. Dietary supplementation of FG increased (p < 0.05) ADFI during days 21–42 and days 0–42 and reduced (p < 0.05) fecal NH3emissions compared with pigs fed tiamulin. In conclusion, the results indicate that FG can enhance growth performance and digestibility, and reduce fecal E. coli counts as well as fecal gas emissions in weanling pigs.
Collapse
Affiliation(s)
- J.H. Cho
- Department of Animal Science, Chungbuk National University, No. 52 Naesudong-ro, Heungdeok-gu, Cheongju, Chungbuk 361-763, South Korea
| | - S.D. Liu
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, People’s Republic of China
| | - I.H. Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
| |
Collapse
|
11
|
Hao L, Su W, Zhang Y, Wang C, Xu B, Jiang Z, Wang F, Wang Y, Lu Z. Effects of supplementing with fermented mixed feed on the performance and meat quality in finishing pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Xu B, Zhu L, Fu J, Li Z, Wang Y, Jin M. Overall assessment of fermented feed for pigs: a series of meta-analyses. J Anim Sci 2020; 97:4810-4821. [PMID: 31712812 DOI: 10.1093/jas/skz350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022] Open
Abstract
As an alternative to antimicrobial growth promoters, fermented feed (FF) has been continuously developed for two decades; however, its effects on feed, performance, digestibility, and meat quality of pigs have yet to be systematically and comprehensively evaluated. This study aimed to (i) quantitatively evaluate the effects of fermentation on nutritional components of feed stuffs; (ii) quantitatively evaluate the effects of FF on pig growth performance, digestibility, and meat quality; and (iii) explore the dose-effect relationship. From PubMed and Web of Science (searched range from January 1, 2000 to April 4, 2019), we collected 3,271 articles, of which 30 articles (3,562 pigs) were included in our meta-analysis. Our analysis revealed that fermentation significantly increased the CP content in feed (P < 0.05). For weaned piglets and growing pigs, FF significantly improved ADG, G:F, DM digestibility, N digestibility, and energy digestibility (P < 0.05). However, compared with the basal diet, FF had no significant effects on growth performance and nutrient digestibility in finishing pigs (P > 0.05). In the subgroup analyses, fermented ingredients increased the growth performance of weaned piglets and growing pigs, and fermented additives promoted the growth of pigs at all stages. The dose-effect analysis confirmed that the optimal doses of fermented ingredients and additives were 8% and 0.15%, respectively. Furthermore, FF had beneficial impacts on meat quality through increased lightness, redness, marbling and flavor and reduced drip loss (P < 0.05). In conclusions, FF improved growth performance and meat quality primarily due to its positive effects on nutritive value and utilization.
Collapse
Affiliation(s)
- Bocheng Xu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Luoyi Zhu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Jie Fu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Zhi Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Mingliang Jin
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
13
|
Samolińska W, Grela E, Kowalczuk-Vasilev E, Kiczorowska B, Klebaniuk R, Hanczakowska E. Evaluation of garlic and dandelion supplementation on the growth performance, carcass traits, and fatty acid composition of growing-finishing pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
|
15
|
Yan J, Zhou B, Xi Y, Huan H, Li M, Yu J, Zhu H, Dai Z, Ying S, Zhou W, Shi Z. Fermented feed regulates growth performance and the cecal microbiota community in geese. Poult Sci 2019; 98:4673-4684. [PMID: 30993344 DOI: 10.3382/ps/pez169] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
This study was designed to investigate the effects of fermented feed diets on the growth performance and cecal microbial community in geese, and to examine associations between the gut microbiota and growth performance. A total of 720 healthy, 1-day-old male SanHua geese were used for the 55-D experiment. Geese were randomly divided into 4 groups, each with 6 replicates of 30 geese. Groups were fed a basal diet supplemented with 0.0, 2.5, 5.0, or 7.5% fermented feed. The results showed that 7.5% fermented feed had an increasing trend in the body weight and average daily gain of the geese; however, there was no significant response to increasing dietary fermented feed level with regards to ADFI and FCR. In addition, compared with the control group, there was a higher abundance of bacteria in the phylum Bacteroidetes in the cecal samples of geese in the 7.5% fermented feed group (53.18% vs. 41.77%, P < 0.05), whereas the abundance of Firmicutes was lower in the 7.5% fermented feed group (36.30% vs. 44.13%, P > 0.05). At the genus level, the abundance of Bacteroides was increased by adding fermented feed to geese diets, whereas the abundances of Desulfovibrio, Phascolarctobacterium, Lachnospiraceae_uncultured, Ruminiclostridium, and Oscillospira were decreased. These results indicate that fermented feeds have an important effect on the cecal microflora composition of geese, and may affect host growth, nutritional status, and intestinal health.
Collapse
Affiliation(s)
- Junshu Yan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bo Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yumeng Xi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hailin Huan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingyang Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianning Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zichun Dai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shijia Ying
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weiren Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
16
|
Yun H, Nyachoti C, Kim I. Effect of dietary supplementation of fermented garlic by Leuconostoc mesenteroides KCCM35046, on growth performance, blood constituents, nutrient digestibility, fecal microflora, and fecal scores in sows and their piglets. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2017-0203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eighteen lactating sows (Landrace × Yorkshire) were used in an experiment to determine the effects of fermented garlic by Leuconostoc mesenteroides KCCM35046 on growth performance, blood constituents, nutrient digestibility, fecal microflora, and fecal scores in sows and their piglets. The experiment was started before farrowing 30 d to weaning, and sows were randomly assigned to the following dietary treatments: control basal diet (CON) and the CON + 0.1% or 0.2% fermented garlic (FG). During the lactation period, sows had free access to feed and water. At farrowing day and weaning (day 28), body weight (BW) loss of sows reduced linearly (P = 0.042; P = 0.006, respectively) in FG diets. There was a linear improvement in piglets’ BW with increasing dietary FG levels at weaning (P = 0.033). Piglets fed the diets with the FG linearly increased the average daily gain (ADG) at the 3rd and 4th weeks (P = 0.041; P = 0.002, respectively). Overall, the ADG of piglets linearly increased when lactating sows fed the diets with FG supplementation (P = 0.004). Red blood cell concentrations linearly decreased (P = 0.004) in sows fed dietary FG supplementation at the weaning day. Dietary inclusion of the FG tended to increase the fecal Lactobacillus population and decrease Escherichia coli population of piglets at weanling day (P = 0.075; P = 0.051, respectively). In conclusion, the results of this study indicated that dietary supplementation of FG (0.1% and 0.2%) improved growth performance in sows and their piglets.
Collapse
Affiliation(s)
- H.M. Yun
- Department of Animal Resource & Science, Dankook University, No. 29 Anseodong, Cheonan, Chungnam 330-714, South Korea
| | - C.M. Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - I.H. Kim
- Department of Animal Resource & Science, Dankook University, No. 29 Anseodong, Cheonan, Chungnam 330-714, South Korea
| |
Collapse
|
17
|
Lei XJ, Yun HM, Kim IH. Effects of dietary supplementation of natural and fermented herbs on growth performance, nutrient digestibility, blood parameters, meat quality and fatty acid composition in growing-finishing pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1429955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xin Jian Lei
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - Hyeok Min Yun
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
18
|
Horn NL, Ruch F, Miller G, Ajuwon KM, Adeola O. Determination of the adequate dose of garlic diallyl disulfide and diallyl trisulfide for effecting changes in growth performance, total-tract nutrient and energy digestibility, ileal characteristics, and serum immune parameters in broiler chickens. Poult Sci 2016; 95:2360-5. [DOI: 10.3382/ps/pew126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/04/2016] [Indexed: 11/20/2022] Open
|
19
|
Lee KW, Lee KC, Kim GH, Kim JH, Yeon JS, Cho SB, Chang BJ, Kim SK. EFFECTS OF DIETARY FERMENTED GARLIC ON THE GROWTH PERFORMANCE, RELATIVE ORGAN WEIGHTS, INTESTINAL MORPHOLOGY, CECAL MICROFLORA AND SERUM CHARACTERISTICS OF BROILER CHICKENS. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2016. [DOI: 10.1590/1806-9061-2016-0242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- KW Lee
- Konkuk University, Republic of Korea
| | - KC Lee
- Konkuk University, Republic of Korea
| | - GH Kim
- Konkuk University, Republic of Korea
| | - JH Kim
- Konkuk University, Republic of Korea
| | - JS Yeon
- Konkuk University, Republic of Korea
| | - SB Cho
- Konkuk University, Republic of Korea
| | - BJ Chang
- College of Veterinary Medicine, Republic of Korea
| | - SK Kim
- Konkuk University, Republic of Korea
| |
Collapse
|
20
|
Horn N, Ruch F, Miller G, Ajuwon KM, Adeola O. Expression of cytokine and tight junction genes and ileal mucosal morphology in nursery pigs in response to garlic diallyl disulfide and diallyl trisulfide compounds. J Anim Sci 2016. [DOI: 10.2527/jas.2015-9718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Fang J, Cao Y, Matsuzaki M, Suzuki H, Kimura H. Effects of apple pomace-mixed silage on growth performance and meat quality in finishing pigs. Anim Sci J 2016; 87:1516-1521. [PMID: 26990707 DOI: 10.1111/asj.12601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 11/27/2022]
Abstract
We measured the growth performance and meat quality of 10 crossbred (Yorkshire × Duroc × Landrace) neutered male pigs to evaluate the effects of apple pomace-mixed silage (APMS). The pigs were divided into two groups and were respectively fed the control feed and the AMPS ad libitum during the experiment. No difference was found in the finished body weight, average daily gain, carcass weight, back fat thickness or dressing ratio between the control and the AMPS treatments, but average dairy feed intake (dry matter) was significantly lower and feed efficiency was significantly higher using the APMS treatment (P < 0.05). With regard to meat quality, the APMS increased the moisture content but decreased the water holding capacity (P < 0.05) compared with the control treatment. Furthermore, the APMS affected the fatty acid composition of the back fat by increasing linoleic acid (C18:2n6), linolenic acid (C18:3) and arachidic acid (C20:0) levels, while decreasing palmitic acid (C16:0), palmitoleic acid (C16:1) and heptadecenoic acid (C17:1) levels, compared with the control treatment. These results indicate that feeding fermented apple pomace to finishing pigs increases the feed efficiency and affects the meat quality and fatty acid composition of back fat.
Collapse
Affiliation(s)
- Jiachen Fang
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Yang Cao
- College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Masatoshi Matsuzaki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Hiroyuki Suzuki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | | |
Collapse
|
22
|
Effect of dietary Korean aged garlic extract by Leukonostoc citreum SK2556 on production, hematological status, meat quality, relative organ weight, targeted Escherichia coli colony and excreta gas emission in broilers. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Yan L, Lim SU, Kim IH. Effect of fermented chlorella supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1742-7. [PMID: 25049540 PMCID: PMC4094164 DOI: 10.5713/ajas.2012.12352] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/28/2012] [Accepted: 08/07/2012] [Indexed: 11/27/2022]
Abstract
A total of 96 growing pigs ((Landrace×Yorkshire)×Duroc; BW = 26.58±1.41 kg) were used in a 6-wk feeding trail to evaluate the effects of fermented chlorella (FC) supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Pigs were randomly allotted into 1 of 4 dietary treatments with 6 replicate pens (2 barrows and 2 gilts) per treatment. Dietary treatments were: i) negative control (NC), basal diet (without antibiotics); ii) positive control (PC), NC+0.05% tylosin; iii) (fermented chlorella 01) FC01, NC+0.1% FC, and iv) fermented chlorella 02 (FC02), NC+0.2% FC. In this study, feeding pigs PC or FC01 diets led to a higher average daily gain (ADG) and dry matter (DM) digestibility than those fed NC diet (p<0.05), whereas the inclusion of FC02 diet did not affect the ADG and DM compared with the NC group. No difference (p>0.05) was observed on the body weight, average daily feed intake (ADFI), gain:feed (G:F) ratio, the apparent total tract digestibility of N and energy throughout the experiment. The inclusion of PC or FC did not affect the blood characteristics (p>0.05). Moreover, dietary FC treatment led to a higher (p<0.05) lactobacillus concentration and lower E. coli concentration than the NC treatment, whereas the antibiotic supplementation only decreased the E. coli concentration. Pigs fed FC or PC diet had reduced (p<0.05) fecal NH3 and H2S content compared with those fed NC diet. In conclusion, our results indicated that the inclusion of FC01 treatment could improve the growth performance, nutrient digestibility, fecal microbial shedding (lower E. coli and higher lactobacillus), and decrease the fecal noxious gas emission in growing pigs when compared with the group fed the basal diet. In conclusion, dietary FC could be considered as a good source of supplementation in growing pigs because of its growth promoting effect.
Collapse
Affiliation(s)
- L Yan
- Ace M&F Ltd., Seoul, South Korea
| | - S U Lim
- Ace M&F Ltd., Seoul, South Korea
| | - I H Kim
- Ace M&F Ltd., Seoul, South Korea
| |
Collapse
|
24
|
Maneewan C, Mekbungwan A, Charerntantanakul W, Yamauchi K, Yamauchi KE. Effects of dietary Centella asiatica (L.) Urban on growth performance, nutrient digestibility, blood composition in piglets vaccinated with Mycoplasma hyopneumoniae. Anim Sci J 2014; 85:569-74. [PMID: 24612418 DOI: 10.1111/asj.12189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/28/2013] [Indexed: 11/28/2022]
Abstract
To investigate the effects of Centella asiatica (L.) on growth performance, nutrient digestibility and blood composition in piglets, 32 nursery pigs were fed 0.0, 0.5, 1.0 and 2.0% dietary C. asiatica (L.) from 15 to 90 kg BW. At 30 kg BW, nutrient digestibility was measured and at 35 kg BW piglets were vaccinated with Mycoplasma hyopneumoniae. Hematological parameters were checked at 40 and 80 kg BW. Compared with the control, growth performance was not affected. The ether extract, ash and calcium digestibility were lower at 0.5%, and dry matter, crude protein, crude fat, phosphorus and energy digestibility were lower at 1.0% (P<0.05). On hematological values, at 40 kg hematocrit, total white blood cells, neutrophils, eosinophils, basophils, monocytes and lymphocytes were higher at the 2.0% level (P<0.05). Most of these values except basophils and monocytes continued until at 80 kg, at which total white blood cells, neutrophils, eosinophils and lymphocytes were higher even at 1.0% (P<0.05); neutrophil-to-lymphocyte ratio tended to be higher at 2.0% (P<0.03). Cholesterol, triglycerides and antibody levels against M. hyopneumoniae did not differ except that at 40 kg the cholesterol of 0.5% was lower (P<0.05) and M. hyopneumoniae-specific antibodies tended to be higher with increasing levels of C. asiatica (L.) (P<0.07). The result that C. asiatica (L.) could not improve growth performance but increased values of serum hematocrit and white blood cells, and mycoplasma immunity to M. hyopneumoniae might suggest that C. asiatica (L.) has no function to elevate body weight but has the potential to enhance innate immunity.
Collapse
Affiliation(s)
- Chamroon Maneewan
- Faculty of Animal science and Technology, Maejo University, Chiang Mai, Thailand
| | | | | | | | | |
Collapse
|