1
|
Doden G, Le Roux AB, Brandão J. Diagnostic Imaging for Assessment of the Endocrine System in Exotic Animals. Vet Clin North Am Exot Anim Pract 2024:S1094-9194(24)00048-3. [PMID: 39414480 DOI: 10.1016/j.cvex.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Diagnostic imaging can provide essential evidence supporting the diagnosis of endocrine diseases in exotic companion animals. The specific modality chosen depends on species, specific disease process/organ affected, equipment availability, and often, cost to the owner. While radiography is widely available in veterinary practices, the sensitivity for visualization of endocrine organs is low. Therefore, ultrasonography, computed tomography, or MRI may be preferred. Other specialized imaging modalities are useful for specific disease processes, such as nuclear scintigraphy and PET. This article compiles current evidence for diagnostic imaging of the endocrine system in exotic animals, organized by imaging modality, species, and disease process.
Collapse
Affiliation(s)
- Greta Doden
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, 2065 West Farm Road, Stillwater, OK 74078, USA
| | - Alexandre B Le Roux
- Department of Diagnostic Imaging, The Schwartzman Animal Medical Center, 510 East 62nd Street, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, 417 East 68th Street, New York, NY 10065, USA
| | - João Brandão
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, 2065 West Farm Road, Stillwater, OK 74078, USA.
| |
Collapse
|
2
|
Quantitative analysis of the morphing wing mechanism of raptors: analysis methods, folding motions, and bionic design of Falco peregrinus. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
3
|
Wang Y, Li M, Tell LA, Baynes RE, Davis JL, Vickroy TW, Riviere JE, Lin Z. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part II: Chicken and turkey. J Vet Pharmacol Ther 2020; 44:423-455. [PMID: 33289178 PMCID: PMC8359335 DOI: 10.1111/jvp.12931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models are growing in popularity due to human food safety concerns and for estimating drug residue distribution and estimating withdrawal intervals for veterinary products originating from livestock species. This paper focuses on the physiological and anatomical data, including cardiac output, organ weight, and blood flow values, needed for PBPK modeling applications for avian species commonly consumed in the poultry market. Experimental and field studies from 1940 to 2019 for broiler chickens (1-70 days old, 40 g - 3.2 kg), laying hens (4-15 months old, 1.1-2.0 kg), and turkeys (1 day-14 months old, 60 g -12.7 kg) were searched systematically using PubMed, Google Scholar, ProQuest, and ScienceDirect for data collection in 2019 and 2020. Relevant data were extracted from the literature with mean and standard deviation (SD) being calculated and compiled in tables of relative organ weights (% of body weight) and relative blood flows (% of cardiac output). Trends of organ or tissue weight growth during different life stages were calculated when sufficient data were available. These compiled data sets facilitate future PBPK model development and applications, especially in estimating chemical residue concentrations in edible tissues to calculate food safety withdrawal intervals for poultry.
Collapse
Affiliation(s)
- Yu‐Shin Wang
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| | - Lisa A. Tell
- Department of Medicine and Epidemiology, School of Veterinary MedicineUniversity of California‐DavisDavisCAUSA
| | - Ronald E. Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - Jennifer L. Davis
- Department of Biomedical Sciences and PathobiologyVirginia‐Maryland College of Veterinary MedicineBlacksburgVAUSA
| | - Thomas W. Vickroy
- Department of Physiological Sciences, College of Veterinary MedicineUniversity of FloridaGainesvilleFLUSA
| | - Jim E. Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| |
Collapse
|
4
|
Salerno M, Ferrer E, Wei S, Li X, Gao W, Ouellette D, Balanoff A, Vaska P. Behavioral neuroimaging in birds using PET. J Neurosci Methods 2019; 317:157-164. [PMID: 30710608 DOI: 10.1016/j.jneumeth.2019.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Birds comprise the most diverse group of terrestrial vertebrates. This success likely is related to the evolution of powered flight over 75 mya. Modern approaches for studying brain function, however, have yet to be fully adapted and applied to birds, especially as they relate to specific behaviors including flight. New method: We have developed a comprehensive set of in vivo experimental methods utilizing PET imaging with F-18 labeled fluorodeoxyglucose (FDG) to study regional changes in metabolism specifically related to flight, yet applicable to other behaviors as well. It incorporates approaches for selection of species, behavioral/imaging paradigm, animal preparation, radiotracer injection route, image quantification, and image analysis via an enhanced brain atlas. We also carried out preliminary modeling studies to better understand tracer kinetics. RESULTS The methods were successful in identifying brain regions statistically associated with flight using only 8 animals. Peak brain uptake of FDG between birds and rodents is similar despite much higher blood glucose levels in birds. We also confirmed that brain uptake of FDG steadily decreases after the initial peak and provide evidence that it may be related to greater dephosphorylation of FDG phosphate than that observed in mammals. Comparison with existing methods: FDG PET has been used in only a few studies of the bird brain. We introduce a new species, more realistic flight behavior, paired (test/retest) design, and improved quantification and analysis approaches. CONCLUSIONS The proposed imaging protocol is non-invasive yet sensitive to regional metabolic changes in the bird brain related to behavior.
Collapse
Affiliation(s)
- Michael Salerno
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Elizabeth Ferrer
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, 11794-8081, USA
| | - Shouyi Wei
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Xiang Li
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Wenrong Gao
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - David Ouellette
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Amy Balanoff
- Johns Hopkins University, Center for Functional Anatomy and Evolution, Baltimore, MD, 21205, USA; American Museum of Natural History, Division of Paleontology, New York, NY, 10024, USA.
| | - Paul Vaska
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-5230, USA; Department of Radiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
5
|
Gold MEL, Norell MA, Budassi M, Vaska P, Schulz D. Rapid 18F-FDG Uptake in Brain of Awake, Behaving Rat and Anesthetized Chicken has Implications for Behavioral PET Studies in Species With High Metabolisms. Front Behav Neurosci 2018; 12:115. [PMID: 29922136 PMCID: PMC5996747 DOI: 10.3389/fnbeh.2018.00115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/18/2018] [Indexed: 11/30/2022] Open
Abstract
Brain-behavior studies using 18F-FDG PET aim to reveal brain regions that become active during behavior. In standard protocols, 18F-FDG is injected, the behavior is executed during 30–60 min of tracer uptake, and then the animal is anesthetized and scanned. Hence, the uptake of 18F-FDG is not itself observed and could, in fact, be complete in very little time. This has implications for behavioral studies because uptake is assumed to reflect concurrent behavior. Here, we utilized a new, miniature PET scanner termed RatCAP to measure uptake simultaneously with behavior. We employed a novel injection protocol in which we administered 18F-FDG (i.v.) four times over two 2 h to allow for repeated measurements and the correlation of changes in uptake and behavioral activity. Furthermore, using standard PET methods, we explored the effects of injection route on uptake time in chickens, a model for avians, for which PET studies are just beginning. We found that in the awake, behaving rat most of the 18F-FDG uptake occurred within minutes and overlapped to a large extent with 18F-FDG data taken from longer uptake periods. By contrast, behavior which occurred within minutes of the 18F-FDG infusion differed markedly from the behavior that occurred during later uptake periods. Accordingly, we found that changes in 18F-FDG uptake in the striatum, motor cortex and cerebellum relative to different reference regions significantly predicted changes in behavioral activity during the scan, if the time bins used for correlation were near the injection times of 18F-FDG. However, when morphine was also injected during the scan, which completely abolished behavioral activity for over 50 min, a large proportion of the variance in behavioral activity was also explained by the uptake data from the entire scan. In anesthetized chickens, tracer uptake was complete in about 80 min with s.c. injection, but 8 min with i.v. injection. In conclusion, uptake time needs to be taken into account to more accurately correlate PET and behavioral data in mammals and avians. Additionally, RatCAP together with multiple, successive injections of 18F-FDG may be useful to explore changes in uptake over time in relation to changes in behavior.
Collapse
Affiliation(s)
- Maria E L Gold
- Division of Paleontology, American Museum of Natural History, New York, NY, United States.,Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, United States.,Department of Biology, Suffolk University, Boston, MA, United States
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY, United States
| | - Michael Budassi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Paul Vaska
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States.,Department of Radiology, Stony Brook University, Stony Brook, NY, United States.,Biosciences Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Daniela Schulz
- Department of Psychology, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
6
|
Abstract
Treatment options for animals with cancer are rapidly expanding, including in exotic animal medicine. Limited information is available about treatment effects in exotic pet species beyond individual case reports. Most cancer treatment protocols in exotic animals are extrapolated from those described in humans, dogs, and cats. This review provides an update on cancer treatment in exotic animal species. The Exotic Species Cancer Research Alliance accumulates clinical cases in a central location with standardized clinical information, with resources to help clinicians find and enter their cases for the collective good of exotic clinicians and their patients.
Collapse
|
7
|
Lattin CR, Emerson MA, Gallezot JD, Mulnix T, Brown JE, Carson RE. A 3D-printed modular device for imaging the brain of small birds. J Neurosci Methods 2018; 293:183-190. [PMID: 28988856 DOI: 10.1016/j.jneumeth.2017.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/18/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND One potential barrier to using in vivo imaging in any new animal species is solving the basic problem of how to hold animals safely and securely during scans. NEW METHOD In this paper, we describe the design, fabrication, use, and positional reproducibility of a 3D-printed plastic device (the Avian Imaging Device, or AID) for imaging the brain of 1 or 2 small songbirds. We designed two different types of head cones to use with this device: one that was not contoured and designed for anesthesia induction, and one contoured to the shape of a house sparrow head, designed to be used with a pre-anesthetized animal. RESULTS Compared to no holder, using the AID with both contoured and non-contoured head cones significantly reduced the amount of translation necessary to align the head in pairs of CT scans (by 78% and 90%, respectively); using the contoured head cone also significantly reduced the amount of rotation necessary for head alignment in registering pairs of scans (by 90%). COMPARISON WITH EXISTING METHOD(S) Using an animal holder that can not only securely hold animals but which has high positional reproducibility is essential to take advantage of the maximum resolution possible with small animal imaging. 3D-printed materials are also compatible with PET and CT, environmentally stable, and fast and inexpensive to make. CONCLUSIONS Researchers can learn from the design of the AID and use our CAD models as a starting point for fabricating devices for multiple small-animal imaging needs.
Collapse
Affiliation(s)
- Christine R Lattin
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Maxwell A Emerson
- Yale Center for Engineering, Innovation & Design, Yale University, New Haven, CT, USA
| | | | - Tim Mulnix
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - J Elliott Brown
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Abstract
Veterinarians have gained increasing access to positron emission tomography (PET and PET/CT) imaging facilities, allowing them to use this powerful molecular imaging technique for clinical and research applications. SPECT is currently being used more in Europe than in the United States and has been shown to be useful in veterinary oncology and in the evaluation of orthopedic diseases. SPECT brain perfusion and receptor imaging is used to investigate behavioral disorders in animals that have interesting similarities to human psychiatric disorders. This article provides an overview of the potential applications of PET and SPECT. The use of commercially available and investigational PET radiopharmaceuticals in the management of veterinary disease has been discussed. To date, most of the work in this field has utilized the commercially available PET tracer, (18)F-fluorodeoxyglucose for oncologic imaging. Normal biodistribution studies in several companion animal species (cats, dogs, and birds) have been published to assist in lesion detection and interpretation for veterinary radiologists and clinicians. Studies evaluating other (18)F-labeled tracers for research applications are underway at several institutions and companion animal models of human diseases are being increasingly recognized for their value in biomarker and therapy development. Although PET and SPECT technologies are in their infancy for clinical veterinary medicine, increasing access to and interest in these applications and other molecular imaging techniques has led to a greater knowledge and collective body of expertise for veterinarians worldwide. Initiation and fostering of physician-veterinarian collaborations are key components to the forward movement of this field.
Collapse
Affiliation(s)
- Amy K LeBlanc
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Veterinary Teaching Hospital, Knoxville, TN.
| | | |
Collapse
|
9
|
LeBlanc AK, Morandi F. Invited review--Off-site PET imaging programs: challenges and opportunities. Vet Radiol Ultrasound 2013; 55:109-12. [PMID: 24102994 DOI: 10.1111/vru.12103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/21/2013] [Indexed: 11/29/2022] Open
Abstract
Veterinarians are gaining interest in and access to Position Emission Tomography (PET and PET/CT) imaging for both clinical and research applications. This manuscript provides an overview of how veterinarians may approach the use of off-site PET and PET/CT scanners already in use for human medical imaging in order to gain access to this technology without direct investment in costly equipment and infrastructure. An overview of general procedures, animal transport, and radiation safety considerations is offered along with references to key regulatory statutes that may apply to the operation of PET imaging facilities in individual states.
Collapse
Affiliation(s)
- Amy K LeBlanc
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, 37996
| | | |
Collapse
|
10
|
Mattoon JS, Bryan JN. The future of imaging in veterinary oncology: Learning from human medicine. Vet J 2013; 197:541-52. [DOI: 10.1016/j.tvjl.2013.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 04/10/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
|
11
|
Jones MP, Morandi F, Wall JS, Long MJ, Stuckey AC, LeBlanc AK. Distribution of 2-deoxy-2-fluoro-d-glucose in the coelom of healthy bald eagles (Haliaeetus leucocephalus). Am J Vet Res 2013; 74:426-32. [PMID: 23438118 DOI: 10.2460/ajvr.74.3.426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine 2-deoxy-2-fluoro (fluorine 18)-d-glucose ((18)FDG) biodistribution in the coelom of bald eagles (Haliaeetus leucocephalus). ANIMALS 8 healthy adult bald eagles. PROCEDURES For each eagle, whole-body transmission noncontrast CT, 60-minute dynamic positron emission tomography (PET) of the celomic cavity (immediately after (18)FDG injection), whole-body static PET 60 minutes after (18)FDG injection, and whole-body contrast CT with iohexol were performed. After reconstruction, images were analyzed. Regions of interest were drawn over the ventricular myocardium, liver, spleen, proventriculus, cloaca, kidneys, and lungs on dynamic and static PET images. Standardized uptake values were calculated. RESULTS Kidneys had the most intense (18)FDG uptake, followed by cloaca and intestinal tract; liver activity was mild and slightly more intense than that of the spleen; proventricular activity was always present, whereas little to no activity was identified in the wall of the ventriculus. Activity in the myocardium was present in all birds but varied in intensity among birds. The lungs had no visibly discernible activity. Mean ± SD standardized uptake values calculated with representative regions of interest at 60 minutes were as follows: myocardium, 1. 6 ± 0.2 (transverse plane) and 1.3 ± 0.3 (sagittal plane); liver, 1.1 ± 0.1; spleen, 0.9 ± 0.1; proventriculus, 1.0 ± 0.1; cloaca, 4.4 ± 2.7; right kidney, 17.3 ± 1.0; left kidney, 17.6 ± 0.3; and right and left lungs (each), 0.3 ± 0.02. CONCLUSIONS AND CLINICAL RELEVANCE The study established the biodistribution of (18)FDG in adult eagles, providing a baseline for clinical investigation and future research.
Collapse
Affiliation(s)
- Michael P Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | | | | | |
Collapse
|