1
|
Baijal K, Downey M. The promises of lysine polyphosphorylation as a regulatory modification in mammals are tempered by conceptual and technical challenges. Bioessays 2021; 43:e2100058. [PMID: 33998006 DOI: 10.1002/bies.202100058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Polyphosphate (polyP) is a ubiquitous biomolecule thought to be present in all cells on Earth. PolyP is deceivingly simple, consisting of repeated units of inorganic phosphates polymerized in long energy-rich chains. PolyP is involved in diverse functions in mammalian systems-from cell signaling to blood clotting. One exciting avenue of research is a new nonenzymatic post-translational modification, termed lysine polyphosphorylation, wherein polyP chains are covalently attached to lysine residues of target proteins. While the modification was first characterized in budding yeast, recent work has now identified the first human targets. There is significant promise in this area of biomedical research, but a number of technical issues and knowledge gaps present challenges to rapid progress. In this review, the current state of the field is summarized and existing roadblocks related to the study of lysine polyphosphorylation in higher eukaryotes are introduced. It is discussed how limited methods to identify targets of polyphosphorylation are further impacted by low concentration, unknown regulatory enzymes, and sequestration of polyP into compartments in mammalian systems. Furthermore, suggestions on how these obstacles could be addressed or what their physiological relevance may be within mammalian cells are presented.
Collapse
Affiliation(s)
- Kanchi Baijal
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Gibson I, Momeni A, Filiaggi M. Minocycline-loaded calcium polyphosphate glass microspheres as a potential drug-delivery agent for the treatment of periodontitis. J Appl Biomater Funct Mater 2020; 17:2280800019863637. [PMID: 31452442 DOI: 10.1177/2280800019863637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Periodontitis is an inflammatory disease with a bacterial etiology that affects the supporting structures of the teeth and is a major cause of tooth loss. The objective of this study was to investigate the drug loading and in vitro release of minocycline from novel calcium polyphosphate microspheres intended for use in treating periodontitis. Methods: Calcium polyphosphate coacervate, produced by a precipitation reaction of calcium chloride and sodium polyphosphate solutions, was loaded with minocycline and subsequently used to produce microspheres by an emulsion/solvent extraction technique. Microspheres classified by size were subjected to a 7-day elution in a Tris-buffer solution under dynamic conditions. The physicochemical characteristics of the drug-loaded microspheres were investigated using scanning electron microscopy, particle size analysis, Phosphorus-31 Nuclear Magnetic Resonance spectroscopy, and Inductively Coupled Plasma Optical Emission Spectroscopy. Drug loading and release were determined using ultraviolet -visible (UV/VIS) spectrophotometry. Results: Minocycline-loaded calcium polyphosphate microspheres of varying size were successfully produced, with small and large microspheres having volume mean diameters of 22 ± 1 µm and 193 ± 5 µm, respectively. Polyphosphate chain length and calcium to phosphorus mole ratio remained stable throughout microsphere production. Drug loading was 1.64 ± 0.16, 1.35 ± 0.55, and 0.84 ± 0.14 weight% for the coacervate and large and small microspheres, respectively, corresponding to mean encapsulation efficiencies of 81.7 ± 12.2 % and 50.9 ± 3.9 % for the large and small microspheres. Sustained drug release was observed in vitro over a clinically relevant 7-day period, with small and large microspheres exhibiting similar elution profiles. Antibiotic release generally followed microsphere degradation as measured by Ca and P ion release. Conclusions: This study demonstrated successful drug loading of calcium polyphosphate microspheres with minocycline. Furthermore, in vitro sustained release of minocycline over a 7-day period was observed, suggesting potential utility of this approach for treating periodontitis.
Collapse
Affiliation(s)
- Iain Gibson
- 1 Faculty of Dentistry, Dalhousie University, Halifax, Canada
| | - Arash Momeni
- 1 Faculty of Dentistry, Dalhousie University, Halifax, Canada
| | - Mark Filiaggi
- 1 Faculty of Dentistry, Dalhousie University, Halifax, Canada.,2 School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| |
Collapse
|
3
|
Koyasu M, Shiba T, Kawazoe Y, Manabe A, Miyazaki T. Ultraphosphate, a potent stain control agent that is effective for both stain removal and prevention of stain deposition. Dent Mater J 2014; 33:252-60. [PMID: 24598236 DOI: 10.4012/dmj.2013-093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyphosphate is a phosphate polymer which is effective for stain removal and prevention of stain deposition. Ultraphosphate belongs to the polyphosphate group and has a highly branched mesh-like structure. To evaluate stain control ability of ultraphosphate, we used HAP powder, glass-ionomer cement and detached human teeth for models of in vitro stain control experiments. When using HAP powder, the stain removal ability of ultraphosphate was the highest among common chelating agents. In addition, ultraphosphate efficiently removed stain and prevented stain deposition on glass-ionomer cement at 20°C and 37°C. Finally, ultraphosphate removed coffee stain from human teeth surface efficiently and the color difference (ΔE*ab) before and after ultraphosphate treatment was changed dramatically from 59.4 to 8.3. Similarly, the ΔE*ab value of human teeth treated with ultraphosphate before coffee treatment was only 9.9, while the value without ultraphosphate pre-treatment was 21.2. These results indicate that ultraphosphate is a potent agent for stain control.
Collapse
Affiliation(s)
- Masahiro Koyasu
- Department of Conservative Dentistry, Division of Aesthetic Dentistry and Clinical Cariology, Showa University, School of Dentistry
| | | | | | | | | |
Collapse
|
4
|
Sun N, Zou H, Yang L, Morita K, Gong P, Shiba T, Akagawa Y, Yuan Q. Inorganic polyphosphates stimulate FGF23 expression through the FGFR pathway. Biochem Biophys Res Commun 2012; 428:298-302. [PMID: 23085229 DOI: 10.1016/j.bbrc.2012.10.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/10/2012] [Indexed: 11/16/2022]
Abstract
Polyphosphate (polyP) is composed of linear polymers of orthophosphate residues linked by high-energy phosphoanhydride bonds. It has been reported to improve osteoblastic differentiation, stimulate periodontal tissue regeneration, and accelerate bone repair. The aim of this study was to evaluate the effect of polyP on the expression of FGF23, a hormone secreted mostly be mature osteoblasts and osteocytes. In this study, different types of polyP were synthesized and co-cultured with osteoblast-like UMR-106 cells. Real-time PCR and western blot were used to analyze the gene and protein expression of FGF23. We found that 1 mM polyP was able to increase FGF23 expression after 4 h, reaching a peak after 12-24 h, with expression decreasing by 48 h. We also found that polyP could activate the FGFR pathway, as evidenced by increased phosphorylation of FGFR, FRS2, and Erk1/2. When FGFR signaling was inhibited by the specific inhibitor SU5402, the effect of polyP on FGF23 expression was significantly reduced. Our results indicate that polyP is able to stimulate osteoblastic FGF23 expression and that this effect is associated with activation of the FGFR pathway. These findings provide support for the clinical use of polyP by indicating a mechanism for polyP in bone regeneration.
Collapse
Affiliation(s)
- Ningyuan Sun
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kasuyama K, Tomofuji T, Ekuni D, Azuma T, Irie K, Endo Y, Morita M. Effects of topical application of inorganic polyphosphate on tissue remodeling in rat inflamed gingiva. J Periodontal Res 2011; 47:159-64. [DOI: 10.1111/j.1600-0765.2011.01414.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Morimoto D, Tomita T, Kuroda S, Higuchi C, Kato S, Shiba T, Nakagami H, Morishita R, Yoshikawa H. Inorganic polyphosphate differentiates human mesenchymal stem cells into osteoblastic cells. J Bone Miner Metab 2010; 28:418-23. [PMID: 20145961 DOI: 10.1007/s00774-010-0157-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 12/20/2009] [Indexed: 11/25/2022]
Abstract
The existence of inorganic polyphosphates [poly(P)] in human cells has been demonstrated. In osteoblasts, it is suggested that the concentration of cellular poly(P) is relatively high. In this study, we examined whether poly(P) accelerates the differentiation of human mesenchymal stem cells (hMSCs) from patients with osteoarthritis (OA) and rheumatoid arthritis (RA) into osteoblastic cells. Alkaline phosphatase (ALP) activity was induced by poly(P) in hMSCs from both OA and RA. In Alizarin Red S and osteocalcin EIA, there was a significant difference between the control and poly(P) group. In real-time PCR, there was a significant difference in ALP, collagen type 1A, osteocalcin, and bone sialoprotein between the control and poly(P) group. Our findings suggest that poly(P) have the potent role of differentiating hMSCs into osteoblastic cells at the early and later stages of osteoblastic differentiation.
Collapse
Affiliation(s)
- Daiki Morimoto
- Department of Orthopedics, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Diaz JM, Ingall ED. Fluorometric quantification of natural inorganic polyphosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:4665-4671. [PMID: 20507063 DOI: 10.1021/es100191h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Polyphosphate, a linear polymer of orthophosphate, is abundant in the environment and a key component in wastewater treatment and many bioremediation processes. Despite the broad relevance of polyphosphate, current methods to quantify it possess significant disadvantages. Here, we describe a new approach for the direct quantification of inorganic polyphosphate in complex natural samples. The protocol relies on the interaction between the fluorochrome 4',6-diamidino-2-phenylindole (DAPI) and dissolved polyphosphate. With the DAPI-based approach we describe, polyphosphate can be quantified at concentrations ranging from 0.5-3 microM P in a neutral-buffered freshwater matrix with an accuracy of +/-0.03 microM P. The patterns of polyphosphate concentration versus fluorescence yielded by standards exhibit no chain length dependence across polyphosphates ranging from 15-130 phosphorus units in size. Shorter length polyphosphate molecules (e.g., polyphosphate of three and five phosphorus units in length) contribute little to no signal in this approach, as these molecules react only slightly or not at all with DAPI in the concentration range tested. The presence of salt suppresses fluorescence from intermediate polyphosphate chain lengths (e.g., 15 phosphorus units) at polyphosphate concentrations ranging from 0.5-3 microM P. For longer chain lengths (e.g., 45-130 phosphorus units), this salt interference is not evident at conductivities up to approximately 10mS/cm. Our results indicate that standard polyphosphates should be stored frozen for no longer than 10-15 days to avoid inconsistent results associated with standard degradation. We have applied the fluorometric protocol to the analysis of five well-characterized natural samples to demonstrate the use of the method.
Collapse
Affiliation(s)
- Julia M Diaz
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia 30332, USA.
| | | |
Collapse
|
8
|
Wang Z, Li X, Li Z, Yang L, Sasaki Y, Wang S, Zhou L, Araki S, Mezawa M, Takai H, Ogata Y. Effects of inorganic polyphosphate on bone sialoprotein gene expression. Gene 2010; 452:79-86. [PMID: 20060443 DOI: 10.1016/j.gene.2009.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 12/12/2009] [Accepted: 12/30/2009] [Indexed: 11/26/2022]
Abstract
Inorganic polyphosphate (poly(P)) is a biopolymer existing in almost all cells and tissues. The biological functions of poly(P) in micro-organisms have been extensively investigated in studies of poly(P) in eukaryotic cells, especially osteoblasts, and are increasing. Bone sialoprotein (BSP) is thought to function in bone mineralization, and is selectively expressed by differentiated osteoblasts. In this study, application of sodium phosphate glass type 25 (SPG25, 12.5 and 125 microM) increased BSP mRNA levels at 12 h in osteoblast-like ROS 17/2.8 cells. In transient transfection assay, 12.5 and 125 microM SPG25 increased luciferase activities of the constructs pLUC3 (-116 to +60), pLUC4 (-425 to +60), pLUC5 (-801 to +60) and pLUC6 (-938 to +60). Introduction of 2 bp mutations to the luciferase constructs showed that the effects of SPG25 were mediated by a FGF2 response element (FRE) and a homeodomain protein binding site (HOX). Luciferase activities induced by SPG25 were blocked by tyrosine kinase inhibitor herbimycine A, MAP kinase kinase inhibitor U0126, PI3-kinase/Akt inhibitor LY249002 and inorganic phosphate transport inhibitor foscarnet. Gel shift analyses showed that both 12.5 and 125 microM SPG25 increased nuclear protein binding to FRE and HOX elements. These studies demonstrate that SPG25 stimulates BSP transcription by targeting FRE and HOX elements in the proximal promoter of the rat BSP gene.
Collapse
Affiliation(s)
- Zhitao Wang
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Osathanon T, Giachelli CM, Somerman MJ. Immobilization of alkaline phosphatase on microporous nanofibrous fibrin scaffolds for bone tissue engineering. Biomaterials 2009; 30:4513-21. [PMID: 19501906 DOI: 10.1016/j.biomaterials.2009.05.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
Abstract
Alkaline phosphatase (ALP) promotes bone formation by degrading inorganic pyrophosphate (PP(i)), an inhibitor of hydroxyapatite formation, and generating inorganic phosphate (P(i)), an inducer of hydroxyapatite formation. P(i) is a crucial molecule in differentiation and mineralization of osteoblasts. In this study, a method to immobilize ALP on fibrin scaffolds with tightly controllable pore size and pore interconnection was developed, and the biological properties of these scaffolds were characterized both in vitro and in vivo. Microporous, nanofibrous fibrin scaffolds (FS) were fabricated using a sphere-templating method. ALP was covalently immobilized on the fibrin scaffolds using 1-ethyl-3-(dimethylaminopropyl)carbodiimide hydrochloride (EDC). Scanning electron microscopic observation (SEM) showed that mineral was deposited on immobilized alkaline phosphatase fibrin scaffolds (immobilized ALP/FS) when incubated in medium supplemented with beta-glycerophosphate, suggesting that the immobilized ALP was active. Primary calvarial cells attached, spread and formed multiple layers on the surface of the scaffolds. Mineral deposition was also observed when calvarial cells were seeded on immobilized ALP/FS. Furthermore, cells seeded on immobilized ALP/FS exhibited higher osteoblast marker gene expression compared to control FS. Upon implantation in mouse calvarial defects, both the immobilized ALP/FS and FS alone treated group had higher bone volume in the defect compared to the empty defect control. Furthermore, bone formation in the immobilized ALP/FS treated group was statistically significant compared to FS alone group. However, the response was not robust.
Collapse
Affiliation(s)
- Thanaphum Osathanon
- Department of Oral Biology, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
10
|
Yuan Q, Kubo T, Doi K, Morita K, Takeshita R, Katoh S, Shiba T, Gong P, Akagawa Y. Effect of combined application of bFGF and inorganic polyphosphate on bioactivities of osteoblasts and initial bone regeneration. Acta Biomater 2009; 5:1716-24. [PMID: 19251495 DOI: 10.1016/j.actbio.2009.01.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/29/2008] [Accepted: 01/24/2009] [Indexed: 01/09/2023]
Abstract
Basic fibroblast growth factor (bFGF) and inorganic polyphosphate (poly(P)) have been recognized as therapeutic agents that enhance bone regeneration. It has also been shown that poly(P) may enhance the mitogenic activity of bFGF. The purpose of this study is to evaluate the combined effect of bFGF and poly(P) on bioactivities of osteoblasts and initial bone regeneration in vitro and in vivo. MC3T3-E1 cells were treated with bFGF, poly(P) or bFGF+poly(P), then subjected to cell proliferation assay, alkaline phosphatase (ALP) activity measurement, quantitative real-time reverse transcription-polymerase chain reaction and Alizarin S Red staining. In an in vivo study, bFGF-, poly(P)- and bFGF+poly(P)-modified interconnected porous hydroxyapatite (IPHA) complexes were fabricated, and placed into the femurs of rabbits to evaluate new bone formation histologically and histomorphometrically. The highest enhancement of cell proliferation were observed in those treated with bFGF+poly(P) on days 5 and 7. Cells treated with bFGF+poly(P) also exhibited increased ALP activity on days 5 and 10, up-regulated mRNA levels of osteocalcin and osteopontin, and enhanced calcification when compared to the non-treated cells. In vivo, the highest bone formation ratio was observed in bFGF+poly(P)-modified IPHA complexes. This study indicated that co-application of bFGF and poly(P) may provide enhanced bone formation by modulating cell proliferation and the mineralization process. It is anticipated that a combined application of bFGF and poly(P) can provide a novel method for bone regeneration in clinical use.
Collapse
|
11
|
Foster BL, Tompkins KA, Rutherford RB, Zhang H, Chu EY, Fong H, Somerman MJ. Phosphate: known and potential roles during development and regeneration of teeth and supporting structures. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2008; 84:281-314. [PMID: 19067423 PMCID: PMC4526155 DOI: 10.1002/bdrc.20136] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inorganic phosphate (P(i)) is abundant in cells and tissues as an important component of nucleic acids and phospholipids, a source of high-energy bonds in nucleoside triphosphates, a substrate for kinases and phosphatases, and a regulator of intracellular signaling. The majority of the body's P(i) exists in the mineralized matrix of bones and teeth. Systemic P(i) metabolism is regulated by a cast of hormones, phosphatonins, and other factors via the bone-kidney-intestine axis. Mineralization in bones and teeth is in turn affected by homeostasis of P(i) and inorganic pyrophosphate (PPi), with further regulation of the P(i)/PP(i) ratio by cellular enzymes and transporters. Much has been learned by analyzing the molecular basis for changes in mineralized tissue development in mutant and knock-out mice with altered P(i) metabolism. This review focuses on factors regulating systemic and local P(i) homeostasis and their known and putative effects on the hard tissues of the oral cavity. By understanding the role of P(i) metabolism in the development and maintenance of the oral mineralized tissues, it will be possible to develop improved regenerative approaches.
Collapse
Affiliation(s)
- Brian L Foster
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|