1
|
Haataja T, Hansson H, Moriya S, Sandgren M, Ståhlberg J. The crystal structure of RsSymEG1 reveals a unique form of smaller GH7 endoglucanases alongside GH7 cellobiohydrolases in protist symbionts of termites. FEBS J 2024; 291:1168-1185. [PMID: 38073120 DOI: 10.1111/febs.17029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Glycoside hydrolase family 7 (GH7) cellulases are key enzymes responsible for carbon cycling on earth through their role in cellulose degradation and constitute highly important industrial enzymes as well. Although these enzymes are found in a wide variety of evolutionarily distant organisms across eukaryotes, they exhibit remarkably conserved features within two groups: exo-acting cellobiohydrolases and endoglucanases. However, recently reports have emerged of a separate clade of GH7 endoglucanases from protist symbionts of termites that are 60-80 amino acids shorter. In this work, we describe the first crystal structure of a short GH7 endoglucanase, RsSymEG1, from a symbiont of the lower termite Reticulitermes speratus. A more open flat surface and shorter loops around the non-reducing end of the cellulose-binding cleft indicate enhanced access to cellulose chains on the surface of cellulose microfibrils. Additionally, when comparing activities on polysaccharides to a typical fungal GH7 endoglucanase (Trichoderma longibrachiatum Cel7B), RsSymEG1 showed significantly faster initial hydrolytic activity. We also examine the prevalence and diversity of GH7 enzymes that the symbionts provide to the termite host, compare overall structures and substrate binding between cellobiohydrolase and long and short endoglucanase, and highlight the presence of similar short GH7s in other organisms.
Collapse
Affiliation(s)
- Topi Haataja
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Henrik Hansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Haataja T, Gado JE, Nutt A, Anderson NT, Nilsson M, Momeni MH, Isaksson R, Väljamäe P, Johansson G, Payne CM, Ståhlberg J. Enzyme kinetics by GH7 cellobiohydrolases on chromogenic substrates is dictated by non-productive binding: insights from crystal structures and MD simulation. FEBS J 2023; 290:379-399. [PMID: 35997626 PMCID: PMC10087753 DOI: 10.1111/febs.16602] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/30/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023]
Abstract
Cellobiohydrolases (CBHs) in the glycoside hydrolase family 7 (GH7) (EC3.2.1.176) are the major cellulose degrading enzymes both in industrial settings and in the context of carbon cycling in nature. Small carbohydrate conjugates such as p-nitrophenyl-β-d-cellobioside (pNPC), p-nitrophenyl-β-d-lactoside (pNPL) and methylumbelliferyl-β-d-cellobioside have commonly been used in colorimetric and fluorometric assays for analysing activity of these enzymes. Despite the similar nature of these compounds the kinetics of their enzymatic hydrolysis vary greatly between the different compounds as well as among different enzymes within the GH7 family. Through enzyme kinetics, crystallographic structure determination, molecular dynamics simulations, and fluorometric binding studies using the closely related compound o-nitrophenyl-β-d-cellobioside (oNPC), in this work we examine the different hydrolysis characteristics of these compounds on two model enzymes of this class, TrCel7A from Trichoderma reesei and PcCel7D from Phanerochaete chrysosporium. Protein crystal structures of the E212Q mutant of TrCel7A with pNPC and pNPL, and the wildtype TrCel7A with oNPC, reveal that non-productive binding at the product site is the dominating binding mode for these compounds. Enzyme kinetics results suggest the strength of non-productive binding is a key determinant for the activity characteristics on these substrates, with PcCel7D consistently showing higher turnover rates (kcat ) than TrCel7A, but higher Michaelis-Menten (KM ) constants as well. Furthermore, oNPC turned out to be useful as an active-site probe for fluorometric determination of the dissociation constant for cellobiose on TrCel7A but could not be utilized for the same purpose on PcCel7D, likely due to strong binding to an unknown site outside the active site.
Collapse
Affiliation(s)
- Topi Haataja
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Japheth E Gado
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA.,Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Anu Nutt
- Department of Chemistry, Uppsala University, Sweden.,Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Nolan T Anderson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Mikael Nilsson
- Institute of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Majid Haddad Momeni
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roland Isaksson
- Institute of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | | | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
Activity-based protein profiling reveals dynamic substrate-specific cellulase secretion by saprotrophic basidiomycetes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:6. [PMID: 35418096 PMCID: PMC8764865 DOI: 10.1186/s13068-022-02107-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Fungal saccharification of lignocellulosic biomass occurs concurrently with the secretion of a diverse collection of proteins, together functioning as a catalytic system to liberate soluble sugars from insoluble composite biomaterials. How different fungi respond to different substrates is of fundamental interest to the developing biomass saccharification industry. Among the cornerstones of fungal enzyme systems are the highly expressed cellulases (endo-β-glucanases and cellobiohydrolases). Recently, a cyclophellitol-derived activity-based probe (ABP-Cel) was shown to be a highly sensitive tool for the detection and identification of cellulases.
Results
Here we show that ABP-Cel enables endo-β-glucanase profiling in diverse fungal secretomes. In combination with established ABPs for β-xylanases and β-d-glucosidases, we collected multiplexed in-gel fluorescence activity-based protein profiles of 240 secretomes collected over ten days from biological replicates of ten different basidiomycete fungi grown on maltose, wheat straw, or aspen pulp. Our results reveal the remarkable dynamics and unique enzyme fingerprints associated with each species substrate combination. Chemical proteomic analysis identifies significant arsenals of cellulases secreted by each fungal species during growth on lignocellulosic biomass. Recombinant production and characterization of a collection of probe-reactive enzymes from GH5, GH10, and GH12 confirm that ABP-Cel shows broad selectivity towards enzymes with endo-β-glucanase activity.
Conclusion
Using small-volume samples with minimal sample preparation, the results presented here demonstrate the ready accessibility of sensitive direct evidence for fungal enzyme secretion during early stages of growth on complex lignocellulosic substrates.
Collapse
|
4
|
Gado JE, Harrison BE, Sandgren M, Ståhlberg J, Beckham GT, Payne CM. Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases. J Biol Chem 2021; 297:100931. [PMID: 34216620 PMCID: PMC8329511 DOI: 10.1016/j.jbc.2021.100931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022] Open
Abstract
Family 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These enzymes are often bimodular, including a catalytic domain and carbohydrate-binding module (CBM) attached via a flexible linker, and exhibit an active site that binds cello-oligomers of up to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases (CBH) and endoglucanases (EG). Despite the critical importance of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and structure relate to function. Here, we employed machine learning to gain data-driven insights into relationships between sequence, structure, and function across the GH7 family. Machine-learning models, trained only on the number of residues in the active-site loops as features, were able to discriminate GH7 CBHs and EGs with up to 99% accuracy, demonstrating that the lengths of loops A4, B2, B3, and B4 strongly correlate with functional subtype across the GH7 family. Classification rules were derived such that specific residues at 42 different sequence positions each predicted the functional subtype with accuracies surpassing 87%. A random forest model trained on residues at 19 positions in the catalytic domain predicted the presence of a CBM with 89.5% accuracy. Our machine learning results recapitulate, as top-performing features, a substantial number of the sequence positions determined by previous experimental studies to play vital roles in GH7 activity. We surmise that the yet-to-be-explored sequence positions among the top-performing features also contribute to GH7 functional variation and may be exploited to understand and manipulate function.
Collapse
Affiliation(s)
- Japheth E Gado
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA; Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Brent E Harrison
- Department of Computer Science, University of Kentucky, Lexington, Kentucky, USA
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
5
|
Plazinska A, Plazinski W. Comparison of Carbohydrate Force Fields in Molecular Dynamics Simulations of Protein-Carbohydrate Complexes. J Chem Theory Comput 2021; 17:2575-2585. [PMID: 33703894 DOI: 10.1021/acs.jctc.1c00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this paper, we present the results of molecular dynamics simulations aimed at critical comparison of classical, biomolecular force fields (FFs) in the context of their capabilities to describe the structural and thermodynamic features of carbohydrate-protein interactions. We have considered the three main families of FFs (CHARMM, GROMOS, and GLYCAM/AMBER) by applying them to investigate the seven different carbohydrate-protein complexes. The results indicate that although the qualitative pattern of several structural descriptors (intermolecular hydrogen bonding, ligand dynamic location, etc.) is conserved among the compared FFs, there also exists a number of significant divergences (mainly the patterns of contacts between particular amino acid residues and bound carbohydrate). The carbohydrate-protein unbinding free energies also vary from one FF to another, displaying diversified trends in deviations from the experimental data. The magnitude of those deviations is not negligible and indicates the need for refinement in the currently existing combinations of carbohydrate- and protein-dedicated biomolecular force fields. In spite of the lack of explicit functional terms responsible for the corresponding intermolecular forces, all tested FFs are capable of adequately reproducing the CH-π interactions, crucial for carbohydrate-protein binding.
Collapse
Affiliation(s)
- Anita Plazinska
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Wojciech Plazinski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
6
|
Abstract
Some cellulases exhibit “processivity”: the ability to degrade crystalline cellulose through successive hydrolytic catalytic reactions without the release of the enzyme from the substrate surface. We previously observed the movement of fungal processive cellulases by high-speed atomic force microscopy, and here, we use the same technique to directly observe the processive movement of bacterial cellobiohydrolases settling a long-standing controversy. Although fungal and bacterial processive cellulases have completely different protein folds, they have evolved to acquire processivity through the same strategy of adding subsites to extend the substrate-binding site and forming a tunnel-like active site by increasing the number of loops covering the active site. This represents an example of protein-level convergent evolution to acquire the same functions from different ancestors. Cellulose is the most abundant biomass on Earth, and many microorganisms depend on it as a source of energy. It consists mainly of crystalline and amorphous regions, and natural degradation of the crystalline part is highly dependent on the degree of processivity of the degrading enzymes (i.e., the extent of continuous hydrolysis without detachment from the substrate cellulose). Here, we report high-speed atomic force microscopic (HS-AFM) observations of the movement of four types of cellulases derived from the cellulolytic bacteria Cellulomonas fimi on various insoluble cellulose substrates. The HS-AFM images clearly demonstrated that two of them (CfCel6B and CfCel48A) slide on crystalline cellulose. The direction of processive movement of CfCel6B is from the nonreducing to the reducing end of the substrate, which is opposite that of processive cellulase Cel7A of the fungus Trichoderma reesei (TrCel7A), whose movement was first observed by this technique, while CfCel48A moves in the same direction as TrCel7A. When CfCel6B and TrCel7A were mixed on the same substrate, “traffic accidents” were observed, in which the two cellulases blocked each other’s progress. The processivity of CfCel6B was similar to those of fungal family 7 cellulases but considerably higher than those of fungal family 6 cellulases. The results indicate that bacteria utilize family 6 cellulases as high-processivity enzymes for efficient degradation of crystalline cellulose, whereas family 7 enzymes have the same function in fungi. This is consistent with the idea of convergent evolution of processive cellulases in fungi and bacteria to achieve similar functionality using different protein foldings.
Collapse
|
7
|
Rabinovich ML, Melnik MS, Herner ML, Voznyi YV, Vasilchenko LG. Predominant Nonproductive Substrate Binding by Fungal Cellobiohydrolase I and Implications for Activity Improvement. Biotechnol J 2018; 14:e1700712. [PMID: 29781240 DOI: 10.1002/biot.201700712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/08/2018] [Indexed: 12/20/2022]
Abstract
Enzymatic conversion of the most abundant renewable source of organic compounds, cellulose to fermentable sugars is attractive for production of green fuels and chemicals. The major component of industrial enzyme systems, cellobiohydrolase I from Hypocrea jecorina (Trichoderma reesei) (HjCel7A) processively splits disaccharide units from the reducing ends of tightly packed cellulose chains. HjCel7A consists of a catalytic domain (CD) and a carbohydrate-binding module (CBM) separated by a linker peptide. A tunnel-shaped substrate-binding site in the CD includes nine subsites for β-d-glucose units, seven of which (-7 to -1) precede the catalytic center. Low catalytic activity of Cel7A is the bottleneck and the primary target for improvement. Here it is shown for the first time that, in spite of much lower apparent kcat of HjCel7A at the hydrolysis of β-1,4-glucosidic linkages in the fluorogenic cellotetra- and -pentaose compared to the structurally related endoglucanase I (HjCel7B), the specificity constants (catalytic efficiency) kcat /Km for both enzymes are almost equal in these reactions. The observed activity difference appears from strong nonproductive substrate binding by HjCel7A, particularly significant for MU-β-cellotetraose (MUG4 ). Interaction of substrates with the subsites -6 and -5 proximal to the nonconserved Gln101 residue in HjCel7A decreases Km,ap by >1500 times. HjCel7A can be nonproductively bound onto cellulose surface with Kd ≈2-9 nM via CBM and CD that captures six terminal glucose units of cellulose chain. Decomposition of this nonproductive complex can determine the rate of cellulose conversion. MUG4 is a promising substrate to select active cellobiohydrolase I variants with reduced nonproductive substrate binding.
Collapse
Affiliation(s)
- Mikhail L Rabinovich
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Maria S Melnik
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Mikhail L Herner
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Yakov V Voznyi
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Lilia G Vasilchenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| |
Collapse
|
8
|
Abstract
Homology modeling is a very powerful tool in the absence of atomic structures for understanding the general fold of the enzyme, conserved residues, catalytic tunnel/pocket as well as substrate and product binding sites. This information is useful for structure-assisted enzyme design approach for the development of robust enzymes especially for industrial applications.
Collapse
|
9
|
Aich S, Singh RK, Kundu P, Pandey SP, Datta S. Genome-wide characterization of cellulases from the hemi-biotrophic plant pathogen, Bipolaris sorokiniana, reveals the presence of a highly stable GH7 endoglucanase. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:135. [PMID: 28559926 PMCID: PMC5445349 DOI: 10.1186/s13068-017-0822-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Bipolaris sorokiniana is a filamentous fungus that causes spot blotch disease in cereals like wheat and has severe economic consequences. However, information on the identities and role of the cell wall-degrading enzymes (CWDE) in B. sorokiniana is very limited. Several fungi produce CWDE like glycosyl hydrolases (GHs) that help in host cell invasion. To understand the role of these CWDE in B. sorokiniana, the first step is to identify and annotate all possible genes of the GH families like GH3, GH6, GH7, GH45 and AA9 and then characterize them biochemically. RESULTS We confirmed and annotated the homologs of GH3, GH6, GH7, GH45 and AA9 enzymes in the B. sorokiniana genome using the sequence and domain features of these families. Quantitative real-time PCR analyses of these homologs revealed that the transcripts of the BsGH7-3 (3rd homolog of the GH 7 family in B. sorokiniana) were most abundant. BsGH7-3, the gene of BsGH7-3, was thus cloned into pPICZαC Pichia pastoris vector and expressed in X33 P. pastoris host to be characterized. BsGH7-3 enzyme showed a temperature optimum of 60 °C and a pHopt of 8.1. BsGH7-3 was identified to be an endoglucanase based on its broad substrate specificity and structural comparisons with other such endoglucanases. BsGH7-3 has a very long half-life and retains 100% activity even in the presence of 4 M NaCl, 4 M KCl and 20% (v/v) ionic liquids. The enzyme activity is stimulated up to fivefold in the presence of Mn+2 and Fe+2 without any deleterious effects on enzyme thermostability. CONCLUSIONS Here we reanalysed the B. sorokiniana genome and selected one GH7 enzyme for further characterization. The present work demonstrates that BsGH7-3 is an endoglucanase with a long half-life and no loss in activity in the presence of denaturants like salt and ionic liquids, and lays the foundation towards exploring the Bipolaris genome for other cell wall-degrading enzymes.
Collapse
Affiliation(s)
- Shritama Aich
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Ravi K. Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 India
| | - Pritha Kundu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 India
| | - Shree P. Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 India
| | - Supratim Datta
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| |
Collapse
|
10
|
Gunnoo M, Cazade PA, Galera-Prat A, Nash MA, Czjzek M, Cieplak M, Alvarez B, Aguilar M, Karpol A, Gaub H, Carrión-Vázquez M, Bayer EA, Thompson D. Nanoscale Engineering of Designer Cellulosomes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5619-47. [PMID: 26748482 DOI: 10.1002/adma.201503948] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/01/2015] [Indexed: 05/27/2023]
Abstract
Biocatalysts showcase the upper limit obtainable for high-speed molecular processing and transformation. Efforts to engineer functionality in synthetic nanostructured materials are guided by the increasing knowledge of evolving architectures, which enable controlled molecular motion and precise molecular recognition. The cellulosome is a biological nanomachine, which, as a fundamental component of the plant-digestion machinery from bacterial cells, has a key potential role in the successful development of environmentally-friendly processes to produce biofuels and fine chemicals from the breakdown of biomass waste. Here, the progress toward so-called "designer cellulosomes", which provide an elegant alternative to enzyme cocktails for lignocellulose breakdown, is reviewed. Particular attention is paid to rational design via computational modeling coupled with nanoscale characterization and engineering tools. Remaining challenges and potential routes to industrial application are put forward.
Collapse
Affiliation(s)
- Melissabye Gunnoo
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | - Pierre-André Cazade
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | - Albert Galera-Prat
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED, Madrid, Spain
| | - Michael A Nash
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, 80799, Munich, Germany
| | - Mirjam Czjzek
- Sorbonne Universités, UPMC, Université Paris 06, and Centre National de la Recherche Scientifique, UMR 8227, Integrative Biology of Marine Models, Station Biologique, de Roscoff, CS 90074, F-29688, Roscoff cedex, Bretagne, France
| | - Marek Cieplak
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Beatriz Alvarez
- Biopolis S.L., Parc Científic de la Universitat de Valencia, Edificio 2, C/Catedrático Agustín Escardino 9, 46980, Paterna (Valencia), Spain
| | - Marina Aguilar
- Abengoa, S.A., Palmas Altas, Calle Energía Solar nº 1, 41014, Seville, Spain
| | - Alon Karpol
- Designer Energy Ltd., 2 Bergman St., Tamar Science Park, Rehovot, 7670504, Israel
| | - Hermann Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, 80799, Munich, Germany
| | - Mariano Carrión-Vázquez
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED, Madrid, Spain
| | - Edward A Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Damien Thompson
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| |
Collapse
|
11
|
Biochemical and Structural Characterizations of Two Dictyostelium Cellobiohydrolases from the Amoebozoa Kingdom Reveal a High Level of Conservation between Distant Phylogenetic Trees of Life. Appl Environ Microbiol 2016; 82:3395-409. [PMID: 27037126 DOI: 10.1128/aem.00163-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/25/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) are enzymes commonly employed in plant cell wall degradation across eukaryotic kingdoms of life, as they provide significant hydrolytic potential in cellulose turnover. To date, many fungal GH7 CBHs have been examined, yet many questions regarding structure-activity relationships in these important natural and commercial enzymes remain. Here, we present the crystal structures and a biochemical analysis of two GH7 CBHs from social amoeba: Dictyostelium discoideum Cel7A (DdiCel7A) and Dictyostelium purpureum Cel7A (DpuCel7A). DdiCel7A and DpuCel7A natively consist of a catalytic domain and do not exhibit a carbohydrate-binding module (CBM). The structures of DdiCel7A and DpuCel7A, resolved to 2.1 Å and 2.7 Å, respectively, are homologous to those of other GH7 CBHs with an enclosed active-site tunnel. Two primary differences between the Dictyostelium CBHs and the archetypal model GH7 CBH, Trichoderma reesei Cel7A (TreCel7A), occur near the hydrolytic active site and the product-binding sites. To compare the activities of these enzymes with the activity of TreCel7A, the family 1 TreCel7A CBM and linker were added to the C terminus of each of the Dictyostelium enzymes, creating DdiCel7ACBM and DpuCel7ACBM, which were recombinantly expressed in T. reesei DdiCel7ACBM and DpuCel7ACBM hydrolyzed Avicel, pretreated corn stover, and phosphoric acid-swollen cellulose as efficiently as TreCel7A when hydrolysis was compared at their temperature optima. The Ki of cellobiose was significantly higher for DdiCel7ACBM and DpuCel7ACBM than for TreCel7A: 205, 130, and 29 μM, respectively. Taken together, the present study highlights the remarkable degree of conservation of the activity of these key natural and industrial enzymes across quite distant phylogenetic trees of life. IMPORTANCE GH7 CBHs are among the most important cellulolytic enzymes both in nature and for emerging industrial applications for cellulose breakdown. Understanding the diversity of these key industrial enzymes is critical to engineering them for higher levels of activity and greater stability. The present work demonstrates that two GH7 CBHs from social amoeba are surprisingly quite similar in structure and activity to the canonical GH7 CBH from the model biomass-degrading fungus T. reesei when tested under equivalent conditions (with added CBM-linker domains) on an industrially relevant substrate.
Collapse
|
12
|
Borisova AS, Eneyskaya EV, Bobrov KS, Jana S, Logachev A, Polev DE, Lapidus AL, Ibatullin FM, Saleem U, Sandgren M, Payne CM, Kulminskaya AA, Ståhlberg J. Sequencing, biochemical characterization, crystal structure and molecular dynamics of cellobiohydrolase Cel7A from
Geotrichum candidum
3C. FEBS J 2015; 282:4515-37. [DOI: 10.1111/febs.13509] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/13/2015] [Accepted: 09/04/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Anna S. Borisova
- Department of Chemistry and Biotechnology Swedish University of Agricultural Sciences Uppsala Sweden
- National Research Centre «Kurchatov Institute» B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Orlova roscha Russia
| | - Elena V. Eneyskaya
- National Research Centre «Kurchatov Institute» B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Orlova roscha Russia
| | - Kirill S. Bobrov
- National Research Centre «Kurchatov Institute» B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Orlova roscha Russia
| | - Suvamay Jana
- Department of Chemical and Materials Engineering University of Kentucky Lexington KY USA
| | - Anton Logachev
- Theodosius Dobzhansky Center for Genome Bioinformatics St. Petersburg State University Russia
| | - Dmitrii E. Polev
- Research Resource Centre «Molecular and Cell Technologies» St. Petersburg State University Russia
| | - Alla L. Lapidus
- Centre for Algorithmic Biotechnology St. Petersburg Academic University Russia
| | - Farid M. Ibatullin
- National Research Centre «Kurchatov Institute» B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Orlova roscha Russia
| | - Umair Saleem
- Department of Chemistry and Biotechnology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Mats Sandgren
- Department of Chemistry and Biotechnology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Christina M. Payne
- Department of Chemical and Materials Engineering University of Kentucky Lexington KY USA
| | - Anna A. Kulminskaya
- National Research Centre «Kurchatov Institute» B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Orlova roscha Russia
- Department of Medical Physics Peter the Great St. Petersburg Polytechnic University Russia
| | - Jerry Ståhlberg
- Department of Chemistry and Biotechnology Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
13
|
Momeni MH, Ubhayasekera W, Sandgren M, Ståhlberg J, Hansson H. Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo-oligosaccharides. FEBS J 2015; 282:2167-77. [PMID: 25765184 DOI: 10.1111/febs.13265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 11/28/2022]
Abstract
UNLABELLED The filamentous fungus Hypocrea jecorina (anamorph of Trichoderma reesei) is the predominant source of enzymes for industrial saccharification of lignocellulose biomass. The major enzyme, cellobiohydrolase Cel7A, constitutes nearly half of the total protein in the secretome. The performance of such enzymes is susceptible to inhibition by compounds liberated by physico-chemical pre-treatment if the biomass is kept unwashed. Xylan and xylo-oligosaccharides (XOS) have been proposed to play a key role in inhibition of cellobiohydrolases of glycoside hydrolase family 7. To elucidate the mechanism behind this inhibition at a molecular level, we used X-ray crystallography to determine structures of H. jecorina Cel7A in complex with XOS. Structures with xylotriose, xylotetraose and xylopentaose revealed a predominant binding mode at the entrance of the substrate-binding tunnel of the enzyme, in which each xylose residue is shifted ~ 2.4 Å towards the catalytic center compared with binding of cello-oligosaccharides. Furthermore, partial occupancy of two consecutive xylose residues at subsites -2 and -1 suggests an alternative binding mode for XOS in the vicinity of the catalytic center. Interestingly, the -1 xylosyl unit exhibits an open aldehyde conformation in one of the structures and a ring-closed pyranoside in another complex. Complementary inhibition studies with p-nitrophenyl lactoside as substrate indicate mixed inhibition rather than pure competitive inhibition. DATABASE The atomic coordinates and structure factors are available in the Protein Data Bank under accession number 4D5I (H. jecorina Cel7A E212Q variant, complex with xylotriose), 4D5J (H. jecorina Cel7A E217Q variant, complex with xylotriose), 4D5O (H. jecorina Cel7A E212Q variant, complex with xylopentaose), 4D5P (H. jecorina Cel7A E217Q variant, complex with xylopentaose), 4D5Q (wild-type H. jecorina Cel7A, complex with xylopentaose) and 4D5V (H. jecorina Cel7A E217Q variant, complex with xylotetraose).
Collapse
Affiliation(s)
- Majid Haddad Momeni
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Wimal Ubhayasekera
- Institute of Medicinal Chemistry, University of Copenhagen, Denmark.,MAX-Lab, Lund University, Sweden
| | - Mats Sandgren
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerry Ståhlberg
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Henrik Hansson
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Zoglowek M, Lübeck PS, Ahring BK, Lübeck M. Heterologous expression of cellobiohydrolases in filamentous fungi – An update on the current challenges, achievements and perspectives. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
16
|
Silveira RL, Skaf MS. Molecular Dynamics Simulations of Family 7 Cellobiohydrolase Mutants Aimed at Reducing Product Inhibition. J Phys Chem B 2014; 119:9295-303. [DOI: 10.1021/jp509911m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Rodrigo L. Silveira
- Institute
of Chemistry, University of Campinas, Cx. P. 6154 Campinas, SP, 13084-862, Brazil
| | - Munir S. Skaf
- Institute
of Chemistry, University of Campinas, Cx. P. 6154 Campinas, SP, 13084-862, Brazil
| |
Collapse
|
17
|
Momeni MH, Goedegebuur F, Hansson H, Karkehabadi S, Askarieh G, Mitchinson C, Larenas EA, Ståhlberg J, Sandgren M. Expression, crystal structure and cellulase activity of the thermostable cellobiohydrolase Cel7A from the fungus Humicola grisea var. thermoidea. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2356-66. [PMID: 25195749 PMCID: PMC4157447 DOI: 10.1107/s1399004714013844] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/13/2014] [Indexed: 11/11/2022]
Abstract
Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) play a key role in biomass recycling in nature. They are typically the most abundant enzymes expressed by potent cellulolytic fungi, and are also responsible for the majority of hydrolytic potential in enzyme cocktails for industrial processing of plant biomass. The thermostability of the enzyme is an important parameter for industrial utilization. In this study, Cel7 enzymes from different fungi were expressed in a fungal host and assayed for thermostability, including Hypocrea jecorina Cel7A as a reference. The most stable of the homologues, Humicola grisea var. thermoidea Cel7A, exhibits a 10°C higher melting temperature (T(m) of 72.5°C) and showed a 4-5 times higher initial hydrolysis rate than H. jecorina Cel7A on phosphoric acid-swollen cellulose and showed the best performance of the tested enzymes on pretreated corn stover at elevated temperature (65°C, 24 h). The enzyme shares 57% sequence identity with H. jecorina Cel7A and consists of a GH7 catalytic module connected by a linker to a C-terminal CBM1 carbohydrate-binding module. The crystal structure of the H. grisea var. thermoidea Cel7A catalytic module (1.8 Å resolution; R(work) and R(free) of 0.16 and 0.21, respectively) is similar to those of other GH7 CBHs. The deviations of several loops along the cellulose-binding path between the two molecules in the asymmetric unit indicate higher flexibility than in the less thermostable H. jecorina Cel7A.
Collapse
Affiliation(s)
- Majid Haddad Momeni
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07 Uppsala, Sweden
| | - Frits Goedegebuur
- DuPont, Industrial Biosciences, Archimedesweg 30, 2333 CN Leiden, The Netherlands
| | - Henrik Hansson
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07 Uppsala, Sweden
| | - Saeid Karkehabadi
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07 Uppsala, Sweden
| | - Glareh Askarieh
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07 Uppsala, Sweden
| | - Colin Mitchinson
- DuPont, Industrial Biosciences, Page Mill Road, Palo Alto, CA 94304, USA
| | - Edmundo A. Larenas
- DuPont, Industrial Biosciences, Page Mill Road, Palo Alto, CA 94304, USA
| | - Jerry Ståhlberg
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07 Uppsala, Sweden
| | - Mats Sandgren
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07 Uppsala, Sweden
| |
Collapse
|
18
|
Knott BC, Crowley MF, Himmel ME, Ståhlberg J, Beckham GT. Carbohydrate-protein interactions that drive processive polysaccharide translocation in enzymes revealed from a computational study of cellobiohydrolase processivity. J Am Chem Soc 2014; 136:8810-9. [PMID: 24869982 DOI: 10.1021/ja504074g] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Translocation of carbohydrate polymers through protein tunnels and clefts is a ubiquitous biochemical phenomenon in proteins such as polysaccharide synthases, glycoside hydrolases, and carbohydrate-binding modules. Although static snapshots of carbohydrate polymer binding in proteins have long been studied via crystallography and spectroscopy, the molecular details of polysaccharide chain processivity have not been elucidated. Here, we employ simulation to examine how a cellulose chain translocates by a disaccharide unit during the processive cycle of a glycoside hydrolase family 7 cellobiohydrolase. Our results demonstrate that these biologically and industrially important enzymes employ a two-step mechanism for chain threading to form a Michaelis complex and that the free energy barrier to chain threading is significantly lower than the hydrolysis barrier. Taken with previous studies, our findings suggest that the rate-limiting step in enzymatic cellulose degradation is the glycosylation reaction, not chain processivity. Based on the simulations, we find that strong electrostatic interactions with polar residues that are conserved in GH7 cellobiohydrolases, but not in GH7 endoglucanases, at the leading glucosyl ring provide the thermodynamic driving force for polysaccharide chain translocation. Also, we consider the role of aromatic-carbohydrate interactions, which are widespread in carbohydrate-active enzymes and have long been associated with processivity. Our analysis suggests that the primary role for these aromatic residues is to provide tunnel shape and guide the carbohydrate chain to the active site. More broadly, this work elucidates the role of common protein motifs found in carbohydrate-active enzymes that synthesize or depolymerize polysaccharides by chain translocation mechanisms coupled to catalysis.
Collapse
Affiliation(s)
- Brandon C Knott
- National Bioenergy Center and ‡Biosciences Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | | | | | | | | |
Collapse
|
19
|
Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases. Curr Opin Biotechnol 2014; 27:96-106. [DOI: 10.1016/j.copbio.2013.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
20
|
Stereochemical Differentiation in the Simmons-Smith Reaction for Cyclopropanated Glucopyranose Derivatives as Molecular Probes for Glycosidases. Biosci Biotechnol Biochem 2014; 75:1380-2. [DOI: 10.1271/bbb.110120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
V. Sambasivarao S, M. Granum D, Wang H, Mark Maupin C. Identifying the Enzymatic Mode of Action for Cellulase Enzymes by Means of Docking Calculations and a Machine Learning Algorithm. AIMS MOLECULAR SCIENCE 2014. [DOI: 10.3934/molsci.2014.1.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
22
|
Knott BC, Haddad Momeni M, Crowley MF, Mackenzie LF, Götz AW, Sandgren M, Withers SG, Ståhlberg J, Beckham GT. The Mechanism of Cellulose Hydrolysis by a Two-Step, Retaining Cellobiohydrolase Elucidated by Structural and Transition Path Sampling Studies. J Am Chem Soc 2013; 136:321-9. [DOI: 10.1021/ja410291u] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Majid Haddad Momeni
- Department
of Molecular Biology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | | | - Lloyd F. Mackenzie
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Andreas W. Götz
- San
Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Mats Sandgren
- Department
of Molecular Biology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Stephen G. Withers
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Jerry Ståhlberg
- Department
of Molecular Biology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | | |
Collapse
|
23
|
Payne CM, Jiang W, Shirts MR, Himmel ME, Crowley MF, Beckham GT. Glycoside Hydrolase Processivity Is Directly Related to Oligosaccharide Binding Free Energy. J Am Chem Soc 2013; 135:18831-9. [DOI: 10.1021/ja407287f] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Wei Jiang
- Argonne
Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael R. Shirts
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | | | | |
Collapse
|
24
|
Wang TY, Huang CJ, Chen HL, Ho PC, Ke HM, Cho HY, Ruan SK, Hung KY, Wang IL, Cai YW, Sung HM, Li WH, Shih MC. Systematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion. BMC Biotechnol 2013; 13:71. [PMID: 24004614 PMCID: PMC3766678 DOI: 10.1186/1472-6750-13-71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 08/29/2013] [Indexed: 11/28/2022] Open
Abstract
Background As a strong fermentator, Saccharomyces cerevisiae has the potential to be an excellent host for ethanol production by consolidated bioprocessing. For this purpose, it is necessary to transform cellulose genes into the yeast genome because it contains no cellulose genes. However, heterologous protein expression in S. cerevisiae often suffers from hyper-glycosylation and/or poor secretion. Thus, there is a need to genetically engineer the yeast to reduce its glycosylation strength and to increase its secretion ability. Results Saccharomyces cerevisiae gene-knockout strains were screened for improved extracellular activity of a recombinant exocellulase (PCX) from the cellulose digesting fungus Phanerochaete chrysosporium. Knockout mutants of 47 glycosylation-related genes and 10 protein-trafficking-related genes were transformed with a PCX expression construct and screened for extracellular cellulase activity. Twelve of the screened mutants were found to have a more than 2-fold increase in extracellular PCX activity in comparison with the wild type. The extracellular PCX activities in the glycosylation-related mnn10 and pmt5 null mutants were, respectively, 6 and 4 times higher than that of the wild type; and the extracellular PCX activities in 9 protein-trafficking-related mutants, especially in the chc1, clc1 and vps21 null mutants, were at least 1.5 times higher than the parental strains. Site-directed mutagenesis studies further revealed that the degree of N-glycosylation also plays an important role in heterologous cellulase activity in S. cerevisiae. Conclusions Systematic screening of knockout mutants of glycosylation- and protein trafficking-associated genes in S. cerevisiae revealed that: (1) blocking Golgi-to-endosome transport may force S. cerevisiae to export cellulases; and (2) both over- and under-glycosylation may alter the enzyme activity of cellulases. This systematic gene-knockout screening approach may serve as a convenient means for increasing the extracellular activities of recombinant proteins expressed in S. cerevisiae.
Collapse
Affiliation(s)
- Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ghattyvenkatakrishna PK, Alekozai EM, Beckham GT, Schulz R, Crowley MF, Uberbacher EC, Cheng X. Initial recognition of a cellodextrin chain in the cellulose-binding tunnel may affect cellobiohydrolase directional specificity. Biophys J 2013; 104:904-12. [PMID: 23442969 DOI: 10.1016/j.bpj.2012.12.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/14/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022] Open
Abstract
Cellobiohydrolases processively hydrolyze glycosidic linkages in individual polymer chains of cellulose microfibrils, and typically exhibit specificity for either the reducing or nonreducing end of cellulose. Here, we conduct molecular dynamics simulations and free energy calculations to examine the initial binding of a cellulose chain into the catalytic tunnel of the reducing-end-specific Family 7 cellobiohydrolase (Cel7A) from Hypocrea jecorina. In unrestrained simulations, the cellulose diffuses into the tunnel from the -7 to the -5 positions, and the associated free energy profiles exhibit no barriers for initial processivity. The comparison of the free energy profiles for different cellulose chain orientations show a thermodynamic preference for the reducing end, suggesting that the preferential initial binding may affect the directional specificity of the enzyme by impeding nonproductive (nonreducing end) binding. Finally, the Trp-40 at the tunnel entrance is shown with free energy calculations to have a significant effect on initial chain complexation in Cel7A.
Collapse
|
26
|
Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. Proc Natl Acad Sci U S A 2013; 110:10189-94. [PMID: 23733951 DOI: 10.1073/pnas.1301502110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes.
Collapse
|
27
|
Momeni MH, Payne CM, Hansson H, Mikkelsen NE, Svedberg J, Engström Å, Sandgren M, Beckham GT, Ståhlberg J. Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare. J Biol Chem 2013; 288:5861-72. [PMID: 23303184 DOI: 10.1074/jbc.m112.440891] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Root rot fungi of the Heterobasidion annosum complex are the most damaging pathogens in temperate forests, and the recently sequenced Heterobasidion irregulare genome revealed over 280 carbohydrate-active enzymes. Here, H. irregulare was grown on biomass, and the most abundant protein in the culture filtrate was identified as the only family 7 glycoside hydrolase in the genome, which consists of a single catalytic domain, lacking a linker and carbohydrate-binding module. The enzyme, HirCel7A, was characterized biochemically to determine the optimal conditions for activity. HirCel7A was crystallized and the structure, refined at 1.7 Å resolution, confirms that HirCel7A is a cellobiohydrolase rather than an endoglucanase, with a cellulose-binding tunnel that is more closed than Phanerochaete chrysosporium Cel7D and more open than Hypocrea jecorina Cel7A, suggesting intermediate enzyme properties. Molecular simulations were conducted to ascertain differences in enzyme-ligand interactions, ligand solvation, and loop flexibility between the family 7 glycoside hydrolase cellobiohydrolases from H. irregulare, H. jecorina, and P. chrysosporium. The structural comparisons and simulations suggest significant differences in enzyme-ligand interactions at the tunnel entrance in the -7 to -4 binding sites and suggest that a tyrosine residue at the tunnel entrance of HirCel7A may serve as an additional ligand-binding site. Additionally, the loops over the active site in H. jecorina Cel7A are more closed than loops in the other two enzymes, which has implications for the degree of processivity, endo-initiation, and substrate dissociation. Overall, this study highlights molecular level features important to understanding this biologically and industrially important family of glycoside hydrolases.
Collapse
Affiliation(s)
- Majid Haddad Momeni
- Department of Molecular Biology, Swedish University of Agricultural Sciences, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jalak J, Kurašin M, Teugjas H, Väljamäe P. Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 2012; 287:28802-15. [PMID: 22733813 DOI: 10.1074/jbc.m112.381624] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synergistic cooperation of different enzymes is a prerequisite for efficient degradation of cellulose. The conventional mechanistic interpretation of the synergism between randomly acting endoglucanases (EGs) and chain end-specific processive cellobiohydrolases (CBHs) is that EG-generated new chain ends on cellulose surface serve as starting points for CBHs. Here we studied the hydrolysis of bacterial cellulose (BC) by CBH TrCel7A and EG TrCel5A from Trichoderma reesei under both single-turnover and "steady state" conditions. Unaccountable by conventional interpretation, the presence of EG increased the rate constant of TrCel7A-catalyzed hydrolysis of BC in steady state. At optimal enzyme/substrate ratios, the "steady state" rate of synergistic hydrolysis became limited by the velocity of processive movement of TrCel7A on BC. A processivity value of 66 ± 7 cellobiose units measured for TrCel7A on (14)C-labeled BC was close to the leveling off degree of polymerization of BC, suggesting that TrCel7A cannot pass through the amorphous regions on BC and stalls. We propose a mechanism of endo-exo synergism whereby the degradation of amorphous regions by EG avoids the stalling of TrCel7A and leads to its accelerated recruitment. Hydrolysis of pretreated wheat straw suggested that this mechanism of synergism is operative also in the degradation of lignocellulose. Although both mechanisms of synergism are used in parallel, the contribution of conventional mechanism is significant only at high enzyme/substrate ratios.
Collapse
Affiliation(s)
- Jürgen Jalak
- Institute of Molecular and Cell Biology, University of Tartu, Vanemuise 46-138, 51014 Tartu, Estonia
| | | | | | | |
Collapse
|
29
|
Bu L, Nimlos MR, Shirts MR, Ståhlberg J, Himmel ME, Crowley MF, Beckham GT. Product binding varies dramatically between processive and nonprocessive cellulase enzymes. J Biol Chem 2012; 287:24807-13. [PMID: 22648408 DOI: 10.1074/jbc.m112.365510] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellulases hydrolyze β-1,4 glycosidic linkages in cellulose, which are among the most prevalent and stable bonds in Nature. Cellulases comprise many glycoside hydrolase families and exist as processive or nonprocessive enzymes. Product inhibition negatively impacts cellulase action, but experimental measurements of product-binding constants vary significantly, and there is little consensus on the importance of this phenomenon. To provide molecular level insights into cellulase product inhibition, we examine the impact of product binding on processive and nonprocessive cellulases by calculating the binding free energy of cellobiose to the product sites of catalytic domains of processive and nonprocessive enzymes from glycoside hydrolase families 6 and 7. The results suggest that cellobiose binds to processive cellulases much more strongly than nonprocessive cellulases. We also predict that the presence of a cellodextrin bound in the reactant site of the catalytic domain, which is present during enzymatic catalysis, has no effect on product binding in nonprocessive cellulases, whereas it significantly increases product binding to processive cellulases. This difference in product binding correlates with hydrogen bonding between the substrate-side ligand and the cellobiose product in processive cellulase tunnels and the additional stabilization from the longer tunnel-forming loops. The hydrogen bonds between the substrate- and product-side ligands are disrupted by water in nonprocessive cellulase clefts, and the lack of long tunnel-forming loops results in lower affinity of the product ligand. These findings provide new insights into the large discrepancies reported for binding constants for cellulases and suggest that product inhibition will vary significantly based on the amount of productive binding for processive cellulases on cellulose.
Collapse
Affiliation(s)
- Lintao Bu
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Marana SR. Structural and mechanistic fundamentals for designing of cellulases. Comput Struct Biotechnol J 2012; 2:e201209006. [PMID: 24688647 PMCID: PMC3962180 DOI: 10.5936/csbj.201209006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sandro R Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, São Paulo, 05513-970, SP, Brazil
| |
Collapse
|
31
|
Tsai LC, Hsiao CH, Liu WY, Yin LM, Shyur LF. Structural basis for the inhibition of 1,3-1,4-β-d-glucanase by noncompetitive calcium ion and competitive Tris inhibitors. Biochem Biophys Res Commun 2011; 407:593-8. [DOI: 10.1016/j.bbrc.2011.03.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
|
32
|
Xu F, Ding H, Tejirian A. Detrimental effect of cellulose oxidation on cellulose hydrolysis by cellulase. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Hill AD, Reilly PJ. A Gibbs free energy correlation for automated docking of carbohydrates. J Comput Chem 2008; 29:1131-41. [PMID: 18074341 DOI: 10.1002/jcc.20873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thermodynamic information can be inferred from static atomic configurations. To model the thermodynamics of carbohydrate binding to proteins accurately, a large binding data set has been assembled from the literature. The data set contains information from 262 unique protein-carbohydrate crystal structures for which experimental binding information is known. Hydrogen atoms were added to the structures and training conformations were generated with the automated docking program AutoDock 3.06, resulting in a training set of 225,920 all-atom conformations. In all, 288 formulations of the AutoDock 3.0 free energy model were trained against the data set, testing each of four alternate methods of computing the van der Waals, solvation, and hydrogen-bonding energetic components. The van der Waals parameters from AutoDock 1 produced the lowest errors, and an entropic model derived from statistical mechanics produced the only models with five physically and statistically significant coefficients. Eight models predict the Gibbs free energy of binding with an error of less than 40% of the error of any similar models previously published.
Collapse
Affiliation(s)
- Anthony D Hill
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
34
|
Tsukada T, Igarashi K, Fushinobu S, Samejima M. Role of subsite +1 residues in pH dependence and catalytic activity of the glycoside hydrolase family 1 β-glucosidase BGL1A from the basidiomycetePhanerochaete chrysosporium. Biotechnol Bioeng 2008; 99:1295-302. [DOI: 10.1002/bit.21717] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|