1
|
Abstract
For work in Xenopus, frog-specific antibodies must usually be raised, although a few antibodies against mammalian proteins cross-react. To produce an immunogen for antibody production, human embryonic kidney (HEK) expression systems can be used as described here. For most laboratories, the actual method of raising the antibody is determined by local ethical regulations controlling the adjuvant and injection protocols used. Because these steps are often outsourced, they are not included in this protocol.
Collapse
Affiliation(s)
- Maya Z Piccinni
- European Xenopus Resource Centre, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Matthew J Guille
- European Xenopus Resource Centre, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| |
Collapse
|
2
|
Sena E, Bou-Rouphael J, Rocques N, Carron-Homo C, Durand BC. Mcl1 protein levels and Caspase-7 executioner protease control axial organizer cells survival. Dev Dyn 2020; 249:847-866. [PMID: 32141178 DOI: 10.1002/dvdy.169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/05/2020] [Accepted: 02/29/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Organizing centers are groups of specialized cells that secrete morphogens, thereby influencing development of their neighboring territories. Apoptosis is a form of programmed cell death reported to limit the size of organizers. Little is known about the identity of intracellular signals driving organizer cell death. Here we investigated in Xenopus the role of both the anti-apoptotic protein Myeloid-cell-leukemia 1 (Mcl1) and the cysteine proteases Caspase-3 and Caspase-7 in formation of the axial organizing center-the notochord-that derives from the Spemann organizer, and participates in the induction and patterning of the neuroepithelium. RESULTS We confirm a role for apoptosis in establishing the axial organizer in early neurula. We show that the expression pattern of mcl1 is coherent with a role for this gene in early notochord development. Using loss of function approaches, we demonstrate that Mcl1 depletion decreases neuroepithelium width and increases notochord cells apoptosis, a process that relies on Caspase-7, and not on Caspase-3, activity. Our data provide evidence that Mcl1 protein levels physiologically control notochord cells' survival and that Caspase-7 is the executioner protease in this developmental process. CONCLUSIONS Our study reveals new functions for Mcl1 and Caspase-7 in formation of the axial signalling center.
Collapse
Affiliation(s)
- Elena Sena
- Institut Curie, PSL Research University, Orsay, France.,Université Paris Sud, Orsay, France
| | - Johnny Bou-Rouphael
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Paris, France
| | - Nathalie Rocques
- Institut Curie, PSL Research University, Orsay, France.,Université Paris Sud, Orsay, France
| | - Clémence Carron-Homo
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Paris, France
| | - Béatrice C Durand
- Institut Curie, PSL Research University, Orsay, France.,Université Paris Sud, Orsay, France.,Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Paris, France
| |
Collapse
|
3
|
Field CM, Groen AC, Nguyen PA, Mitchison TJ. Spindle-to-cortex communication in cleaving, polyspermic Xenopus eggs. Mol Biol Cell 2015; 26:3628-40. [PMID: 26310438 PMCID: PMC4603933 DOI: 10.1091/mbc.e15-04-0233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/18/2015] [Indexed: 12/01/2022] Open
Abstract
Polyspermic Xenopus eggs and a cytokinesis extract system were used to investigate spindle-to-cortex communication, which positions cleavage furrows. Chromosome passenger complex recruitment to microtubule bundles between asters plays a key role and is positively influenced by microtubule stabilization and proximity to chromatin. Mitotic spindles specify cleavage planes in early embryos by communicating their position and orientation to the cell cortex using microtubule asters that grow out from the spindle poles during anaphase. Chromatin also plays a poorly understood role. Polyspermic fertilization provides a natural experiment in which aster pairs from the same spindle (sister asters) have chromatin between them, whereas asters pairs from different spindles (nonsisters) do not. In frogs, only sister aster pairs induce furrows. We found that only sister asters recruited two conserved furrow-inducing signaling complexes, chromosome passenger complex (CPC) and Centralspindlin, to a plane between them. This explains why only sister pairs induce furrows. We then investigated factors that influenced CPC recruitment to microtubule bundles in intact eggs and a cytokinesis extract system. We found that microtubule stabilization, optimal starting distance between asters, and proximity to chromatin all favored CPC recruitment. We propose a model in which proximity to chromatin biases initial CPC recruitment to microtubule bundles between asters from the same spindle. Next a positive feedback between CPC recruitment and microtubule stabilization promotes lateral growth of a plane of CPC-positive microtubule bundles out to the cortex to position the furrow.
Collapse
Affiliation(s)
- Christine M Field
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115; Marine Biological Laboratory, Woods Hole, MA 02143
| | - Aaron C Groen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115; Marine Biological Laboratory, Woods Hole, MA 02143
| | - Phuong A Nguyen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115; Marine Biological Laboratory, Woods Hole, MA 02143
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115; Marine Biological Laboratory, Woods Hole, MA 02143
| |
Collapse
|
4
|
Tsuchiya Y, Murai S, Yamashita S. Dual inhibition of Cdc2 protein kinase activation during apoptosis inXenopusegg extracts. FEBS J 2015; 282:1256-70. [DOI: 10.1111/febs.13217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/12/2015] [Accepted: 01/26/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Yuichi Tsuchiya
- Department of Biochemistry; Toho University School of Medicine; Ota-ku Tokyo Japan
| | - Shin Murai
- Department of Biochemistry; Toho University School of Medicine; Ota-ku Tokyo Japan
| | - Shigeru Yamashita
- Department of Biochemistry; Toho University School of Medicine; Ota-ku Tokyo Japan
| |
Collapse
|
5
|
Du Pasquier D, Dupré A, Jessus C. Unfertilized Xenopus eggs die by Bad-dependent apoptosis under the control of Cdk1 and JNK. PLoS One 2011; 6:e23672. [PMID: 21858202 PMCID: PMC3156807 DOI: 10.1371/journal.pone.0023672] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/22/2011] [Indexed: 12/25/2022] Open
Abstract
Ovulated eggs possess maternal apoptotic execution machinery that is inhibited for a limited time. The fertilized eggs switch off this time bomb whereas aged unfertilized eggs and parthenogenetically activated eggs fail to stop the timer and die. To investigate the nature of the molecular clock that triggers the egg decision of committing suicide, we introduce here Xenopus eggs as an in vivo system for studying the death of unfertilized eggs. We report that after ovulation, a number of eggs remains in the female body where they die by apoptosis. Similarly, ovulated unfertilized eggs recovered in the external medium die within 72 h. We showed that the death process depends on both cytochrome c release and caspase activation. The apoptotic machinery is turned on during meiotic maturation, before fertilization. The death pathway is independent of ERK but relies on activating Bad phosphorylation through the control of both kinases Cdk1 and JNK. In conclusion, the default fate of an unfertilized Xenopus egg is to die by a mitochondrial dependent apoptosis activated during meiotic maturation.
Collapse
Affiliation(s)
- David Du Pasquier
- CNRS, UMR 7622-Biologie du Développement, Paris, France
- Université Pierre et Marie Curie-Paris 6, UMR 7622-Biologie du Développement, Paris, France
| | - Aude Dupré
- CNRS, UMR 7622-Biologie du Développement, Paris, France
- Université Pierre et Marie Curie-Paris 6, UMR 7622-Biologie du Développement, Paris, France
| | - Catherine Jessus
- CNRS, UMR 7622-Biologie du Développement, Paris, France
- Université Pierre et Marie Curie-Paris 6, UMR 7622-Biologie du Développement, Paris, France
- * E-mail:
| |
Collapse
|
6
|
Tsuchiya Y, Yamashita S. Anti-apoptotic activity and proteasome-mediated degradation of Xenopus Mcl-1 protein in egg extracts. J Biol Chem 2011; 286:15806-14. [PMID: 21454490 DOI: 10.1074/jbc.m110.175927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Xenopus egg extracts execute spontaneous apoptosis without the requirement of transcription and translation, and this intrinsic mechanism is supposed to be involved in the physiological elimination of aged eggs. Although apoptosis in this system is carried out by maternally stockpiled materials, the endogenous apoptosis regulators present in egg extracts are still poorly characterized. Here we examined the mRNA expression profiles and apoptosis-regulating functions of 13 Xenopus Bcl-2 family proteins in egg extracts. Among these, we found that endogenous Xenopus Mcl-1 (xMcl-1) physiologically inhibited apoptosis by counteracting the pro-apoptotic activity of endogenous Xenopus Bid in egg extracts. Exogenously added recombinant xMcl-1 was rapidly degraded by proteasome in egg extracts, and we identified the destabilizing region in the N terminus of xMcl-1. Our results suggest that the proteolytic decay of xMcl-1 may change the functional balance between pro- and anti-apoptotic activities of Bcl-2 family proteins, thereby regulating the timing of cytochrome c release in egg extracts.
Collapse
Affiliation(s)
- Yuichi Tsuchiya
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
7
|
Abstract
During amphibian metamorphosis, the larval tissues/organs rapidly degenerate to adapt from the aquatic to the terrestrial life. At the cellular level, a large quantity of apoptosis occurs in a spatiotemporally-regulated fashion in different organs to ensure timely removal of larval organs/tissues and the development of adult ones for the survival of the individuals. Thus, amphibian metamorphosis provides us a good opportunity to understand the mechanisms regulating apoptosis. To investigate this process at the molecular level, a number of thyroid hormone (TH) response genes have been isolated from several organs of Xenopus laevis tadpoles and their expression and functional analyses are now in progress using modern molecular and genetic technologies. In this review, we will first summarize when and where apoptosis occurs in typical larva-specific and larval-to-adult remodeling amphibian organs to highlight that the timing of apoptosis is different in different tissues/organs, even though all are induced by the same circulating TH. Next, to discuss how TH spatiotemporally regulates the apoptosis, we will focus on apoptosis of the X. laevis small intestine, one of the best characterized remodeling organs. Functional studies of TH response genes using transgenic frogs and culture techniques have shown that apoptosis of larval epithelial cells can be induced by TH either cell-autonomously or indirectly through interactions with extracellular matrix (ECM) components of the underlying basal lamina. Here, we propose that multiple intra- and extracellular apoptotic pathways are coordinately controlled by TH to ensure massive but well-organized apoptosis, which is essential for the proper progression of amphibian metamorphosis.
Collapse
Affiliation(s)
- Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan
| | - Yun-Bo Shi
- Laboratory of Gene Regulation and Development, National Institute for Child Health and Human Development, NIH, Bethesda, Maryland, MD 20892-5431, USA
| |
Collapse
|
8
|
Features of programmed cell death in intact Xenopus oocytes and early embryos revealed by near-infrared fluorescence and real-time monitoring. Cell Death Differ 2010; 17:170-9. [PMID: 19730443 PMCID: PMC2794955 DOI: 10.1038/cdd.2009.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Factors influencing apoptosis of vertebrate eggs and early embryos have been studied in cell-free systems and in intact embryos by analyzing individual apoptotic regulators or caspase activation in static samples. A novel method for monitoring caspase activity in living Xenopus oocytes and early embryos is described here. The approach, using microinjection of a near-infrared caspase substrate that emits fluorescence only after its proteolytic cleavage by active effector caspases, has enabled the elucidation of otherwise cryptic aspects of apoptotic regulation. In particular, we show that brief caspase activity (10 min) is sufficient to cause apoptotic death in this system. We illustrate a cytochrome c dose threshold in the oocyte, which is lowered by Smac, a protein that binds thereby neutralizing the inhibitor of apoptosis proteins. We show that meiotic oocytes develop resistance to cytochrome c, and that the eventual death of oocytes arrested in meiosis is caspase-independent. Finally, data acquired through imaging caspase activity in the Xenopus embryo suggest that apoptosis in very early development is not cell-autonomous. These studies both validate this assay as a useful tool for apoptosis research and reveal subtleties in the cell death program during early development. Moreover, this method offers a potentially valuable screening modality for identifying novel apoptotic regulators.
Collapse
|
9
|
Pro-apoptotic activity and mono-/diubiquitylation of Xenopus Bid in egg extracts. Biochem Biophys Res Commun 2009; 384:491-4. [PMID: 19426713 DOI: 10.1016/j.bbrc.2009.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 05/04/2009] [Indexed: 01/25/2023]
Abstract
Apoptosis in Xenopus egg extracts is carried out by maternally stockpiled materials, but the contributions of endogenous apoptosis regulators are still poorly characterized. Here we examined the physiological role of Xenopus Bid (xBid), a pro-apoptotic BH3-only member of Bcl-2 family proteins. We found that endogenous xBid was a physiological accelerator of apoptosis in egg extracts. Interestingly, xBid was mono-/diubiquitylated but not degraded by proteasome in egg extracts, and we identified three ubiquitylated Lys residues in the N-terminal propeptide region. Comparison with human Bid suggested that mono-/diubiquitylation is a specific feature of xBid.
Collapse
|
10
|
Saitoh T, Tsuchiya Y, Kinoshita T, Itoh M, Yamashita S. Inhibition of apoptosis by ascorbic and dehydroascorbic acids in Xenopus egg extracts. Reprod Med Biol 2008; 8:3-9. [PMID: 29699301 DOI: 10.1007/s12522-008-0001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022] Open
Abstract
Purpose The viability of mammalian eggs after ovulation is reported to be improved by the presence of ascorbic acid in the culture medium. However, the pro-survival mechanisms of ascorbic acid are poorly understood. The molecular pathways of apoptosis are evolutionarily conserved among animal species, and Xenopus eggs are technically and ethically more suitable for biochemical analyses than mammalian eggs. We used Xenopus egg cytoplasmic extracts to examine the direct intracellular effects of ascorbic acid. Methods Incubation of egg extracts for more than 4 h induces the spontaneous release of cytochrome c from mitochondria. This event triggers the activation of caspases, cleavage of substrate proteins, and execution of apoptosis. Multiple signal transduction pathways including proteolysis and protein phosphorylation are also involved in this process. We examined whether any of these events might be inhibited by the addition of ascorbic acid. Results Ascorbic acid showed no effect against cytochrome c release, but prevented caspase activation and substrate cleavage. Ascorbic acid also blocked the proteolysis of apoptosis inhibitor proteins and the dephosphorylation of p42 MAP kinase. However, dehydroascorbic acid (oxidized form of ascorbic acid) and acetate (unrelated acid) were equally effective, indicating that these effects were primarily due to their acidity. In addition, dehydroascorbic acid inhibited caspase activities directly in vitro. Conclusions The anti-apoptotic effect of ascorbic acid in Xenopus egg extracts is mainly due to cytoplasmic acidification rather than its intracellular antioxidant activity. Instead, oxidative conversion of ascorbic acid into dehydroascorbic acid may inhibit apoptosis through the inhibition of caspases.
Collapse
Affiliation(s)
- Tomohiro Saitoh
- Department of Obstetrics and Gynecology Toho University Medical Center Sakura Hospital 564-1 Shimoshizu Sakura-shi 285-8741 Chiba Japan
| | - Yuichi Tsuchiya
- Department of Biochemistry Toho University School of Medicine 5-21-16 Omori-nishi Ota-ku 143-8540 Tokyo Japan
| | - Toshihiko Kinoshita
- Department of Obstetrics and Gynecology Toho University Medical Center Sakura Hospital 564-1 Shimoshizu Sakura-shi 285-8741 Chiba Japan
| | - Motohiro Itoh
- Department of Obstetrics and Gynecology Toho University Medical Center Sakura Hospital 564-1 Shimoshizu Sakura-shi 285-8741 Chiba Japan
| | - Shigeru Yamashita
- Department of Biochemistry Toho University School of Medicine 5-21-16 Omori-nishi Ota-ku 143-8540 Tokyo Japan
| |
Collapse
|
11
|
Abstract
Apoptosis is a physiological cell death process that plays a critical role in development, homeostasis, and immune defense of multicellular animals. Inhibitor of apoptosis proteins (IAPs) constitute a family of proteins that possess between one and three baculovirus IAP repeats. Some of them also have a really interesting new gene finger domain, and can prevent cell death by binding and inhibiting active caspases, but are regulated by IAP antagonists. Some evidence also indicates that IAP can modulate the cell cycle and signal transduction. The three main factors, IAPs, IAP antagonists, and caspases, are involved in regulating the progress of apoptosis in many species. Many studies and assumptions have been focused on the anfractuous interactions between these three main factors to explore their real functional model in order to develop potential anticancer drugs. In this review, we describe the classification, molecular structures, and properties of IAPs and discuss the mechanisms of apoptosis. We also discuss the promising significance of clinical applications of IAPs in the diagnosis and treatment of malignancy.
Collapse
Affiliation(s)
- Yunbo Wei
- Department of Marine Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | | | | |
Collapse
|
12
|
Cho NC, Kang HJ, Lim HW, Kim BC, Park EH, Lim CJ. Stress-dependent regulation of Pbh1, a BIR domain-containing protein, in the fission yeast. Can J Microbiol 2007; 52:1261-5. [PMID: 17473896 DOI: 10.1139/w06-081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elicit the physiological roles of Pbh1, a baculoviral IAP repeat (BIR) domain-containing protein, in Schizosaccharomyces pombe, we investigated if Pbh1 expression is regulated by stress. The upstream region (1221 bp) of the pbh1 gene was fused into the promoterless beta-galactosidase gene of the shuttle vector YEp367R, and the resultant fusion plasmid was named pPbh04. The synthesis of beta-galactosidase from the pbh1-lacZ fusion gene was markedly enhanced by sodium nitroprusside (SNP) generating nitric oxide. The basal expression of the pbh1 gene required the presence of Pap1. Pap1 also mediated the induction of the pbh1 gene by SNP and nitrogen starvation. Pap1-dependent induction of the pbh1 gene by SNP was confirmed by the enhanced level of the pbh1 mRNA in Pap1-positive cells but not in Pap1-negative cells. Taken together, it was demonstrated that the pbh1 genes are positively regulated by nitrosative and nitrogen starvation stresses in Pap1-dependent manner.
Collapse
Affiliation(s)
- Nam-Chul Cho
- Division of Life Sciences, Kangwon National University, College of Natural Sciences, Chuncheon, Korea
| | | | | | | | | | | |
Collapse
|
13
|
Montesanti A, Deignan K, Hensey C. Cloning and characterization of Xenopus laevis Smac/DIABLO. Gene 2007; 392:187-95. [PMID: 17336467 DOI: 10.1016/j.gene.2006.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 11/28/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
Mitochondria-mediated apoptosis plays a central role in animal development and tissue homeostasis, and mitochondria contain several pro-apoptotic proteins that have key roles in apoptosis. Smac/DIABLO was identified as a mitochondrial protein that is released into the cytosol following apoptotic stimuli, subsequently blocking the anti-apoptotic activity of inhibitor of apoptosis proteins. Through expressed sequence tag (EST) analysis we detected evidence for the presence of a number of Xenopus counterparts to mammalian mitochondrial pro-apoptotic proteins. EST and genome sequencing provides evidence for the presence of endonuclease G, AIF, HtrA/Omi and Smac/DIABLO in Xenopus laevis and tropicalis. Here we report the cloning and characterization of X. laevis Smac/DIABLO (XSmac/DIABLO). In this study degenerate primers based on conserved regions of human, mouse and an EST predicted Smac from X. tropicalis were used to amplify cDNA templates from X. laevis. The full length cDNA of Xenopus Smac contained a complete open reading frame of 732 bp, encoding 244 amino acids, that when expressed is observed to be approximately 27 kDa in size. The protein sequence is 49% identical and 71% similar to human Smac, and includes the motifs involved in mitochondrial targeting, and IAP-binding (AIPV). Smac expression was detected throughout early development with multiple transcripts being detected by Northern blot analysis, suggesting the presence of alternatively spliced isoforms. Exogenous expression of Xenopus Smac enhances gamma-irradiation-induced apoptosis in HeLa cells, demonstrating its functional equivalence with mammalian forms. Our study has identified the third vertebrate homologue of Smac/DIABLO, with its structural and functional similarities to mammalian Smac/DIABLO further illustrating the evolutionary conservation of apoptotic pathways across vertebrate species.
Collapse
Affiliation(s)
- Annalisa Montesanti
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
14
|
p42MAPK-mediated phosphorylation of xEIAP/XLX in Xenopus cytostatic factor-arrested egg extracts. BMC BIOCHEMISTRY 2007; 8:5. [PMID: 17425806 PMCID: PMC1854898 DOI: 10.1186/1471-2091-8-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 04/11/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND BIR family proteins are evolutionarily conserved anti-apoptotic molecules. One member of Xenopus BIR family proteins, xEIAP/XLX, is a weak apoptosis inhibitor and rapidly degraded in a cell-free apoptotic execution system derived from interphase egg extracts. However, unfertilized eggs are naturally arrested at the metaphase of meiosis II by the concerted activities of Mos-MEK-p42MAPK-p90Rsk kinase cascade (cytostatic factor pathway) and many mitotic kinases. Previous studies suggest that cytostatic factor-arrested egg extracts are more resistant to spontaneous apoptosis than interphase egg extracts in a p42MAPK-dependent manner. We tested whether xEIAP/XLX might be phosphorylated in cytostatic factor-arrested egg extracts, and also examined whether xEIAP/XLX could be functionally regulated by phosphorylation. RESULTS We found that p42MAPK was the major kinase phosphorylating xEIAP/XLX in cytostatic factor-arrested egg extracts, and three Ser residues (Ser 235/251/254) were identified as p42MAPK-mediated phosphorylation sites. We characterized the behaviors of various xEIAP/XLX mutants that could not be phosphorylated by p42MAPK. However, neither protein stability nor anti-apoptotic ability of xEIAP/XLX was significantly altered by the substitution of Ser with either Ala or Asp at these three sites. CONCLUSION xEIAP/XLX is physiologically phosphorylated by p42MAPK in Xenopus unfertilized eggs. However, this protein may not serve as an essential mediator of p42MAPK-dependent anti-apoptotic activity.
Collapse
|
15
|
Sakaue M, Motoyama Y, Yamamoto K, Shiba T, Teshima T, Chiba K. Quantitative measurement of caspase-3 activity in a living starfish egg. Biochem Biophys Res Commun 2006; 350:878-83. [PMID: 17045246 DOI: 10.1016/j.bbrc.2006.09.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 09/20/2006] [Indexed: 11/21/2022]
Abstract
If not fertilized, synchronous apoptosis is induced in starfish eggs at approximately 11h after stimulation with the hormone, 1-methyladenine. In this study, a membrane-impermeant substrate of caspase-3, acetyl-Asp-Glu-Val-Asp-coumarylamido-4-methanesulfonic acid (Ac-DEVD-CAMS), was synthesized and microinjected into a starfish egg. Caspase-3 activity in unfertilized egg was detected approximately 30min before blebbing by quantifying the accumulation rate of a membrane-impermeant, fluorogenic product, 7-aminocoumarin-4-methanesulfonic acid (ACMS), using a photomultiplier mounted on a fluorescence microscope. When active recombinant human caspase-3 was microinjected into an egg at 3h after 1-methyladenine treatment, the injected caspase-3 activity decreased and disappeared within 2h. This decrease is probably due to proteasome-dependent degradation of the enzyme, since the injected caspase-3 was degraded and a proteasome inhibitor blocked its degradation. In contrast, in aged eggs at approximately 10h after 1-methyladenine treatment, no degradation of the injected caspase-3 was observed, suggesting that endogenous caspase-3 may stabilize at this point, therefore, inducing apoptosis.
Collapse
Affiliation(s)
- Miki Sakaue
- Department of Biology, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo, Tokyo 112-8610, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Greenwood J, Gautier J. XLX is an IAP family member regulated by phosphorylation during meiosis. Cell Death Differ 2006; 14:559-67. [PMID: 17008917 DOI: 10.1038/sj.cdd.4402031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The balance between proliferation and cell death is critical for embryonic development and adult tissue homeostasis. Within an individual cell, coordination of these pathways is aided by direct communication between cell cycle factors and molecules that regulate apoptosis. Here, we show that XLX, a Xenopus laevis inhibitor of apoptosis (IAP) family member, exhibits characteristics typical of an IAP, such as caspase inhibition and autoubiquitylation. However, unlike other IAPs described thus far, we found that XLX is phosphorylated during meiosis by protein kinases that belong to the MAPK and MPF pathways. Finally, we show that caspase-dependent cleavage of XLX is altered when XLX is phosphorylated. In addition to furthering our understanding of the post-translational regulation of an IAP, these findings reveal a novel link between cell cycle-regulated protein kinases and a component potentially involved in apoptosis.
Collapse
Affiliation(s)
- J Greenwood
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|