1
|
Anderson DM, Nye-Wood MG, Rose KL, Donaldson PJ, Grey AC, Schey KL. MALDI imaging mass spectrometry of β- and γ-crystallins in the ocular lens. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4473. [PMID: 31713937 PMCID: PMC8184062 DOI: 10.1002/jms.4473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Lens crystallin proteins make up 90% of expressed proteins in the ocular lens and are primarily responsible for maintaining lens transparency and establishing the gradient of refractive index necessary for proper focusing of images onto the retina. Age-related modifications to lens crystallins have been linked to insolubilization and cataractogenesis in human lenses. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) has been shown to provide spatial maps of such age-related modifications. Previous work demonstrated that, under standard protein IMS conditions, α-crystallin signals dominated the mass spectrum and age-related modifications to α-crystallins could be mapped. In the current study, a new sample preparation method was optimized to allow imaging of β- and γ-crystallins in ocular lens tissue. Acquired images showed that γ-crystallins were localized predominately in the lens nucleus whereas β-crystallins were primarily localized to the lens cortex. Age-related modifications such as truncation, acetylation, and carbamylation were identified and spatially mapped. Protein identifications were determined by top-down proteomics analysis of lens proteins extracted from tissue sections and analyzed by LC-MS/MS with electron transfer dissociation. This new sample preparation method combined with the standard method allows the major lens crystallins to be mapped by MALDI IMS.
Collapse
Affiliation(s)
- David M. Anderson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | | | - Kristie L. Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Paul J. Donaldson
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Angus C. Grey
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
2
|
Deezagi A, Chashnidel A, Vaseli Hagh N, Khodabandeh Shahraki M. The Effects of Purified Artemia Extract Proteins on Proliferation, Differentiation and Apoptosis of Human Leukemic HL-60 Cells. Asian Pac J Cancer Prev 2016; 17:5139-5145. [PMID: 28122447 PMCID: PMC5454649 DOI: 10.22034/apjcp.2016.17.12.5139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
There has been an increment in the number of studies focused on marine bioactive materials. Many peptides and other biomaterials with anticancer potential have been extracted from various marine animals. Artemia extracts have found uses in sun-light protection cosmetics and anti-aging products. However, contents of biochemical compounds in Artemia spp. and molecular mechanisms of have not been clearly studied in leukemic cells in vitro. In this work, we isolated and purified proteins of Artemia Urmiana. Six clear fractions (A-F) observed on DEAE-cellulose chromatography were assayed for effects on cell growth, differentiation and apoptosis using the human leukemic HL-60 cell line. Cell proliferation analysis by MTT and BrdU assays indicated that did not affect cells, growth. Cells treated with crude extract and fractions A, B and C, but not E and F (up to 100 µg/mL), exhibited increase of cell growth in a dose dependent manner. Stimulatory effects of fraction D were observed at concentrations of 10 µg/ml and above. In nitro blue tetrazolium (NBT) reduction assays, treatment with 100 µg/mL of fraction E or F for 96 hr increased the fraction of differentiated cells up to 14.8 ± 3.56% and 16.5 ± 2.08% respectively. Combination of those fractions with retinoic acid had significant synergistic effects on the differentiation of cells (56.8 ± 3.7% and 67.4 ± 4.2%, p≤0.01). Annexin-V FITC staining for apoptosis and flow cytometric assays indicated induction of apoptosis by fractions E and F up to 23.8 and 31.8% of cells.
Collapse
Affiliation(s)
- Abdolkhaleg Deezagi
- Department of Molecular Medicine and Biochemistry, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | | | |
Collapse
|
3
|
MacRae TH. Stress tolerance during diapause and quiescence of the brine shrimp, Artemia. Cell Stress Chaperones 2016; 21:9-18. [PMID: 26334984 PMCID: PMC4679736 DOI: 10.1007/s12192-015-0635-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/12/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023] Open
Abstract
Oviparously developing embryos of the brine shrimp, Artemia, arrest at gastrulation and are released from females as cysts before entering diapause, a state of dormancy and stress tolerance. Diapause is terminated by an external signal, and growth resumes if conditions are permissible. However, if circumstances are unfavorable, cysts enter quiescence, a dormant stage that continues as long as adverse conditions persist. Artemia embryos in diapause and quiescence are remarkably resistant to environmental and physiological stressors, withstanding desiccation, cold, heat, oxidation, ultraviolet radiation, and years of anoxia at ambient temperature when fully hydrated. Cysts have adapted to stress in several ways; they are surrounded by a rigid cell wall impermeable to most chemical compounds and which functions as a shield against ultraviolet radiation. Artemia cysts contain large amounts of trehalose, a non-reducing sugar thought to preserve membranes and proteins during desiccation by replacing water molecules and/or contributing to vitrification. Late embryogenesis abundant proteins similar to those in seeds and other anhydrobiotic organisms are found in cysts, and they safeguard cell organelles and proteins during desiccation. Artemia cysts contain abundant amounts of p26, a small heat shock protein, and artemin, a ferritin homologue, both ATP-independent molecular chaperones important in stress tolerance. The evidence provided in this review supports the conclusion that it is the interplay of these protective elements that make Artemia one of the most stress tolerant of all metazoan organisms.
Collapse
Affiliation(s)
- Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, N.S., B3H 4R2, Canada.
| |
Collapse
|
4
|
Everything but the ACD, Functional Conservation of the Non-conserved Terminal Regions in sHSPs. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
King AM, Toxopeus J, MacRae TH. Artemin, a diapause-specific chaperone, contributes to the stress tolerance of Artemia franciscana cysts and influences their release from females. ACTA ACUST UNITED AC 2014; 217:1719-24. [PMID: 24526727 DOI: 10.1242/jeb.100081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Females of the crustacean Artemia franciscana produce either motile nauplii or gastrula stage embryos enclosed in a shell impermeable to nonvolatile compounds and known as cysts. The encysted embryos enter diapause, a state of greatly reduced metabolism and profound stress tolerance. Artemin, a diapause-specific ferritin homolog in cysts has molecular chaperone activity in vitro. Artemin represents 7.2% of soluble protein in cysts, approximately equal to the amount of p26, a small heat shock protein. However, there is almost twice as much artemin mRNA in cysts as compared with p26 mRNA, suggesting that artemin mRNA is translated less efficiently. RNA interference employing the injection of artemin double-stranded RNA into the egg sacs of A. franciscana females substantially reduced artemin mRNA and protein in cysts. Decreasing artemin diminished desiccation and freezing tolerance of cysts, demonstrating a role for this protein in stress resistance. Knockdown of artemin increased the time required for complete discharge of a brood of cysts carried within a female from a few hours up to 4 days, an effect weakened in successive broods. Artemin, an abundant molecular chaperone, contributes to stress tolerance of A. franciscana cysts while influencing their development and/or exit from females.
Collapse
Affiliation(s)
- Allison M King
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jantina Toxopeus
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
6
|
Wu Y, MacRae TH. Truncation attenuates molecular chaperoning and apoptosis inhibition by p26, a small heat shock protein from Artemia franciscana. Biochem Cell Biol 2010; 88:937-46. [PMID: 21102656 DOI: 10.1139/o10-143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The small heat shock proteins (sHSPs), which prevent irreversible protein denaturation and inhibit apoptosis, consist of an amino-terminus, the canonical α-crystallin domain, and a carboxy-terminal extension. It remains difficult, however, to define sHSP structure-function relationships and with this in mind p26, an sHSP from the crustacean Artemia franciscana, was truncated by deletion mutagenesis. Wild-type p26 cDNA and three truncated variants inserted into the eukaryotic expression vector pcDNA3.1/HisC were used to generate stably transfected 293H cells. p26 shielded transfected cells against death upon exposure to heat and oxidative stress. Truncation reduced chaperone activity, with cells synthesizing the p26 α-crystallin domain being the least resistant. Wild-type p26 inhibited apoptosis in transfected cells, with protection against oxidation-generated apoptosis being more effective than that against heat-induced apoptosis. Truncation reduced p26 apoptotic inhibitory activity, with the α-crystallin domain again being the least effective. The results show that a crustacean sHSP functions effectively in mammalian cells, demonstrating interchangeability of these proteins between distantly related organisms and indicating similarities in their mechanisms of action. Moreover, maximal activity was observed for full-length p26, indicating that structural elements required for chaperone activity and apoptosis inhibition reside throughout the protein.
Collapse
Affiliation(s)
- Yong Wu
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
7
|
MacRae TH. Gene expression, metabolic regulation and stress tolerance during diapause. Cell Mol Life Sci 2010; 67:2405-24. [PMID: 20213274 PMCID: PMC11115916 DOI: 10.1007/s00018-010-0311-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 01/31/2010] [Accepted: 02/10/2010] [Indexed: 12/31/2022]
Abstract
Diapause entails molecular, physiological and morphological remodeling of living animals, culminating in a dormant state characterized by enhanced stress tolerance. Molecular mechanisms driving diapause resemble those responsible for biochemical processes in proliferating cells and include transcriptional, post-transcriptional and post-translational processes. The results are directed gene expression, differential mRNA and protein accumulation and protein modifications, including those that occur in response to changes in cellular redox potential. Biochemical pathways switch, metabolic products change and energy production is adjusted. Changes to biosynthetic activities result for example in the synthesis of molecular chaperones, late embryogenesis abundant (LEA) proteins and protective coverings, all contributing to stress tolerance. The purpose of this review is to consider regulatory and mechanistic strategies that are potentially key to metabolic control and stress tolerance during diapause, while remembering that organisms undergoing diapause are as diverse as the processes itself. Some of the parameters described have well-established roles in diapause, whereas the evidence for others is cursory.
Collapse
Affiliation(s)
- Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
8
|
Montero-Barrientos M, Hermosa R, Cardoza RE, Gutiérrez S, Nicolás C, Monte E. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:659-65. [PMID: 20080316 DOI: 10.1016/j.jplph.2009.11.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/12/2009] [Accepted: 11/15/2009] [Indexed: 05/04/2023]
Abstract
The ability of some Trichoderma strains, a biological control agent, to overcome extreme environmental conditions has previously been reported and related to heat-shock proteins (HSPs). These proteins are induced environmentally and are involved in important processes, acting as molecular chaperones in all organisms. In a previous study, we demonstrated, by overexpression, that the Trichoderma harzianum hsp70 gene conferred tolerance to heat and other abiotic stresses to this fungus. In this work, we investigate the function of the T. harzianum T34 hsp70 gene in Arabidopsis thaliana. We analyze transgenic plant responses under adverse environmental conditions and the expression levels of a set of seven stress genes, using quantitative RT-PCR. As expected, transgenic plants expressing the T. harzianum hsp70 gene exhibited enhanced tolerance to heat stress. In addition, they did not show growth inhibition and, after heat pre-treatment, transgenic seedlings were more tolerant to osmotic, salt and oxidative stresses with respect to the wild-type behavior. Transgenic lines also had increased transcript levels of the Na(+)/H(+) exchanger 1 (SOS1) and ascorbate peroxidase 1 (APX1) genes, involved in salt and oxidative stress responses, respectively. However, the heat-shock factor (HSF) and four HSP genes tested were down-regulated in 35S:hsp70 plants. Overall, our results indicate that hsp70 confers tolerance to heat and other abiotic stresses and that the fungal HSP70 protein acts as a negative regulator of the HSF transcriptional activity in Arabidopsis.
Collapse
Affiliation(s)
- Marta Montero-Barrientos
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Río Duero 12, 37185 Villamayor, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Sarkar NK, Kim YK, Grover A. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 2009; 10:393. [PMID: 19703271 PMCID: PMC2746236 DOI: 10.1186/1471-2164-10-393] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 08/24/2009] [Indexed: 12/29/2022] Open
Abstract
Background Heat shock proteins (Hsps) constitute an important component in the heat shock response of all living systems. Among the various plant Hsps (i.e. Hsp100, Hsp90, Hsp70 and Hsp20), Hsp20 or small Hsps (sHsps) are expressed in maximal amounts under high temperature stress. The characteristic feature of the sHsps is the presence of α-crystallin domain (ACD) at the C-terminus. sHsps cooperate with Hsp100/Hsp70 and co-chaperones in ATP-dependent manner in preventing aggregation of cellular proteins and in their subsequent refolding. Database search was performed to investigate the sHsp gene family across rice genome sequence followed by comprehensive expression analysis of these genes. Results We identified 40 α-crystallin domain containing genes in rice. Phylogenetic analysis showed that 23 out of these 40 genes constitute sHsps. The additional 17 genes containing ACD clustered with Acd proteins of Arabidopsis. Detailed scrutiny of 23 sHsp sequences enabled us to categorize these proteins in a revised scheme of classification constituting of 16 cytoplasmic/nuclear, 2 ER, 3 mitochondrial, 1 plastid and 1 peroxisomal genes. In the new classification proposed herein nucleo-cytoplasmic class of sHsps with 9 subfamilies is more complex in rice than in Arabidopsis. Strikingly, 17 of 23 rice sHsp genes were noted to be intronless. Expression analysis based on microarray and RT-PCR showed that 19 sHsp genes were upregulated by high temperature stress. Besides heat stress, expression of sHsp genes was up or downregulated by other abiotic and biotic stresses. In addition to stress regulation, various sHsp genes were differentially upregulated at different developmental stages of the rice plant. Majority of sHsp genes were expressed in seed. Conclusion We identified twenty three sHsp genes and seventeen Acd genes in rice. Three nucleocytoplasmic sHsp genes were found only in monocots. Analysis of expression profiling of sHsp genes revealed that these genes are differentially expressed under stress and at different stages in the life cycle of rice plant.
Collapse
Affiliation(s)
- Neelam K Sarkar
- Department of Plant Molecular Biology, University of Delhi South Campus, N Delhi 110021, India.
| | | | | |
Collapse
|
10
|
Montero-Barrientos M, Hermosa R, Nicolás C, Cardoza RE, Gutiérrez S, Monte E. Overexpression of a Trichoderma HSP70 gene increases fungal resistance to heat and other abiotic stresses. Fungal Genet Biol 2008; 45:1506-13. [DOI: 10.1016/j.fgb.2008.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 12/01/2022]
|
11
|
Qiu Z, MacRae TH. ArHsp22, a developmentally regulated small heat shock protein produced in diapause-destined Artemia embryos, is stress inducible in adults. FEBS J 2008; 275:3556-66. [DOI: 10.1111/j.1742-4658.2008.06501.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Montero E, Rodriguez M, Gonzalez LM, Lobo CA. Babesia divergens: Identification and characterization of BdHSP-20, a small heat shock protein. Exp Parasitol 2008; 119:238-45. [DOI: 10.1016/j.exppara.2008.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 01/25/2008] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
|
13
|
ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem J 2008; 411:605-11. [DOI: 10.1042/bj20071472] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryos of the crustacean, Artemia franciscana, undergo alternative developmental pathways, producing either larvae or encysted embryos (cysts). The cysts enter diapause, characterized by exceptionally high resistance to environmental stress, a condition thought to involve the sHSP (small heat-shock protein), p26. Subtractive hybridization has revealed another sHSP, termed ArHsp21, in diapause-destined Artemia embryos. ArHsp21 shares sequence similarity with p26 and sHSPs from other organisms, especially in the α-crystallin domain. ArHsp21 is the product of a single gene and its synthesis occurred exclusively in diapause-destined embryos. Specifically, ArHsp21 mRNA appeared 2 days post-fertilization, followed 1 day later by the protein, and then increased until embryo release at day 5. No ArHsp21 protein was detected in embryos developing directly into larvae, although there was a small amount of mRNA at 3 days post-fertilization. The protein was degraded during post-diapause development and had disappeared completely from second instar larvae. ArHsp21 formed large oligomers in encysted embryos and transformed bacteria. When purified from bacteria, ArHsp21 functioned as a molecular chaperone in vitro, preventing heat-induced aggregation of citrate synthase and reduction-driven denaturation of insulin. Sequence characteristics, synthesis patterns and functional properties demonstrate clearly that ArHsp21 is an sHSP able to chaperone other proteins and contribute to stress tolerance during diapause. As such, ArHsp21 would augment p26 chaperone activity and it may also possess novel activities that benefit Artemia embryos exposed to stress.
Collapse
|
14
|
Gene expression in diapause-destined embryos of the crustacean, Artemia franciscana. Mech Dev 2007; 124:856-67. [DOI: 10.1016/j.mod.2007.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/02/2007] [Accepted: 09/07/2007] [Indexed: 11/21/2022]
|
15
|
Qiu Z, MacRae TH. Developmentally regulated synthesis of p8, a stress-associated transcription cofactor, in diapause-destined embryos of Artemia franciscana. Cell Stress Chaperones 2007; 12:255-64. [PMID: 17915558 PMCID: PMC1971234 DOI: 10.1379/csc-275.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Diapause-destined embryos of the crustacean Artemia franciscana arrest as gastrulae, acquire extreme stress tolerance, and enter profound metabolic dormancy. Among genes upregulated at 2 days postfertilization in these embryos is a homologue of p8, a stress-inducible transcription cofactor. Artemia p8 is smaller than vertebrate homologues but shares a basic helix-loop-helix domain and a bipartite nuclear localization signal. Probing of restriction digested DNA on Southern blots indicated a single Artemia p8 gene and 5'-RACE specified 2 transcription start sites. Several putative cis-acting regulatory sequences, including two heat shock elements, appeared upstream of the p8 transcription start site. Artemia p8 mRNA increased sharply at 1 day postfertilization in diapause-destined embryos and then declined, whereas p8 protein appeared 2 days postfertilization and remained relatively constant throughout development, indicating a stable protein. p8 was not detectable in nauplius-destined (nondiapause) Artemia embryos. Immunofluorescent staining revealed p8 within Artemia nuclei. The results support the idea that p8, a known stressresponsive transcription cofactor, mediates gene expression in diapause-destined Artemia embryos. p8 is the first diapause-related transcription factor identified in crustaceans and 1 of only a small number of such proteins identified in any organism undergoing diapause.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Amino Acid Sequence
- Animals
- Artemia/embryology
- Artemia/growth & development
- Artemia/metabolism
- Base Sequence
- Basic Helix-Loop-Helix Transcription Factors/chemistry
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Embryo, Nonmammalian/metabolism
- Gene Expression Regulation, Developmental
- Humans
- Molecular Sequence Data
- Neoplasm Proteins/chemistry
- Protein Conformation
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Stress, Physiological/embryology
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
- Stress, Physiological/physiopathology
- Time Factors
Collapse
Affiliation(s)
- Zhijun Qiu
- Department of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada
| | | |
Collapse
|
16
|
Montero-Barrientos M, Cardoza RE, Gutiérrez S, Monte E, Hermosa R. The heterologous overexpression of hsp23, a small heat-shock protein gene from Trichoderma virens, confers thermotolerance to T. harzianum. Curr Genet 2007; 52:45-53. [PMID: 17581753 DOI: 10.1007/s00294-007-0140-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/28/2007] [Accepted: 06/06/2007] [Indexed: 11/21/2022]
Abstract
An EST showing high values of identity with genes coding for small heat shock proteins (sHSPs) was selected from an EST library collection of Trichoderma virens T59. The cDNA gene (hsp23) with a sequence size of 645 bp long was amplified by PCR. The expression of this gene was evaluated in cultures grown at temperatures ranging from 4 to 41 degrees C. An increased level of expression was detected when the fungus was grown at extreme temperatures (4, 10 or 41 degrees C). A high-expression level was also observed when the fungus was grown in 10% ethanol for 4 h. The hsp23 gene was present as a unique copy in the T. virens genome, and a homologous gene was also present in other five investigated Trichoderma species. Strain T. harzianum T34 was transformed with the hsp23 gene from T. virens T59 under the control of the pki (pyruvate kinase) promoter from T. reesei and the ble (phleomycin resistance) gene as selection marker. Statistically significant differences were detected between the strains T34 and two selected transformants in the biomass quantities obtained after heat shock treatment and in the colony diameters after incubation at 4 degrees C for 2 months.
Collapse
Affiliation(s)
- Marta Montero-Barrientos
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
17
|
Chen T, Villeneuve TS, Garant KA, Amons R, MacRae TH. Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapause. FEBS J 2007; 274:1093-101. [PMID: 17257268 DOI: 10.1111/j.1742-4658.2007.05659.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oviparously developing embryos of the crustacean Artemia franciscana encyst and enter diapause, exhibiting a level of stress tolerance seldom seen in metazoans. The extraordinary stress resistance of encysted Artemia embryos is thought to depend in part on the regulated synthesis of artemin, a ferritin superfamily member. The objective of this study was to better understand artemin function, and to this end the protein was synthesized in Escherichia coli and purified to apparent homogeneity. Purified artemin consisted of oligomers approximately 700 kDa in molecular mass that dissociated into monomers and a small number of dimers upon SDS/PAGE. Artemin inhibited heat-induced aggregation of citrate synthase in vitro, an activity characteristic of molecular chaperones and shown here to be shared by apoferritin and ferritin. This is the first report that apoferritin/ferritin may protect cells from stress other than by iron sequestration. Stably transfected mammalian cells synthesizing artemin were more resistant to heat and H(2)O(2) than were cells transfected with vector only, actions also shared by molecular chaperones such as the small heat shock proteins. The data indicate that artemin is a structurally modified ferritin arising either from a common ancestor gene or by duplication of the ferritin gene. Divergence, including acquisition of a C-terminal peptide extension and ferroxidase center modification, eliminated iron sequestration, but chaperone activity was retained. Therefore, because artemin accumulates abundantly during development, it has the potential to protect embryos from stress during encystment and diapause without adversely affecting iron metabolism.
Collapse
Affiliation(s)
- Tao Chen
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|
18
|
Qiu Z, Bossier P, Wang X, Bojikova-Fournier S, MacRae TH. Diversity, structure, and expression of the gene for p26, a small heat shock protein from Artemia. Genomics 2006; 88:230-40. [PMID: 16571370 DOI: 10.1016/j.ygeno.2006.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/13/2006] [Accepted: 02/14/2006] [Indexed: 11/22/2022]
Abstract
p26, a small heat shock protein, is thought to protect Artemia embryos from stress during encystment and diapause. Full-length p26 cDNAs were compared and used to determine phylogenetic relationships between several Artemia species. The alpha-crystallin domain of p26 was the most conserved region of the protein and p26 from each Artemia species contained characteristic amino-terminal WD/EPF and carboxy-terminal VPI motifs. Sequence conservation suggested the importance of p26 to oviparously developing Artemia embryos and indicated common functions for the protein during development and stress resistance, although as shown by modeling some species-specific p26 amino acid substitutions may have adaptive significance. The p26 gene obtained from A. franciscana exhibited a unique sHSP intron arrangement with an intron in the 5'-untranslated region. Computer-assisted analysis revealed heat shock elements and other putative cis regulatory sequences but their role in gene regulation is unknown. In contrast to previous results for which Northern blots were analyzed, p26 gene expression was observed in ovoviviparous embryos by use of PCR-based methodology, but the p26 protein was not detected.
Collapse
Affiliation(s)
- Zhijun Qiu
- Department of Biology, Dalhousie University, Halifax, Canada NS B3H 4J1
| | | | | | | | | |
Collapse
|
19
|
Takeuchi S. Analytical assays of human HSP27 and thermal-stress survival of Escherichia coli cells that overexpress it. Biochem Biophys Res Commun 2006; 341:1252-6. [PMID: 16466698 DOI: 10.1016/j.bbrc.2006.01.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 11/29/2022]
Abstract
HSP27 is a small heat-shock protein (sHSP). Such proteins are produced in all organisms. These small HSPs exhibit chaperone-like activity that can bind to unfolded polypeptides and prevent uncontrolled protein aggregation in vitro. Cellular anti-apoptosis function and enhanced cell survival are correlated with increased expression of HSPs. This study presents a thermal-stress survival model for cells using the Escherichia coli expression system for which human HSP27, a recombinant protein, is inducible. Results show that E. coli cells overexpressing human HSP27 have enhanced tolerance to 50 degrees C thermal stress.
Collapse
Affiliation(s)
- Satoru Takeuchi
- Department of Protein Research, ProstaColon, 85 NE, Takamatsu, Kahoku, Ishikawa 929-1215, Japan.
| |
Collapse
|
20
|
Villeneuve TS, Ma X, Sun Y, Oulton MM, Oliver AE, MacRae TH. Inhibition of apoptosis by p26: implications for small heat shock protein function during Artemia development. Cell Stress Chaperones 2006; 11:71-80. [PMID: 16572731 PMCID: PMC1400614 DOI: 10.1379/csc-154r.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 10/12/2005] [Accepted: 10/26/2005] [Indexed: 11/24/2022] Open
Abstract
p26, an abundantly expressed small heat shock protein, is thought to establish stress resistance in oviparously developing embryos of the crustacean Artemia franciscana by preventing irreversible protein denaturation, but it might also promote survival by inhibiting apoptosis. To test this possibility, stably transfected mammalian cells producing p26 were generated and their ability to resist apoptosis induction determined. Examination of immunofluorescently stained transfected 293H cells by confocal microscopy demonstrated p26 is diffusely distributed in the cytoplasm with a minor amount of the protein in nuclei. As shown by immunoprobing of Western blots, p26 constituted approximately 0.6% of soluble cell protein. p26 localization and quantity were unchanged during prolonged culture, and the protein had no apparent ill effects on transfected cells. Molecular sieve chromatography in Sepharose 6B revealed p26 oligomers of about 20 monomers, with a second fraction occurring as larger aggregates. A similar pattern was observed in sucrose gradients, but overall oligomer size was smaller. Mammalian cells containing p26 were more thermotolerant than cells transfected with the expression vector only, and as measured by annexin V labeling, Hoescht 33342 nuclear staining and procaspase-3 activation, transfected cells effectively resisted apoptosis induction by heat and staurosporine. The ability to confer thermotolerance and limit heat-induced apoptosis is important because Artemia embryos are frequently exposed to high temperature in their natural habitat. p26 also blocked apoptosis in transfected cells during drying and rehydration, findings with direct relevance to Artemia life history characteristics because desiccation terminates cyst diapause. Thus, in addition to functioning as a molecular chaperone, p26 inhibits apoptosis, an activity shared by other small heat shock proteins and with the potential to play an important role during Artemia embryo development.
Collapse
|