1
|
Bertoletti L, Schappler J, Colombo R, Rudaz S, Haselberg R, Domínguez-Vega E, Raimondi S, Somsen GW, De Lorenzi E. Evaluation of capillary electrophoresis-mass spectrometry for the analysis of the conformational heterogeneity of intact proteins using beta 2-microglobulin as model compound. Anal Chim Acta 2016; 945:102-109. [PMID: 27968711 DOI: 10.1016/j.aca.2016.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
Abstract
In this work we explored the feasibility of different CE-ESI-MS set-ups for the analysis of conformational states of an intact protein. By using the same background electrolyte at quasi physiological conditions (50 mM ammonium bicarbonate, pH 7.4) a sequential optimization was carried out, initially by evaluating a sheath-liquid interface with both a single quadrupole (SQ) and a time-of-flight (TOF) mass spectrometer; then a sheathless interface coupled with high-resolution QTOF MS was considered. Beta2-microglobulin has been taken as a model, as it is an amyloidogenic protein and its conformational changes are strictly connected to the onset of a disease. The separation of two conformers at dynamic equilibrium is achieved all the way down to the MS detection. Notably, the equilibrium ratio of the protein conformers is maintained in the electrospray source after CE separation. Strengths and weaknesses of each optimized set-up are emphasized and their feasibility in unfolding studies is evaluated. In particular, ESI-TOF MS can assign protein forms that differ by 1 Da only and sheathless interfacing is best suited to preserve protein structure integrity. This demonstrates the CE-ESI-MS performance in terms of separation, detection and characterization of conformational species that co-populate a protein solution.
Collapse
Affiliation(s)
- Laura Bertoletti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - Julie Schappler
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel Servet 1, 1211, Geneva 4, Switzerland.
| | - Raffaella Colombo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel Servet 1, 1211, Geneva 4, Switzerland.
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, AIMMS Research Group BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Elena Domínguez-Vega
- Division of BioAnalytical Chemistry, AIMMS Research Group BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Viale Taramelli 3b, 27100, Pavia, Italy.
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, AIMMS Research Group BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Ersilia De Lorenzi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| |
Collapse
|
2
|
Estácio SG, Krobath H, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Faísca PFN. A simulated intermediate state for folding and aggregation provides insights into ΔN6 β2-microglobulin amyloidogenic behavior. PLoS Comput Biol 2014; 10:e1003606. [PMID: 24809460 PMCID: PMC4014404 DOI: 10.1371/journal.pcbi.1003606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/16/2014] [Indexed: 01/26/2023] Open
Abstract
A major component of ex vivo amyloid plaques of patients with dialysis-related amyloidosis (DRA) is a cleaved variant of β2-microglobulin (ΔN6) lacking the first six N-terminal residues. Here we perform a computational study on ΔN6, which provides clues to understand the amyloidogenicity of the full-length β2-microglobulin. Contrary to the wild-type form, ΔN6 is able to efficiently nucleate fibrillogenesis in vitro at physiological pH. This behavior is enhanced by a mild acidification of the medium such as that occurring in the synovial fluid of DRA patients. Results reported in this work, based on molecular simulations, indicate that deletion of the N-terminal hexapeptide triggers the formation of an intermediate state for folding and aggregation with an unstructured strand A and a native-like core. Strand A plays a pivotal role in aggregation by acting as a sticky hook in dimer assembly. This study further predicts that the detachment of strand A from the core is maximized at pH 6.2 resulting into higher aggregation efficiency. The structural mapping of the dimerization interface suggests that Tyr10, His13, Phe30 and His84 are hot-spot residues in ΔN6 amyloidogenesis. Dialysis-related amyloidosis (DRA) is a conformational disease that affects individuals undergoing long-term haemodialysis. In DRA the progressive accumulation of protein human β2-microglobulin (Hβ2m) in the osteoarticular system, followed by its assembly into amyloid fibrils, eventually leads to tissue erosion and destruction. Disclosing the aggregation mechanism of Hβ2m under physiologically relevant conditions represents a major challenge due to the inability of the protein to efficiently nucleate fibrillogenesis in vitro at physiological pH. On the other hand, ΔN6, a truncated variant of Hβ2m, which is also a major component of ex vivo amyloid deposits extracted from DRA patients, is able to efficiently form amyloid fibrils de novo in physiological conditions. This amyloidogenic behavior is dramatically enhanced in a slightly more acidic pH (6.2) compatible with the mild acidification that occurs in the synovial fluid of DRA patients. In this work, an innovative three-stage methodological approach, relying on an array of molecular simulations, spanning different levels of resolution is used to investigate the initial stage of the de novo aggregation mechanism of ΔN6 in a physiologically relevant pH range. We identify an intermediate state for folding and aggregation, whose potential to dimerize is enhanced at pH 6.2. Our results provide rationalizations for previous experimental observations and new insights into the molecular basis of DRA.
Collapse
Affiliation(s)
- Sílvia G. Estácio
- Centro de Física da Matéria Condensada & Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Heinrich Krobath
- Centro de Física da Matéria Condensada & Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo Vila-Viçosa
- Centro de Química e Bioquímica & Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica & Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (EIS); (PFNF)
| | - Patrícia F. N. Faísca
- Centro de Física da Matéria Condensada & Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (EIS); (PFNF)
| |
Collapse
|
3
|
Lee YH, Goto Y. Kinetic intermediates of amyloid fibrillation studied by hydrogen exchange methods with nuclear magnetic resonance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1307-23. [DOI: 10.1016/j.bbapap.2012.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 01/28/2023]
|
4
|
Mukaiyama A, Nakamura T, Makabe K, Maki K, Goto Y, Kuwajima K. Native-state heterogeneity of β(2)-microglobulin as revealed by kinetic folding and real-time NMR experiments. J Mol Biol 2012; 425:257-72. [PMID: 23154167 DOI: 10.1016/j.jmb.2012.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 12/30/2022]
Abstract
The kinetic folding of β(2)-microglobulin from the acid-denatured state was investigated by interrupted-unfolding and interrupted-refolding experiments using stopped-flow double-jump techniques. In the interrupted unfolding, we first unfolded the protein by a pH jump from pH7.5 to pH2.0, and the kinetic refolding assay was carried out by the reverse pH jump by monitoring tryptophan fluorescence. Similarly, in the interrupted refolding, we first refolded the protein by a pH jump from pH2.0 to pH7.5 and used a guanidine hydrochloride (GdnHCl) concentration jump as well as the reverse pH jump as unfolding assays. Based on these experiments, the folding is represented by a parallel-pathway model, in which the molecule with the correct Pro32 cis isomer refolds rapidly with a rate constant of 5-6 s(-1), while the molecule with the Pro32 trans isomer refolds more slowly (pH7.5 and 25°C). At the last step of folding, the native-like trans conformer produced on the latter pathway isomerizes very slowly (0.001-0.002 s(-1)) into the native cis conformer. In the GdnHCl-induced unfolding assays in the interrupted refolding, the native-like trans conformer unfolded remarkably faster than the native cis conformer, and the direct GdnHCl-induced unfolding was also biphasic, indicating that the native-like trans conformer is populated at a significant level under the native condition. The one-dimensional NMR and the real-time NMR experiments of refolding further indicated that the population of the trans conformer increases up to 7-9% under a more physiological condition (pH7.5 and 37°C).
Collapse
Affiliation(s)
- Atsushi Mukaiyama
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Dialysis-related amyloidosis (DRA) is a clinical syndrome of pain, loss of function and other symptoms due to the deposition of amyloid consisting of β(2)-microglobulin (β(2)m) in the musculoskeletal system. The condition is seen in patients who suffer from chronic kidney disease and are treated with hemodialysis for a long time. Even though β(2)m easily can be manipulated to form amyloid in laboratory experiments under non-physiological conditions the precise mechanisms involved in the formation of β(2)m-amyloid in patients with DRA have been difficult to unravel. The current knowledge which is reviewed here indicates that conformational fluctuations centered around the D-strand, the DE-loop, and around the cis-configured Pro32 peptide bond are involved in β(2)m amyloidosis. Also required are highly increased concentrations of circulating β(2)m and possibly various post-translational modifications mediated by the pro-inflammatory environment in uremic blood, together with the influence of divalent metal ions (specifically Cu(2 +)), uremic toxins, and dialysis-enhanced redox-processes. It seems plausible that domain-swapped β(2)m dimers act as building blocks of β-spine cross-β -sheet fibrils consisting of otherwise globular, roughly natively folded protein. An activated complement system and cellular activation perpetuate these reactions which due to the affinity of β(2)m-amyloid for the collagen of synovial surfaces result in the DRA syndrome.
Collapse
Affiliation(s)
- Dorthe B Corlin
- Department of Clinical Biochemistry and Immunology, Division of Microbiology and Diagnostics, Statens Serum Institut, Bldg. 85/240, Artillerivej 5, 2300, Copenhagen S, Denmark,
| | | |
Collapse
|
6
|
Eichner T, Radford SE. Understanding the complex mechanisms of β2-microglobulin amyloid assembly. FEBS J 2011; 278:3868-83. [PMID: 21595827 PMCID: PMC3229708 DOI: 10.1111/j.1742-4658.2011.08186.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/11/2011] [Accepted: 05/13/2011] [Indexed: 11/30/2022]
Abstract
Several protein misfolding diseases are associated with the conversion of native proteins into ordered protein aggregates known as amyloid. Studies of amyloid assemblies have indicated that non-native proteins are responsible for initiating aggregation in vitro and in vivo. Despite the importance of these species for understanding amyloid disease, the structural and dynamic features of amyloidogenic intermediates and the molecular details of how they aggregate remain elusive. This review focuses on recent advances in developing a molecular description of the folding and aggregation mechanisms of the human amyloidogenic protein β(2)-microglobulin under physiologically relevant conditions. In particular, the structural and dynamic properties of the non-native folding intermediate I(T) and its role in the initiation of fibrillation and the development of dialysis-related amyloidosis are discussed.
Collapse
Affiliation(s)
- Timo Eichner
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
7
|
Eichner T, Kalverda AP, Thompson GS, Homans SW, Radford SE. Conformational conversion during amyloid formation at atomic resolution. Mol Cell 2011; 41:161-72. [PMID: 21255727 PMCID: PMC3029554 DOI: 10.1016/j.molcel.2010.11.028] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/12/2010] [Accepted: 11/01/2010] [Indexed: 01/19/2023]
Abstract
Numerous studies of amyloid assembly have indicated that partially folded protein species are responsible for initiating aggregation. Despite their importance, the structural and dynamic features of amyloidogenic intermediates and the molecular details of how they cause aggregation remain elusive. Here, we use ΔN6, a truncation variant of the naturally amyloidogenic protein β2-microglobulin (β2m), to determine the solution structure of a nonnative amyloidogenic intermediate at high resolution. The structure of ΔN6 reveals a major repacking of the hydrophobic core to accommodate the nonnative peptidyl-prolyl trans-isomer at Pro32. These structural changes, together with a concomitant pH-dependent enhancement in backbone dynamics on a microsecond-millisecond timescale, give rise to a rare conformer with increased amyloidogenic potential. We further reveal that catalytic amounts of ΔN6 are competent to convert nonamyloidogenic human wild-type β2m (Hβ2m) into a rare amyloidogenic conformation and provide structural evidence for the mechanism by which this conformational conversion occurs.
Collapse
Affiliation(s)
- Timo Eichner
- Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
8
|
Trenchevska O, Kamcheva E, Nedelkov D. Mass spectrometric immunoassay for quantitative determination of protein biomarker isoforms. J Proteome Res 2010; 9:5969-73. [PMID: 20822186 PMCID: PMC2976597 DOI: 10.1021/pr1007587] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein biomarkers are essential in assessing pathogenic processes. The impetus for finding new biomarkers has been accelerated by the arrival of the "omics" technologies. However, equally important is the rediscovery of existing biomarkers with these new approaches as novel variants can be discovered that can improve their utility. Presented here is a mass spectrometric immunoassay method for quantitative determination of β-2-microglobulin, an established biomarker used in the diagnosis of active rheumatoid arthritis and kidney disease, and its structural variant, cleaved at and deficient in lysine-58 (ΔK58-b2m). β-Lactoglobulin was incorporated into the assay as an internal reference standard, serving as normalization point for β-2-microglobulin quantification. The precision, linearity, and recovery characteristics of the assay were established. The new assay was also benchmarked against existing β-2-microglobulin ELISA. The assay was utilized to determine the individual concentration of β-2-microglobulin and its variant across a larger cohort of samples, demonstrating the ability to simultaneously quantify both proteins.
Collapse
Affiliation(s)
| | - Elena Kamcheva
- Intrinsic Bioprobes Inc., 2155 E. Conference Dr. Suite 104 Tempe, AZ 85284
| | - Dobrin Nedelkov
- Intrinsic Bioprobes Inc., 2155 E. Conference Dr. Suite 104 Tempe, AZ 85284
| |
Collapse
|
9
|
Glycosaminoglycans enhance the fibrillation propensity of the β2-microglobulin cleavage variant--ΔK58-β2m. Biochem Biophys Res Commun 2010; 402:247-51. [PMID: 20939999 DOI: 10.1016/j.bbrc.2010.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/04/2010] [Indexed: 11/23/2022]
Abstract
Dialysis related amyloidosis (DRA) is a serious complication to long-term hemodialysis treatment which causes clinical symptoms such as carpal tunnel syndrome and destructive arthropathies. The disease is characterized by the assembly and deposition of β2-microglobulin (β2m) predominantly in the musculoskeletal system, but the initiating events leading to β2m amyloidogenesis and the molecular mechanisms underlying amyloid fibril formation are still unclear. Glycosaminoglycans (GAGs) and metal ions have been shown to be related to the onset of protein aggregation and to promote de novo fiber formation. In this study, we show that fibrillogenesis of a cleavage variant of β2m, ΔK58-β2m, which can be found in the circulation of hemodialysis patients and is able to fibrillate at near-physiological pH in vitro, is affected by the presence of copper ions and heparan sulfate. It is found that the fibrils generated when heparan sulfate is present have increased length and diameter, and possess enhanced stability and seeding properties. However, when copper ions are present the fibrils are short, thin and less stable, and form at a slower rate. We suggest that heparan sulfate stabilizes the cleaved monomers in the early aggregates, hereby promoting the assembly of these into fibrils, whereas the copper ions appear to have a destabilizing effect on the monomers. This keeps them in a structure forming amorphous aggregates for a longer period of time, leading to the formation of spherical bodies followed by the assembly of fibrils. Hence, the in vivo formation of amyloid fibrils in DRA could be initiated by the generation of ΔK58-β2m which spontaneously aggregate and form fibrils. The fibrillogenesis is enhanced by the involvement of GAGs and/or metal ions, and results in amyloid-like fibrils able to promote the de novo formation of β2m amyloid by a scaffold mechanism.
Collapse
|
10
|
Platt GW, Radford SE. Glimpses of the molecular mechanisms of beta2-microglobulin fibril formation in vitro: aggregation on a complex energy landscape. FEBS Lett 2009; 583:2623-9. [PMID: 19433089 PMCID: PMC2734061 DOI: 10.1016/j.febslet.2009.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/01/2009] [Accepted: 05/05/2009] [Indexed: 12/29/2022]
Abstract
Beta(2)-microglobulin (beta(2)m) is a 99-residue protein that aggregates to form amyloid fibrils in dialysis-related amyloidosis. The protein provides a powerful model for exploration of the structural molecular mechanisms of fibril formation from a full-length protein in vitro. Fibrils have been assembled from beta(2)m under both low pH conditions, where the precursor is disordered, and at neutral pH where the protein is initially natively folded. Here we discuss the roles of sequence and structure in amyloid formation, the current understanding of the structural mechanisms of the early stages of aggregation of beta(2)m at both low and neutral pH, and the common and distinct features of these assembly pathways.
Collapse
Affiliation(s)
- Geoffrey W Platt
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
11
|
Corlin DB, Johnsen CK, Nissen MH, Heegaard NH. A β2-microglobulin cleavage variant fibrillates at near-physiological pH. Biochem Biophys Res Commun 2009; 381:187-91. [DOI: 10.1016/j.bbrc.2009.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
|
12
|
Abstract
beta(2)-microglobulin (beta(2)m) is capable of forming amyloid in osteoarticular structures in kidney failure patients that undergo chronic hemodialysis treatment. Although sophisticated analytical methods have yielded comprehensive data about the conformation of the native protein both as a monomer and as the light chain of the type I major histocompatibility complex, the cause and mechanisms leading to the transformation of beta(2)m into amyloid deposits in patients with dialysis-related amyloidosis are unsettled. The impact on conformational stability of various truncations, cleavages, amino acid substitutions, and divalent cations, especially Cu(2+), however, are highly relevant for understanding beta(2)m unfolding pathways leading to amyloid formation. This review describes the current knowledge about such conformationally destabilizing and amyloidogenic factors and links these to the structure and function of beta(2)m in normal physiology and pathology. Tables listing modifications of beta(2)m found in amyloid from patients and a systematic overview of laboratory conditions conducive to beta(2)m-fibrillogenesis are also included.
Collapse
|
13
|
De Lorenzi E, Colombo R, Sabella S, Corlin DB, Heegaard NHH. The influence of Cu2+ on the unfolding and refolding of intact and proteolytically processed β2-microglobulin. Electrophoresis 2008; 29:1734-40. [DOI: 10.1002/elps.200700506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Wang M, Corlin DB, Heegaard NHH, Claesson MH, Nissen MH. Cellular Expression or Binding of desLys58-β2 Microglobulin is not Dependent on the Presence of the Tri-molecular MHC Class I Complex. Scand J Immunol 2008; 67:105-12. [DOI: 10.1111/j.1365-3083.2007.02044.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Morten IJ, Gosal WS, Radford SE, Hewitt EW. Investigation into the role of macrophages in the formation and degradation of beta2-microglobulin amyloid fibrils. J Biol Chem 2007; 282:29691-700. [PMID: 17686767 DOI: 10.1074/jbc.m705004200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dialysis related amyloidosis is a serious complication of long-term hemodialysis in which beta(2)-microglobulin (beta(2)m) forms amyloid fibrils that deposit predominantly in cartilaginous tissues. How these fibrils form in vivo, however, is poorly understood. Here we perform a systematic investigation into the role of macrophages in the formation and degradation of beta(2)m amyloid fibrils, building on observations that macrophages are found in association with beta(2)m amyloid deposits in vivo and that these cells contain intra-lysosomal beta(2)m amyloid. In live cell imaging experiments we demonstrate that macrophages internalize monomeric beta(2)m, whereupon it is sorted to lysosomes. At lysosomal pH beta(2)m self-associates in vitro to form amyloid-like fibrils with an array of morphologies as visualized by atomic force microscopy. Cleavage of the monomeric protein by both macrophages and lysosomal proteases isolated from these cells results in the rapid degradation of the monomeric protein, preventing amyloid formation. Incubation of macrophages with preformed fibrils revealed that macrophages internalize amyloid-like fibrils formed extracellularly, but in marked contrast with the monomeric protein, the fibrils were not degraded within macrophage lysosomes. Correspondingly beta(2)m fibrils were highly resistant to degradation by high concentrations of lysosomal proteases isolated from macrophages. Despite their enormous degradative capacity, therefore, macrophage lysosomes cannot ameliorate dialysis-related amyloidosis by degrading pre-existing amyloid fibrils, but lysosomal proteases may play a protective role by eliminating amyloid precursors before beta(2)m fibrils can accumulate in what may represent an otherwise fibrillogenic environment.
Collapse
Affiliation(s)
- Isobel J Morten
- Institute of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
16
|
Giorgetti S, Stoppini M, Tennent GA, Relini A, Marchese L, Raimondi S, Monti M, Marini S, Østergaard O, Heegaard NHH, Pucci P, Esposito G, Merlini G, Bellotti V. Lysine 58-cleaved beta2-microglobulin is not detectable by 2D electrophoresis in ex vivo amyloid fibrils of two patients affected by dialysis-related amyloidosis. Protein Sci 2007; 16:343-9. [PMID: 17242436 PMCID: PMC2203293 DOI: 10.1110/ps.062563507] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The lysine 58 cleaved and truncated variant of beta(2)-microglobulin (DeltaK58-beta2m) is conformationally unstable and present in the circulation of a large percentage of patients on chronic hemodialysis, suggesting that it could play a role in the beta2-microglobulin (beta2m) amyloid fibrillogenesis associated with dialysis-related amyloidosis (DRA). However, it has yet to be detected in the amyloid deposits of such patients. Here, we extracted amyloid fibrils, without denaturation or additional purification, from different amyloidotic tissues of two unrelated individuals suffering from DRA, and characterized them by high-sensitivity bidimensional gel electrophoresis (2D-PAGE), immunoblotting, MALDI time-of-flight mass spectrometry, and protein sequencing. To confirm whether or not this species could be identified by our proteomic approaches, we mapped its location in 2D-PAGE, in mixtures of pure DeltaK58-beta2m, and extracts of amyloid fibrils from patients, to a discrete region of the gel distinct from other isoforms of beta2m. Using this approach, the two known principal isoforms found in beta2m amyloid were identified, namely, the full-length protein and the truncated species lacking six N-terminal amino acid residues (DeltaN6-beta2m). In contrast, we found no evidence for the presence of DeltaK58-beta2m.
Collapse
Affiliation(s)
- Sofia Giorgetti
- Department of Biochemistry, University of Pavia-Laboratori di Biotecnologie, IRCCS Policlinico San Matteo, via Taramelli 3b, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|