1
|
The Glycoside Hydrolase Family 35 β-galactosidase from Trichoderma reesei debranches xyloglucan oligosaccharides from tamarind and jatobá. Biochimie 2023; 211:16-24. [PMID: 36828153 DOI: 10.1016/j.biochi.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Trichoderma reesei (anamorph Hypocrea jecorina) produces an extracellular beta-galactosidase from Glycoside Hydrolase Family 35 (TrBga1). Hydrolysis of xyloglucan oligosaccharides (XGOs) by TrBga1 has been studied by hydrolysis profile analysis of both tamarind (Tamarindus indica) and jatobá (Hymenaea courbaril) seed storage xyloglucans using PACE and MALDI-ToF-MS for separation, quantification and identification of the hydrolysis products. The TrBga1 substrate preference for galactosylated oligosaccharides from both the XXXG- and XXXXG-series of jatobá xyloglucan showed that the doubly galactosylated oligosaccharides were the first to be hydrolyzed. Furthermore, the TrBga1 showed more efficient hydrolysis against non-reducing end dexylosylated oligosaccharides (GLXG/GXLG and GLLG). This preference may play a key role in xyloglucan degradation, since galactosyl removal alleviates steric hindrance for other enzymes in the xyloglucanolytic complex resulting in complete xyloglucan mobilization. Indeed, mixtures of TrBga1 with the α-xylosidase from Escherichia coli (YicI), which shows a preference towards non-galactosylated xyloglucan oligosaccharides, reveals efficient depolymerization when either enzyme is applied first. This understanding of the synergistic depolymerization contributes to the knowledge of plant cell wall structure, and reveals possible evolutionary mechanisms directing the preferences of debranching enzymes acting on xyloglucan oligosaccharides.
Collapse
|
2
|
Collet L, Vander Wauven C, Oudjama Y, Galleni M, Dutoit R. Highlighting the factors governing transglycosylation in the GH5_5 endo-1,4-β-glucanase RBcel1. Acta Crystallogr D Struct Biol 2022; 78:278-289. [PMID: 35234142 PMCID: PMC8900817 DOI: 10.1107/s2059798321013541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022] Open
Abstract
Transglycosylating glycoside hydrolases (GHs) offer great potential for the enzymatic synthesis of oligosaccharides. Although knowledge is progressing, there is no unique strategy to improve the transglycosylation yield. Obtaining efficient enzymatic tools for glycan synthesis with GHs remains dependent on an improved understanding of the molecular factors governing the balance between hydrolysis and transglycosylation. This enzymatic and structural study of RBcel1, a transglycosylase from the GH5_5 subfamily isolated from an uncultured bacterium, aims to unravel such factors. The size of the acceptor and donor sugars was found to be critical since transglycosylation is efficient with oligosaccharides at least the size of cellotetraose as the donor and cellotriose as the acceptor. The reaction pH is important in driving the balance between hydrolysis and transglycosylation: hydrolysis is favored at pH values below 8, while transglycosylation becomes the major reaction at basic pH. Solving the structures of two RBcel1 variants, RBcel1_E135Q and RBcel1_Y201F, in complex with ligands has brought to light some of the molecular factors behind transglycosylation. The structure of RBcel1_E135Q in complex with cellotriose allowed a +3 subsite to be defined, in accordance with the requirement for cellotriose as a transglycosylation acceptor. The structure of RBcel1_Y201F has been obtained with several transglycosylation intermediates, providing crystallographic evidence of transglycosylation. The catalytic cleft is filled with (i) donors ranging from cellotriose to cellohexaose in the negative subsites and (ii) cellobiose and cellotriose in the positive subsites. Such a structure is particularly relevant since it is the first structure of a GH5 enzyme in complex with transglycosylation products that has been obtained with neither of the catalytic glutamate residues modified.
Collapse
Affiliation(s)
- Laetitia Collet
- LABIRIS, 1 Avenue Emile Gryzon, 1070 Brussels, Belgium
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | | | | - Moreno Galleni
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | |
Collapse
|
3
|
Sun P, Li X, Dilokpimol A, Henrissat B, de Vries RP, Kabel MA, Mäkelä MR. Fungal glycoside hydrolase family 44 xyloglucanases are restricted to the phylum Basidiomycota and show a distinct xyloglucan cleavage pattern. iScience 2022; 25:103666. [PMID: 35028537 PMCID: PMC8741620 DOI: 10.1016/j.isci.2021.103666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022] Open
Abstract
Xyloglucan is a prominent matrix heteropolysaccharide binding to cellulose microfibrils in primary plant cell walls. Hence, the hydrolysis of xyloglucan facilitates the overall lignocellulosic biomass degradation. Xyloglucanases (XEGs) are key enzymes classified in several glycoside hydrolase (GH) families. So far, family GH44 has been shown to contain bacterial XEGs only. Detailed genome analysis revealed GH44 members in fungal species from the phylum Basidiomycota, but not in other fungi, which we hypothesized to also be XEGs. Two GH44 enzymes from Dichomitus squalens and Pleurotus ostreatus were heterologously produced and characterized. They exhibited XEG activity and displayed a hydrolytic cleavage pattern different from that observed in fungal XEGs from other GH families. Specifically, the fungal GH44 XEGs were not hindered by substitution of neighboring glucosyl units and generated various "XXXG-type," "GXXX(G)-type," and "XXX-type" oligosaccharides. Overall, these fungal GH44 XEGs represent a novel class of enzymes for plant biomass conversion and valorization.
Collapse
Affiliation(s)
- Peicheng Sun
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Xinxin Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
4
|
Rangel Pedersen N, Tovborg M, Soleimani Farjam A, Della Pia EA. Multicomponent carbohydrase system from Trichoderma reesei: A toolbox to address complexity of cell walls of plant substrates in animal feed. PLoS One 2021; 16:e0251556. [PMID: 34086701 PMCID: PMC8177525 DOI: 10.1371/journal.pone.0251556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
A diverse range of monocot and dicot grains and their by-products are commonly used in the animal feed industry. They all come with complex and variable cell wall structures which in turn contribute significant fiber to the complete feed. The cell wall is a highly interconnected matrix of various polysaccharides, proteins and lignin and, as such, requires a collaborative effort of different enzymes for its degradation. In this regard, we investigated the potential of a commercial multicomponent carbohydrase product from a wild type fermentation of Trichoderma reesei (T. reesei) (RONOZYME® MultiGrain) in degrading cell wall components of wheat, barley, rye, de-oiled rice bran, sunflower, rapeseed and cassava. A total of thirty-one different enzyme proteins were identified in the T. Reesei carbohydrase product using liquid chromatography with tandem mass spectrometry LC-MS/MS including glycosyl hydrolases and carbohydrate esterases. As measured by in vitro incubations and non-starch polysaccharide component analysis, and visualization by immunocytochemistry and confocal microscopy imaging of immuno-labeled samples with confocal microscopy, the carbohydrase product effectively solubilized cellulolytic and hemicellulolytic polysaccharides present in the cell walls of all the feed ingredients evaluated. The T. reesei fermentation also decreased viscosity of arabinoxylan, xyloglucan, galactomannan and β-glucan substrates. Combination of several debranching enzymes including arabinofuranosidase, xylosidase, α-galactosidase, acetyl xylan esterase, and 4-O-methyl-glucuronoyl methylesterase with both GH10 and GH11 xylanases in the carbohydrase product resulted in effective hydrolyzation of heavily branched glucuronoarabinoxylans. The different β-glucanases (both endo-β-1,3(4)-glucanase and endo-β-1,3-glucanase), cellulases and a β-glucosidase in the T. reesei fermentation effectively reduced polymerization of both β-glucans and cellulose polysaccharides of viscous cereals grains (wheat, barley, rye and oat). Interestingly, the secretome of T. reesei contained significant amounts of an exceptional direct chain-cutting enzyme from the GH74 family (Cel74A, xyloglucan-specific β-1,4-endoglucanase), that strictly cleaves the xyloglucan backbone at the substituted regions. Here, we demonstrated that the balance of enzymes present in the T. reesei secretome is capable of degrading various cell wall components in both monocot and dicot plant raw material used as animal feed.
Collapse
|
5
|
Lopes DCB, Carraro CB, Silva RN, de Paula RG. Molecular Characterization of Xyloglucanase cel74a from Trichoderma reesei. Int J Mol Sci 2021; 22:ijms22094545. [PMID: 33925273 PMCID: PMC8123685 DOI: 10.3390/ijms22094545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei is used on an industrial scale to produce enzymes of biotechnological interest. This fungus has a complex cellulolytic system involved in the degradation of lignocellulosic biomass. However, several aspects related to the regulation of the expression of holocellulolytic genes and the production of cellulases by this fungus are still understood. METHODS Here, we constructed a null mutant strain for the xyloglucanase cel74a gene and performed the characterization of the Δcel74a strain to evaluate the genetic regulation of the holocellulases during sugarcane bagasse (SCB) cultivation. RESULTS Our results demonstrate that the deletion of xyloglucanase cel74a may impact the regulation of holocellulase expression during SCB cultivation. The expression of cellulases cel7a, cel7b, and cel6a was reduced in Δcel74a strain, while the hemicellulases xyn1 and xyn2 were increased in the presence of SCB. The cel74a mutation also affected the xyloglucan hydrolysis patterns. In addition, CEL74A activity was modulated in the presence of calcium, suggesting that this ion may be required for efficient degradation of xyloglucan. CONCLUSIONS CEL74A affects the regulation of holocellulolytic genes and the efficient degradation of SCB in T. reesei. This data makes a significant contribution to our understanding of the carbon utilization of fungal strains as a whole.
Collapse
Affiliation(s)
- Douglas Christian Borges Lopes
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (D.C.B.L.); (C.B.C.); (R.G.d.P.)
| | - Cláudia Batista Carraro
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (D.C.B.L.); (C.B.C.); (R.G.d.P.)
| | - Roberto Nascimento Silva
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (D.C.B.L.); (C.B.C.); (R.G.d.P.)
- Correspondence:
| | - Renato Graciano de Paula
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (D.C.B.L.); (C.B.C.); (R.G.d.P.)
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitoria 29047-105, ES, Brazil
| |
Collapse
|
6
|
Berezina OV, Rykov SV, Polyakova AK, Bozdaganyan ME, Sidochenko AV, Baudrexl M, Schwarz WH, Zverlov VV, Yarotsky SV. Strategic aromatic residues in the catalytic cleft of the xyloglucanase MtXgh74 modifying thermostability, mode of enzyme action, and viscosity reduction ability. Appl Microbiol Biotechnol 2021; 105:1461-1476. [PMID: 33521846 DOI: 10.1007/s00253-021-11106-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
The thermostable endo-processive xyloglucanase MtXgh74 from Myceliophthora thermophila was used to study the influence of aromatic amino acids in the catalytic cleft on the mode of action and the ability of enzyme to reduce xyloglucan viscosity. The enzyme derivative Mut I with mutations W64A/W67A in the "negative" subsites of the catalytic cleft resulted in a 5.5-fold increase of the Km value. Mut I produced oligosaccharides of various lengths in addition to xyloglucan building blocks. The W320A/W321A substitutions in the "positive" subsites of the mutated enzyme Mut II catalytic cleft increased the Km value 54-fold and resulted in an endo-dissociative mode of action. The ability of Mut II to reduce the viscosity of xyloglucan at 50 °C was much better than that of other MtXgh74 variants. Besides, Mut II efficiently reduced viscosity of a natural substrate, the pulp of xyloglucan-containing tamarind seed flour. The Km, Vmax, and kcat values and viscosity reduction ability of the enzyme derivative Mut III (W320A/W321A/G446Y) returned to levels close to that of MtXgh74. The pattern of xyloglucan hydrolysis by Mut III was typical for endo-processive xyloglucanases. The thermostability of Mut I and Mut II at 60 °C decreased significantly compared to the wild type, whereas the thermostability of Mut III at 60 °C restored almost to the MtXgh74-wt value. All mutants lost the ability to cleave the backbone of xyloglucan building blocks which was a characteristic of MtXgh74. Instead they acquired a low branch removing activity. Molecular dynamics simulations revealed the role of mutated amino acids in the complex action mechanism of GH74 enzymes. KEY POINTS: • Endo-processive mode of action of the xyloglucanase MtXgh74 was altered by rational design. • The endo-dissociative mutant Mut II (W320A/W321A) efficiently reduced XyG viscosity. • The substitutions W320A/W321A/G446Y in Mut III recovered the endo-processive mode. • Mut II can be used to reduce the viscosity of biomass slurries containing tamarind seed flour.
Collapse
Affiliation(s)
- Oksana V Berezina
- National Research Centre "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545. .,National Research Centre "Kurchatov Institute" 1, Kurchatov Sq, Moscow, Russian Federation, 123182.
| | - Sergey V Rykov
- National Research Centre "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545.,National Research Centre "Kurchatov Institute" 1, Kurchatov Sq, Moscow, Russian Federation, 123182
| | - Angelina K Polyakova
- National Research Centre "Kurchatov Institute" - GOSNIIGENETIKA, 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545
| | - Marine E Bozdaganyan
- Biological Department, Moscow State University, Leninskie gory 1, Build. 12, Moscow, Russian Federation, 119234.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Str., Bld. 1, Moscow, Russian Federation, 119991.,Moscow Polytechnic University, B. Semenovskaya Str. 38, 107023, Moscow, Russian Federation, 107023
| | - Anna V Sidochenko
- Moscow Polytechnic University, B. Semenovskaya Str. 38, 107023, Moscow, Russian Federation, 107023
| | - Melanie Baudrexl
- Technical University Munich, Department of Microbiology, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | | | - Vladimir V Zverlov
- Technical University Munich, Department of Microbiology, Emil-Ramann-Str. 4, 85354, Freising, Germany. .,National Research Centre "Kurchatov Institute" - Institute of Molecular Genetics, Kurchatov Sq. 2, Moscow, Russian Federation, 123182.
| | - Sergey V Yarotsky
- National Research Centre "Kurchatov Institute" 1, Kurchatov Sq, Moscow, Russian Federation, 123182
| |
Collapse
|
7
|
Sakai K, Yamaguchi A, Tsutsumi S, Kawai Y, Tsuzuki S, Suzuki H, Jindou S, Suzuki Y, Kajimura H, Kato M, Shimizu M. Characterization of FsXEG12A from the cellulose-degrading ectosymbiotic fungus Fusarium spp. strain EI cultured by the ambrosia beetle. AMB Express 2020; 10:96. [PMID: 32449090 PMCID: PMC7246284 DOI: 10.1186/s13568-020-01030-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/16/2020] [Indexed: 12/02/2022] Open
Abstract
Despite the threat of Fusarium dieback posed due to ambrosia fungi cultured by ambrosia beetles such as Euwallacea spp., the wood-degradation mechanisms utilized by ambrosia fungi are not fully understood. In this study, we analyzed the 16S rRNA and 18S rRNA genes of the microbial community from the Ficus tree tunnel excavated by Euwallacea interjectus and isolated the cellulose-degrading fungus, Fusarium spp. strain EI, by enrichment culture with carboxymethyl cellulose as the sole carbon source. The cellulolytic enzyme secreted by the fungus was identified and expressed in Pichia pastoris, and its enzymatic properties were characterized. The cellulolytic enzyme, termed FsXEG12A, could hydrolyze carboxymethyl cellulose, microcrystalline cellulose, xyloglucan, lichenan, and glucomannan, indicating that the broad substrate specificity of FsXEG12A could be beneficial for degrading complex wood components such as cellulose, xyloglucan, and galactoglucomannan in angiosperms. Inhibition of FsXEG12A function is, thus, an effective target for Fusarium dieback caused by Euwallacea spp.
Collapse
Affiliation(s)
- Kiyota Sakai
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Aya Yamaguchi
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Seitaro Tsutsumi
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Yuto Kawai
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Sho Tsuzuki
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Hiromitsu Suzuki
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Sadanari Jindou
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Yoshihito Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hisashi Kajimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
8
|
Sun P, Laurent CVFP, Scheiblbrandner S, Frommhagen M, Kouzounis D, Sanders MG, van Berkel WJH, Ludwig R, Kabel MA. Configuration of active site segments in lytic polysaccharide monooxygenases steers oxidative xyloglucan degradation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:95. [PMID: 32514307 PMCID: PMC7257166 DOI: 10.1186/s13068-020-01731-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lytic polysaccharide monooxygenases (LPMOs) are powerful enzymes that oxidatively cleave plant cell wall polysaccharides. LPMOs classified as fungal Auxiliary Activities family 9 (AA9) have been mainly studied for their activity towards cellulose; however, various members of this AA9 family have been also shown to oxidatively cleave hemicelluloses, in particularly xyloglucan (XG). So far, it has not been studied in detail how various AA9 LPMOs act in XG degradation, and in particular, how the mode-of-action relates to the structural configuration of these LPMOs. RESULTS Two Neurospora crassa (Nc) LPMOs were found to represent different mode-of-action towards XG. Interestingly, the configuration of active site segments of these LPMOs differed as well, with a shorter Segment 1 (-Seg1) and a longer Segment 2 (+Seg2) present in NcLPMO9C and the opposite for NcLPMO9M (+Seg1-Seg2). We confirmed that NcLPMO9C cleaved the non-reducing end of unbranched glucosyl residues within XG via the oxidation of the C4-carbon. In contrast, we found that the oxidative cleavage of the XG backbone by NcLPMO9M occurred next to both unbranched and substituted glucosyl residues. The latter are decorated with xylosyl, xylosyl-galactosyl and xylosyl-galactosyl-fucosyl units. The relationship between active site segments and the mode-of-action of these NcLPMOs was rationalized by a structure-based phylogenetic analysis of fungal AA9 LPMOs. LPMOs with a -Seg1+Seg2 configuration clustered together and appear to have a similar XG substitution-intolerant cleavage pattern. LPMOs with the +Seg1-Seg2 configuration also clustered together and are reported to display a XG substitution-tolerant cleavage pattern. A third cluster contained LPMOs with a -Seg1-Seg2 configuration and no oxidative XG activity. CONCLUSIONS The detailed characterization of XG degradation products released by LPMOs reveal a correlation between the configuration of active site segments and mode-of-action of LPMOs. In particular, oxidative XG-active LPMOs, which are tolerant and intolerant to XG substitutions are structurally and phylogenetically distinguished from XG-inactive LPMOs. This study contributes to a better understanding of the structure-function relationship of AA9 LPMOs.
Collapse
Affiliation(s)
- Peicheng Sun
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Christophe V. F. P. Laurent
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
- Institute of Molecular Modelling and Simulation, Department of Material Sciences and Process Engineering, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Stefan Scheiblbrandner
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Matthias Frommhagen
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mark G. Sanders
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Willem J. H. van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
9
|
Arnal G, Stogios PJ, Asohan J, Attia MA, Skarina T, Viborg AH, Henrissat B, Savchenko A, Brumer H. Substrate specificity, regiospecificity, and processivity in glycoside hydrolase family 74. J Biol Chem 2019; 294:13233-13247. [PMID: 31324716 DOI: 10.1074/jbc.ra119.009861] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Glycoside hydrolase family 74 (GH74) is a historically important family of endo-β-glucanases. On the basis of early reports of detectable activity on cellulose and soluble cellulose derivatives, GH74 was originally considered to be a "cellulase" family, although more recent studies have generally indicated a high specificity toward the ubiquitous plant cell wall matrix glycan xyloglucan. Previous studies have indicated that GH74 xyloglucanases differ in backbone cleavage regiospecificities and can adopt three distinct hydrolytic modes of action: exo, endo-dissociative, and endo-processive. To improve functional predictions within GH74, here we coupled in-depth biochemical characterization of 17 recombinant proteins with structural biology-based investigations in the context of a comprehensive molecular phylogeny, including all previously characterized family members. Elucidation of four new GH74 tertiary structures, as well as one distantly related dual seven-bladed β-propeller protein from a marine bacterium, highlighted key structure-function relationships along protein evolutionary trajectories. We could define five phylogenetic groups, which delineated the mode of action and the regiospecificity of GH74 members. At the extremes, a major group of enzymes diverged to hydrolyze the backbone of xyloglucan nonspecifically with a dissociative mode of action and relaxed backbone regiospecificity. In contrast, a sister group of GH74 enzymes has evolved a large hydrophobic platform comprising 10 subsites, which facilitates processivity. Overall, the findings of our study refine our understanding of catalysis in GH74, providing a framework for future experimentation as well as for bioinformatics predictions of sequences emerging from (meta)genomic studies.
Collapse
Affiliation(s)
- Gregory Arnal
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Jathavan Asohan
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mohamed A Attia
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Alexander Holm Viborg
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, 13007 Marseille, France; INRA, USC1408 Architecture et Fonction des Macromolécules Biologiques (AFMB), 13007 Marseille, France
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
10
|
Dutoit R, Delsaute M, Collet L, Vander Wauven C, Van Elder D, Berlemont R, Richel A, Galleni M, Bauvois C. Crystal structure determination of Pseudomonas stutzeri A1501 endoglucanase Cel5A: the search for a molecular basis for glycosynthesis in GH5_5 enzymes. Acta Crystallogr D Struct Biol 2019; 75:605-615. [PMID: 31205022 DOI: 10.1107/s2059798319007113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
The discovery of new glycoside hydrolases that can be utilized in the chemoenzymatic synthesis of carbohydrates has emerged as a promising approach for various biotechnological processes. In this study, recombinant Ps_Cel5A from Pseudomonas stutzeri A1501, a novel member of the GH5_5 subfamily, was expressed, purified and crystallized. Preliminary experiments confirmed the ability of Ps_Cel5A to catalyze transglycosylation with cellotriose as a substrate. The crystal structure revealed several structural determinants in and around the positive subsites, providing a molecular basis for a better understanding of the mechanisms that promote and favour synthesis rather than hydrolysis. In the positive subsites, two nonconserved positively charged residues (Arg178 and Lys216) were found to interact with cellobiose. This adaptation has also been reported for transglycosylating β-mannanases of the GH5_7 subfamily.
Collapse
Affiliation(s)
| | - Maud Delsaute
- InBioS - Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | | | | - Dany Van Elder
- Laboratory of Microbiology, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Renaud Berlemont
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840-9502, USA
| | - Aurore Richel
- Gembloux Agro-Bio Tech, University of Liège, 2 Passage des Déportés, 5030 Gembloux, Belgium
| | - Moreno Galleni
- InBioS - Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | |
Collapse
|
11
|
Structural enzymology reveals the molecular basis of substrate regiospecificity and processivity of an exemplar bacterial glycoside hydrolase family 74 endo-xyloglucanase. Biochem J 2018; 475:3963-3978. [PMID: 30463871 DOI: 10.1042/bcj20180763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022]
Abstract
Paenibacillus odorifer produces a single multimodular enzyme containing a glycoside hydrolase (GH) family 74 module (AIQ73809). Recombinant production and characterization of the GH74 module (PoGH74cat) revealed a highly specific, processive endo-xyloglucanase that can hydrolyze the polysaccharide backbone at both branched and unbranched positions. X-ray crystal structures obtained for the free enzyme and oligosaccharide complexes evidenced an extensive hydrophobic binding platform - the first in GH74 extending from subsites -4 to +6 - and unique mobile active-site loops. Site-directed mutagenesis revealed that glycine-476 was uniquely responsible for the promiscuous backbone-cleaving activity of PoGH74cat; replacement with tyrosine, which is conserved in many GH74 members, resulted in exclusive hydrolysis at unbranched glucose units. Likewise, systematic replacement of the hydrophobic platform residues constituting the positive subsites indicated their relative contributions to the processive mode of action. Specifically, W347 (+3 subsite) and W348 (+5 subsite) are essential for processivity, while W406 (+2 subsite) and Y372 (+6 subsite) are not strictly essential, but aid processivity.
Collapse
|
12
|
Conway JM, Crosby JR, McKinley BS, Seals NL, Adams MWW, Kelly RM. Parsing in vivo and in vitro contributions to microcrystalline cellulose hydrolysis by multidomain glycoside hydrolases in theCaldicellulosiruptor besciisecretome. Biotechnol Bioeng 2018; 115:2426-2440. [DOI: 10.1002/bit.26773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/21/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Jonathan M. Conway
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| | - James R. Crosby
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| | - Bennett S. McKinley
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| | - Nathaniel L. Seals
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthens GA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| |
Collapse
|
13
|
Sun J, Lu J, Xie G. Secretome analysis of Trichoderma reesei
CICC41495 for degradation of arabinoxylan in malted barley. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junyong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Guangfa Xie
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Research Center for Chinese Rice Wine; China Shaoxing Rice Wine Group Co. Ltd; Shaoxing 312000 People's Republic of China
| |
Collapse
|
14
|
Attia MA, Nelson CE, Offen WA, Jain N, Davies GJ, Gardner JG, Brumer H. In vitro and in vivo characterization of three Cellvibrio japonicus glycoside hydrolase family 5 members reveals potent xyloglucan backbone-cleaving functions. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:45. [PMID: 29467823 PMCID: PMC5816542 DOI: 10.1186/s13068-018-1039-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/01/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Xyloglucan (XyG) is a ubiquitous and fundamental polysaccharide of plant cell walls. Due to its structural complexity, XyG requires a combination of backbone-cleaving and sidechain-debranching enzymes for complete deconstruction into its component monosaccharides. The soil saprophyte Cellvibrio japonicus has emerged as a genetically tractable model system to study biomass saccharification, in part due to its innate capacity to utilize a wide range of plant polysaccharides for growth. Whereas the downstream debranching enzymes of the xyloglucan utilization system of C. japonicus have been functionally characterized, the requisite backbone-cleaving endo-xyloglucanases were unresolved. RESULTS Combined bioinformatic and transcriptomic analyses implicated three glycoside hydrolase family 5 subfamily 4 (GH5_4) members, with distinct modular organization, as potential keystone endo-xyloglucanases in C. japonicus. Detailed biochemical and enzymatic characterization of the GH5_4 modules of all three recombinant proteins confirmed particularly high specificities for the XyG polysaccharide versus a panel of other cell wall glycans, including mixed-linkage beta-glucan and cellulose. Moreover, product analysis demonstrated that all three enzymes generated XyG oligosaccharides required for subsequent saccharification by known exo-glycosidases. Crystallographic analysis of GH5D, which was the only GH5_4 member specifically and highly upregulated during growth on XyG, in free, product-complex, and active-site affinity-labelled forms revealed the molecular basis for the exquisite XyG specificity among these GH5_4 enzymes. Strikingly, exhaustive reverse-genetic analysis of all three GH5_4 members and a previously biochemically characterized GH74 member failed to reveal a growth defect, thereby indicating functional compensation in vivo, both among members of this cohort and by other, yet unidentified, xyloglucanases in C. japonicus. Our systems-based analysis indicates distinct substrate-sensing (GH74, GH5E, GH5F) and attack-mounting (GH5D) functions for the endo-xyloglucanases characterized here. CONCLUSIONS Through a multi-faceted, molecular systems-based approach, this study provides a new insight into the saccharification pathway of xyloglucan utilization system of C. japonicus. The detailed structural-functional characterization of three distinct GH5_4 endo-xyloglucanases will inform future bioinformatic predictions across species, and provides new CAZymes with defined specificity that may be harnessed in industrial and other biotechnological applications.
Collapse
Affiliation(s)
- Mohamed A. Attia
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Cassandra E. Nelson
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250 USA
| | - Wendy A. Offen
- Department of Chemistry, University of York, Heslington, York, YO10 5DD UK
| | - Namrata Jain
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Gideon J. Davies
- Department of Chemistry, University of York, Heslington, York, YO10 5DD UK
| | - Jeffrey G. Gardner
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250 USA
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
15
|
Arntzen MØ, Várnai A, Mackie RI, Eijsink VGH, Pope PB. Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. Environ Microbiol 2017; 19:2701-2714. [PMID: 28447389 DOI: 10.1111/1462-2920.13770] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/18/2017] [Indexed: 11/30/2022]
Abstract
Fibrobacter succinogenes is an anaerobic bacterium naturally colonising the rumen and cecum of herbivores where it utilizes an enigmatic mechanism to deconstruct cellulose into cellobiose and glucose, which serve as carbon sources for growth. Here, we illustrate that outer membrane vesicles (OMVs) released by F. succinogenes are enriched with carbohydrate-active enzymes and that intact OMVs were able to depolymerize a broad range of linear and branched hemicelluloses and pectin, despite the inability of F. succinogenes to utilize non-cellulosic (pentose) sugars for growth. We hypothesize that the degradative versatility of F. succinogenes OMVs is used to prime hydrolysis by destabilising the tight networks of polysaccharides intertwining cellulose in the plant cell wall, thus increasing accessibility of the target substrate for the host cell. This is supported by observations that OMV-pretreatment of the natural complex substrate switchgrass increased the catalytic efficiency of a commercial cellulose-degrading enzyme cocktail by 2.4-fold. We also show that the OMVs contain a putative multiprotein complex, including the fibro-slime protein previously found to be important in binding to crystalline cellulose. We hypothesize that this complex has a function in plant cell wall degradation, either by catalysing polysaccharide degradation itself, or by targeting the vesicles to plant biomass.
Collapse
Affiliation(s)
- Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Roderick I Mackie
- Institute for Genomic Biology, and Department of Animal Sciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
16
|
Nekiunaite L, Petrović DM, Westereng B, Vaaje-Kolstad G, Hachem MA, Várnai A, Eijsink VG. Fg
LPMO9A from Fusarium graminearum
cleaves xyloglucan independently of the backbone substitution pattern. FEBS Lett 2016; 590:3346-3356. [DOI: 10.1002/1873-3468.12385] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Laura Nekiunaite
- Enzyme and Protein Chemistry; Department of Systems Biology; Technical University of Denmark; Kongens Lyngby Denmark
| | - Dejan M. Petrović
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas Norway
| | - Bjørge Westereng
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas Norway
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas Norway
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry; Department of Systems Biology; Technical University of Denmark; Kongens Lyngby Denmark
| | - Anikó Várnai
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas Norway
| | - Vincent G.H. Eijsink
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas Norway
| |
Collapse
|
17
|
Attia M, Stepper J, Davies GJ, Brumer H. Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation. FEBS J 2016; 283:1701-19. [PMID: 26929175 DOI: 10.1111/febs.13696] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 11/27/2022]
Abstract
UNLABELLED The heteropolysaccharide xyloglucan (XyG) comprises up to one-quarter of the total carbohydrate content of terrestrial plant cell walls and, as such, represents a significant reservoir in the global carbon cycle. The complex composition of XyG requires a consortium of backbone-cleaving endo-xyloglucanases and side-chain cleaving exo-glycosidases for complete saccharification. The biochemical basis for XyG utilization by the model Gram-negative soil saprophytic bacterium Cellvibrio japonicus is incompletely understood, despite the recent characterization of associated side-chain cleaving exo-glycosidases. We present a detailed functional and structural characterization of a multimodular enzyme encoded by gene locus CJA_2477. The CJA_2477 gene product comprises an N-terminal glycoside hydrolase family 74 (GH74) endo-xyloglucanase module in train with two carbohydrate-binding modules (CBMs) from families 10 and 2 (CBM10 and CBM2). The GH74 catalytic domain generates Glc4 -based xylogluco-oligosaccharide (XyGO) substrates for downstream enzymes through an endo-dissociative mode of action. X-ray crystallography of the GH74 module, alone and in complex with XyGO products spanning the entire active site, revealed a broad substrate-binding cleft specifically adapted to XyG recognition, which is composed of two seven-bladed propeller domains characteristic of the GH74 family. The appended CBM10 and CBM2 members notably did not bind XyG, nor other soluble polysaccharides, and instead were specific cellulose-binding modules. Taken together, these data shed light on the first step of xyloglucan utilization by C. japonicus and expand the repertoire of GHs and CBMs for selective biomass analysis and utilization. DATABASE Structural data have been deposited in the RCSB protein database under the Protein Data Bank codes: 5FKR, 5FKS, 5FKT and 5FKQ.
Collapse
Affiliation(s)
- Mohamed Attia
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | | | | - Harry Brumer
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Sato S, Ohta K, Kojima K, Kozeki T, Ohmachi T, Yoshida T. Isolation and Characterization of Two Types of Xyloglucanases from a Phytopathogenic Fungus, Verticillium dahliae. J Appl Glycosci (1999) 2016; 63:13-18. [PMID: 34354476 PMCID: PMC8056924 DOI: 10.5458/jag.jag.jag-2015_012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 09/25/2015] [Indexed: 11/13/2022] Open
Abstract
Xyloglucan is a major hemicellulosic component in plant cell walls. Phytopathogenic fungi secrete cell wall-degrading enzymes on their infection to hosts, while the nature of the cell wall-lytic enzymes of such fungi are yet to be fully understood. Verticillium dahliae is a soil-borne fungus that causes vascular wilt diseases in a variety of commercially important crops worldwide. We purified two types of xyloglucanases, XEG12A and XEG74B, from the culture of naturally isolated Verticillium dahliae strain 2148. XEG12A showed a molecular size of 23 kDa with its maximal activity at pH 7.5. XEG12A specifically hydrolyzed xyloglucan with no activity on other β-glucans. XEG74B had a molecular size of 110 kDa with its optimum pH at 6.0. XEG74B primarily hydrolyzed xyloglucan, with a slight activity on β-1,3-1,4-glucan. Analysis of hydrolytic products of xyloglucanooligasaccharide (XXXGXXXG) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed that the both enzymes cleaved β-1,4-glucosidic linkage at the position of unbranched chain, while XEG74B showed a little fluctuation with the cleavage site. Both enzymes did not hydrolyzed xyloglucanoheptasaccharide (XXXG) at all. N-Terminal and internal amino acid sequencing of the enzymes revealed that XEG12A and XEG74B belonged to Glycoside Hydrolase (GH) Families 12 and 74, respectively. Based on these results we concluded that V. dahliae XEG12A and XEG74B were xyloglucan-specific endo-β-1,4-glucanases (EC 3.2.1.151).
Collapse
Affiliation(s)
- Shota Sato
- 1 Faculty of Agriculture and Life Science, Hirosaki University.,2 The United Graduate School of Agricultural Sciences, Iwate University
| | - Kunihiko Ohta
- 1 Faculty of Agriculture and Life Science, Hirosaki University
| | - Kaoru Kojima
- 1 Faculty of Agriculture and Life Science, Hirosaki University
| | | | - Tetsuo Ohmachi
- 1 Faculty of Agriculture and Life Science, Hirosaki University
| | - Takashi Yoshida
- 1 Faculty of Agriculture and Life Science, Hirosaki University
| |
Collapse
|
19
|
A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates. J Proteomics 2016; 131:104-112. [DOI: 10.1016/j.jprot.2015.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 11/23/2022]
|
20
|
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
21
|
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
22
|
McGregor N, Morar M, Fenger TH, Stogios P, Lenfant N, Yin V, Xu X, Evdokimova E, Cui H, Henrissat B, Savchenko A, Brumer H. Structure-Function Analysis of a Mixed-linkage β-Glucanase/Xyloglucanase from the Key Ruminal Bacteroidetes Prevotella bryantii B(1)4. J Biol Chem 2015; 291:1175-97. [PMID: 26507654 DOI: 10.1074/jbc.m115.691659] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
The recent classification of glycoside hydrolase family 5 (GH5) members into subfamilies enhances the prediction of substrate specificity by phylogenetic analysis. However, the small number of well characterized members is a current limitation to understanding the molecular basis of the diverse specificity observed across individual GH5 subfamilies. GH5 subfamily 4 (GH5_4) is one of the largest, with known activities comprising (carboxymethyl)cellulases, mixed-linkage endo-glucanases, and endo-xyloglucanases. Through detailed structure-function analysis, we have revisited the characterization of a classic GH5_4 carboxymethylcellulase, PbGH5A (also known as Orf4, carboxymethylcellulase, and Cel5A), from the symbiotic rumen Bacteroidetes Prevotella bryantii B14. We demonstrate that carboxymethylcellulose and phosphoric acid-swollen cellulose are in fact relatively poor substrates for PbGH5A, which instead exhibits clear primary specificity for the plant storage and cell wall polysaccharide, mixed-linkage β-glucan. Significant activity toward the plant cell wall polysaccharide xyloglucan was also observed. Determination of PbGH5A crystal structures in the apo-form and in complex with (xylo)glucan oligosaccharides and an active-site affinity label, together with detailed kinetic analysis using a variety of well defined oligosaccharide substrates, revealed the structural determinants of polysaccharide substrate specificity. In particular, this analysis highlighted the PbGH5A active-site motifs that engender predominant mixed-linkage endo-glucanase activity vis à vis predominant endo-xyloglucanases in GH5_4. However the detailed phylogenetic analysis of GH5_4 members did not delineate particular clades of enzymes sharing these sequence motifs; the phylogeny was instead dominated by bacterial taxonomy. Nonetheless, our results provide key enzyme functional and structural reference data for future bioinformatics analyses of (meta)genomes to elucidate the biology of complex gut ecosystems.
Collapse
Affiliation(s)
- Nicholas McGregor
- From the Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mariya Morar
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Thomas Hauch Fenger
- From the Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Peter Stogios
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Nicolas Lenfant
- the Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille 13288, France
| | - Victor Yin
- From the Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xiaohui Xu
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Elena Evdokimova
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Hong Cui
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Bernard Henrissat
- the Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille 13288, France, the Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia, and INRA, USC 1408 AFMB, F-13288 Marseille, France
| | - Alexei Savchenko
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada,
| | - Harry Brumer
- From the Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada,
| |
Collapse
|
23
|
Dos Santos CR, Cordeiro RL, Wong DWS, Murakami MT. Structural basis for xyloglucan specificity and α-d-Xylp(1 → 6)-D-Glcp recognition at the -1 subsite within the GH5 family. Biochemistry 2015; 54:1930-42. [PMID: 25714929 DOI: 10.1021/acs.biochem.5b00011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GH5 is one of the largest glycoside hydrolase families, comprising at least 20 distinct activities within a common structural scaffold. However, the molecular basis for the functional differentiation among GH5 members is still not fully understood, principally for xyloglucan specificity. In this work, we elucidated the crystal structures of two novel GH5 xyloglucanases (XEGs) retrieved from a rumen microflora metagenomic library, in the native state and in complex with xyloglucan-derived oligosaccharides. These results provided insights into the structural determinants that differentiate GH5 XEGs from parental cellulases and a new mode of action within the GH5 family related to structural adaptations in the -1 subsite. The oligosaccharide found in the XEG5A complex, permitted the mapping, for the first time, of the positive subsites of a GH5 XEG, revealing the importance of the pocket-like topology of the +1 subsite in conferring the ability of some GH5 enzymes to attack xyloglucan. Complementarily, the XEG5B complex covered the negative subsites, completing the subsite mapping of GH5 XEGs at high resolution. Interestingly, XEG5B is, to date, the only GH5 member able to cleave XXXG into XX and XG, and in the light of these results, we propose that a modification in the -1 subsite enables the accommodation of a xylosyl side chain at this position. The stereochemical compatibility of the -1 subsite with a xylosyl moiety was also reported for other structurally nonrelated XEGs belonging to the GH74 family, indicating it to be an essential attribute for this mode of action.
Collapse
Affiliation(s)
- Camila Ramos Dos Santos
- †Brazilian Biosciences National Laboratory, National Center of Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Rosa Lorizolla Cordeiro
- †Brazilian Biosciences National Laboratory, National Center of Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Dominic W S Wong
- ‡Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| | - Mário Tyago Murakami
- †Brazilian Biosciences National Laboratory, National Center of Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
24
|
Feng T, Yan KP, Mikkelsen MD, Meyer AS, Schols HA, Westereng B, Mikkelsen JD. Characterisation of a novel endo-xyloglucanase (XcXGHA) from Xanthomonas that accommodates a xylosyl-substituted glucose at subsite -1. Appl Microbiol Biotechnol 2014; 98:9667-79. [PMID: 24898632 DOI: 10.1007/s00253-014-5825-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 11/26/2022]
Abstract
A xyloglucan-specific endo-1,4β-glucanase (XcXGHA) from Xanthomonas citri pv. mangiferaeindicae has been cloned, expressed in Escherichia coli, purified and characterised. The XcXGHA enzyme belongs to CAZy family GH74 and has catalytic site residues conserved with other xyloglucanases in this family. At its optimal reaction conditions, pH 7.0 and 40 °C, the enzyme has a k cat/K M value of 2.2 × 10(7) min(-1) M(-1) on a tamarind seed xyloglucan substrate. XcXGHA is relatively stable within a broad pH range (pH 4-9) and up to 50 °C (t 1/2, 50 °C of 74 min). XcXGHA is proven to be xyloglucan-specific, and a glycan microarray study verifies that XcXGHA catalyses cleavage of xyloglucan extracted from both monocot and dicot plant species. The enzyme catalyses hydrolysis of tamarind xyloglucan in a unique way by cleaving XXXG into XX and XG (X is xylosyl-substituted glucose; G is unsubstituted glucose), is able to degrade more complex xyloglucans and notably is able to cleave near more substituted xyloglucan motifs such as L [i.e. α-L-Fucp-(1 → 2)-β-D-Galp-(1 → 2)-α-D-Xylp-(1 → 6)-β-D-Glcp]. LC-MS/MS analysis of product profiles of tamarind xyloglucan which had been catalytically degraded by XcXGHA revealed that XcXGHA has specificity for X in subsite -1. The 3D model suggests that XcXGHA consists of two seven-bladed β-propeller domains with the catalytic center formed by the interface of these two domains, which is conserved in xyloglucanases in the GH74 family. However, the XcXGHA has two amino acids (D264 and R472) that differ from the conserved residues of other GH74 xyloglucanases. These two amino acids were predicted to be located on the opposite side of the active site pocket, facing each other and forming a closing surface above the active site pocket. These two amino acids may contribute to the unique substrate specificity of the XcXGHA enzyme.
Collapse
Affiliation(s)
- Tao Feng
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, 2800 Kgs, Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
Key amino acid residues for the endo-processive activity of GH74 xyloglucanase. FEBS Lett 2014; 588:1731-8. [PMID: 24657616 DOI: 10.1016/j.febslet.2014.03.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 11/22/2022]
Abstract
Unlike endo-dissociative-xyloglucanases, Paenibacillus XEG74 is an endo-processive xyloglucanase that contains four unique tryptophan residues in the negative subsites (W61 and W64) and the positive subsites (W318 and W319), as indicated by three-dimensional homology modelling. Selective replacement of the positive subsite residues with alanine mutations reduced the degree of processive activity and resulted in the more endo-dissociative-activity. The results showed that W318 and W319, which are found in the positive subsites, are essential for processive degradation and are responsible for maintaining binding interactions with xyloglucan polysaccharide through a stacking effect.
Collapse
|
26
|
de Araújo EA, Tomazini A, Kadowaki MAS, Murakami MT, Polikarpov I. Crystallization and preliminary X-ray diffraction analysis of a new xyloglucanase from Xanthomonas campestris pv. campestris. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:676-8. [PMID: 23722852 PMCID: PMC3668593 DOI: 10.1107/s174430911301275x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
Xyloglucanases (Xghs) are important enzymes involved in xyloglucan modification and degradation. Xanthomonas campestris pv. campestris (Xcc) is a phytopathogenic bacterium which produces a large number of glycosyl hydrolases (GH), but has only one family 74 GH (Xcc-Xgh). This enzyme was overexpressed in Escherichia coli, purified and crystallized. Diffraction data sets were collected for the native enzyme and its complex with glucose to maximum resolutions of 2.0 and 2.1 Å, respectively. The data were indexed in a hexagonal crystal system with unit-cell parameters a = b = 153.4, c = 84.9 Å. As indicated by molecular-replacement solution, the crystals belonged to space group P6(1).
Collapse
Affiliation(s)
- Evandro Ares de Araújo
- Instituto de Física de São Carlos, Universidade de São Paulo, 400 Trabalhador Saocarlense, 13566-590 São Carlos-SP, Brazil
| | - Atílio Tomazini
- Instituto de Física de São Carlos, Universidade de São Paulo, 400 Trabalhador Saocarlense, 13566-590 São Carlos-SP, Brazil
| | - Marco Antonio Seiki Kadowaki
- Instituto de Física de São Carlos, Universidade de São Paulo, 400 Trabalhador Saocarlense, 13566-590 São Carlos-SP, Brazil
| | - Mário Tyago Murakami
- Laboratório Nacional de Biociências, CNPEM, 10000 Giuseppe Máximo Scolfaro, 13083-100, Campinas-SP, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, 400 Trabalhador Saocarlense, 13566-590 São Carlos-SP, Brazil
| |
Collapse
|
27
|
Suwannarangsee S, Bunterngsook B, Arnthong J, Paemanee A, Thamchaipenet A, Eurwilaichitr L, Laosiripojana N, Champreda V. Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design. BIORESOURCE TECHNOLOGY 2012; 119:252-61. [PMID: 22728789 DOI: 10.1016/j.biortech.2012.05.098] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 05/15/2023]
Abstract
Synergistic enzyme system for the hydrolysis of alkali-pretreated rice straw was optimised based on the synergy of crude fungal enzyme extracts with a commercial cellulase (Celluclast™). Among 13 enzyme extracts, the enzyme preparation from Aspergillus aculeatus BCC 199 exhibited the highest level of synergy with Celluclast™. This synergy was based on the complementary cellulolytic and hemicellulolytic activities of the BCC 199 enzyme extract. A mixture design was used to optimise the ternary enzyme complex based on the synergistic enzyme mixture with Bacillus subtilis expansin. Using the full cubic model, the optimal formulation of the enzyme mixture was predicted to the percentage of Celluclast™: BCC 199: expansin=41.4:37.0:21.6, which produced 769 mg reducing sugar/g biomass using 2.82 FPU/g enzymes. This work demonstrated the use of a systematic approach for the design and optimisation of a synergistic enzyme mixture of fungal enzymes and expansin for lignocellulosic degradation.
Collapse
Affiliation(s)
- Surisa Suwannarangsee
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathumthani 12120, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Characterization of an endo-processive-type xyloglucanase having a β-1,4-glucan-binding module and an endo-type xyloglucanase from Streptomyces avermitilis. Appl Environ Microbiol 2012; 78:7939-45. [PMID: 22941084 DOI: 10.1128/aem.01762-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned two glycoside hydrolase family 74 genes, the sav_1856 gene and the sav_2574 gene, from Streptomyces avermitilis NBRC14893 and characterized the resultant recombinant proteins. The sav_1856 gene product (SaGH74A) consisted of a catalytic domain and a family 2 carbohydrate-binding module at the C terminus, while the sav_2574 gene product (SaGH74B) consisted of only a catalytic domain. SaGH74A and SaGH74B were expressed successfully and had molecular masses of 92 and 78 kDa, respectively. Both recombinant proteins were xyloglucanases. SaGH74A had optimal activity at 60°C and pH 5.5, while SaGH74B had optimal activity at 55°C and pH 6.0. SaGH74A was stable over a broad pH range (pH 4.5 to 9.0), whereas SaGH74B was stable over a relatively narrow pH range (pH 6.0 to 6.5). Analysis of the hydrolysis products of tamarind xyloglucan and xyloglucan-derived oligosaccharides indicated that SaGH74A was endo-processive, while SaGH74B was a typical endo-enzyme. The C terminus of SaGH74A, which was annotated as a carbohydrate-binding module, bound to β-1,4-linked glucan-containing soluble polysaccharides such as hydroxyethyl cellulose, barley glucan, and xyloglucan.
Collapse
|
29
|
Billard H, Faraj A, Lopes Ferreira N, Menir S, Heiss-Blanquet S. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:9. [PMID: 22373423 PMCID: PMC3310832 DOI: 10.1186/1754-6834-5-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/28/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial for reduced cost of the enzymatic hydrolysis step in a bioethanol production process and its composition will depend on the substrate and type of pretreatment used. In the present study, an experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw. METHODS Six enzymes, CBH1 (Cel7a), CBH2 (Cel6a), EG1 (Cel7b), EG2 (Cel5a), as well as the xyloglucanase Cel74a and the xylanase XYN1 (Xyl11a) were purified from a T. reesei culture under lactose/xylose-induced conditions. Sugar release was followed in milliliter-scale hydrolysis assays for 48 hours and the influence of the mixture on initial conversion rates and final yields is assessed. RESULTS The developed model could show that both responses were strongly correlated. Model predictions suggest that optimal hydrolysis yields can be obtained over a wide range of CBH1 to CBH2 ratios, but necessitates a high proportion of EG1 (13% to 25%) which cannot be replaced by EG2. Whereas 5% to 10% of the latter enzyme and a xylanase content above 6% are required for highest yields, these enzymes are predicted to be less important in the initial stage of hydrolysis. CONCLUSIONS The developed model could reliably predict hydrolysis yields of enzyme mixtures in the studied domain and highlighted the importance of the respective enzyme components in both the initial and the final hydrolysis phase of steam-exploded wheat straw.
Collapse
Affiliation(s)
- Hélène Billard
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Abdelaziz Faraj
- IFP Energies nouvelles, Applied Mathematics Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Nicolas Lopes Ferreira
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Sandra Menir
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Senta Heiss-Blanquet
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| |
Collapse
|
30
|
Abstract
The ability of β-glucanases to cleave xyloglucans, a family of highly decorated β-glucans ubiquitous in plant biomass, has traditionally been overlooked in functional biochemical studies. An emerging body of data indicates, however, that a spectrum of xyloglucan specificity resides in diverse glycoside hydrolases from a range of carbohydrate-active enzyme families-including classic "cellulase" families. This chapter outlines a series of enzyme kinetic and product analysis methods to establish degrees of xyloglucan specificity and modes of action of glycosidases emerging from enzyme discovery projects.
Collapse
Affiliation(s)
- Jens M Eklöf
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
31
|
Identification and characterization of a xyloglucan-specific family 74 glycosyl hydrolase from Streptomyces coelicolor A3(2). Appl Environ Microbiol 2011; 78:607-11. [PMID: 22101041 DOI: 10.1128/aem.06482-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sco6545 gene of Streptomyces coelicolor A3(2) was nominated as a putative cellulase with 863 mature-form amino acids (90.58 kDa). We overexpressed and purified Sco6545 and demonstrated that the protein is not a cellulase but a xyloglucan-specific glycosyl hydrolase which cleaves xyloglucan at unbranched glucose residues.
Collapse
|
32
|
Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 2011; 91:1477-92. [PMID: 21785931 PMCID: PMC3160556 DOI: 10.1007/s00253-011-3473-2] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/27/2011] [Accepted: 07/10/2011] [Indexed: 02/01/2023]
Abstract
Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families.
Collapse
|
33
|
Murphy C, Powlowski J, Wu M, Butler G, Tsang A. Curation of characterized glycoside hydrolases of fungal origin. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar020. [PMID: 21622642 PMCID: PMC3263737 DOI: 10.1093/database/bar020] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fungi produce a wide range of extracellular enzymes to break down plant cell walls, which are composed mainly of cellulose, lignin and hemicellulose. Among them are the glycoside hydrolases (GH), the largest and most diverse family of enzymes active on these substrates. To facilitate research and development of enzymes for the conversion of cell-wall polysaccharides into fermentable sugars, we have manually curated a comprehensive set of characterized fungal glycoside hydrolases. Characterized glycoside hydrolases were retrieved from protein and enzyme databases, as well as literature repositories. A total of 453 characterized glycoside hydrolases have been cataloged. They come from 131 different fungal species, most of which belong to the phylum Ascomycota. These enzymes represent 46 different GH activities and cover 44 of the 115 CAZy GH families. In addition to enzyme source and enzyme family, available biochemical properties such as temperature and pH optima, specific activity, kinetic parameters and substrate specificities were recorded. To simplify comparative studies, enzyme and species abbreviations have been standardized, Gene Ontology terms assigned and reference to supporting evidence provided. The annotated genes have been organized in a searchable, online database called mycoCLAP (Characterized Lignocellulose-Active Proteins of fungal origin). It is anticipated that this manually curated collection of biochemically characterized fungal proteins will be used to enhance functional annotation of novel GH genes. Database URL: http://mycoCLAP.fungalgenomics.ca/.
Collapse
Affiliation(s)
- Caitlin Murphy
- Centre for Structural and Functional Genomics, Concordia University, Montreal QC H4B 1R6, Canada
| | | | | | | | | |
Collapse
|
34
|
Abstract
Starch and cellulose are the most abundant and important representatives of renewable biomass. Since the mid-19th century their properties have been changed by chemical modification for commercial and scientific purposes, and there substituted polymers have found a wide range of applications. However, the inherent polydispersity and supramolecular organization of starch and cellulose cause the products resulting from their modification to display high complexity. Chemical composition analysis of these mixtures is therefore a challenging task. Detailed knowledge on substitution patterns is fundamental for understanding structure-property relationships in modified cellulose and starch, and thus also for the improvement of reproducibility and rational design of properties. Substitution patterns resulting from kinetically or thermodynamically controlled reactions show certain preferences for the three available hydroxyl functions in (1→4)-linked glucans. Spurlin, seventy years ago, was the first to describe this in an idealized model, and nowadays this model has been extended and related to the next hierarchical levels, namely, the substituent distribution in and over the polymer chains. This structural complexity, with its implications for data interpretation, and the analytical approaches developed for its investigation are outlined in this article. Strategies and methods for the determination of the average degree of substitution (DS), monomer composition, and substitution patterns at the polymer level are presented and discussed with respect to their limitations and interpretability. Nuclear magnetic resonance spectroscopy, chromatography, capillary electrophoresis, and modern mass spectrometry (MS), including tandem MS, are the main instrumental techniques employed, in combination with appropriate sample preparation by chemical and enzymatic methods.
Collapse
|
35
|
Hakamada Y, Arata S, Ohashi S. Purification and Characterization of a Xyloglucan-specific Glycosyl Hydrolase from Aspergillus oryzae RIB40. J Appl Glycosci (1999) 2011. [DOI: 10.5458/jag.jag.jag-2010_010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
36
|
Wong DDWS, Chan VJ, McCormack AA, Batt SB. A novel xyloglucan-specific endo-β-1,4-glucanase: biochemical properties and inhibition studies. Appl Microbiol Biotechnol 2009; 86:1463-71. [DOI: 10.1007/s00253-009-2364-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/12/2009] [Accepted: 11/12/2009] [Indexed: 11/30/2022]
|
37
|
Enebro J, Momcilovic D, Siika-Aho M, Karlsson S. Liquid chromatography combined with mass spectrometry for the investigation of endoglucanase selectivity on carboxymethyl cellulose. Carbohydr Res 2009; 344:2173-81. [PMID: 19735910 DOI: 10.1016/j.carres.2009.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 08/07/2009] [Accepted: 08/08/2009] [Indexed: 10/20/2022]
Abstract
Endoglucanases are useful tools in the chemical structure analysis of cellulose derivatives. However, knowledge on the endoglucanase selectivity, which is of central importance for data interpretation, is still limited. In this study, new reverse-phase liquid chromatography mass spectrometry (LC-MS) methods were developed to investigate the selectivity of the endoglucanases Cel5A, Cel7B, Cel45A, and Cel74A from the filamentous fungus Trichoderma reesei. The aim was to improve the identification of the regioisomers in the complex mixtures that are obtained after enzymatic hydrolysis. Reduction followed by per-O-methylation was performed in order to improve the separation in reverse-phase LC, increase MS sensitivity, and to facilitate structure analysis by MS/MS of O-carboxymethyl glucose and cellooligosaccharides. The cellulose selective enzymes that were investigated displayed interesting differences in enzyme selectivity on CMC substrates.
Collapse
Affiliation(s)
- Jonas Enebro
- School of Chemical Science and Engineering, Fibre and Polymer Technology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | | | | |
Collapse
|
38
|
Powlowski J, Mahajan S, Schapira M, Master ER. Substrate recognition and hydrolysis by a fungal xyloglucan-specific family 12 hydrolase. Carbohydr Res 2009; 344:1175-9. [PMID: 19433323 DOI: 10.1016/j.carres.2009.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/16/2009] [Accepted: 04/19/2009] [Indexed: 11/30/2022]
Abstract
Biochemical studies to elucidate the structural basis for xyloglucan specificity among GH12 xyloglucanases are lacking. Accordingly, the substrate specificity of a GH12 xyloglucanase from Aspergillus niger (AnXEG12A) was investigated using pea xyloglucan and 12 xylogluco-oligosaccharides, and data were compared to a structural model of the enzyme. The specific activity of AnXEG12A with pea xyloglucan was 113 micromol min(-1)mg(-1), and apparent k(cat) and K(m) values were 49 s(-1) and 0.54 mg mL(-1), respectively. These values are similar to previously published results using xyloglucan from tamarind seed, and suggest that substrate fucosylation does not affect the specific activity of this enzyme. AnXEG12A preferred xylogluco-oligosaccharides containing more than six glucose units, and with xylose substitution at the -3 and +1 subsites. The specific activities of AnXEG12A on 100 microM XXXGXXXG and 100 microM XLLGXLLG were 60+/-4 and 72+/-9 micromol min(-1)mg(-1), respectively. AnXEG12A did not hydrolyze XXXXXXXG, consistent with other data that demonstrate the requirement for an unbranched glucose residue for hydrolysis by this enzyme.
Collapse
Affiliation(s)
- Justin Powlowski
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, Canada H4B 1R6
| | | | | | | |
Collapse
|
39
|
Ibatullin FM, Baumann MJ, Greffe L, Brumer H. Kinetic Analyses of Retaining endo-(Xylo)glucanases from Plant and Microbial Sources Using New Chromogenic Xylogluco-Oligosaccharide Aryl Glycosides. Biochemistry 2008; 47:7762-9. [DOI: 10.1021/bi8009168] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Farid M. Ibatullin
- School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, SE-106 91 Stockholm, Sweden, and Petersburg Nuclear Physics Institute, Molecular and Radiation Biology Division, Russian Academy of Science, Gatchina, St. Petersburg 188300, Russia
| | - Martin J. Baumann
- School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, SE-106 91 Stockholm, Sweden, and Petersburg Nuclear Physics Institute, Molecular and Radiation Biology Division, Russian Academy of Science, Gatchina, St. Petersburg 188300, Russia
| | - Lionel Greffe
- School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, SE-106 91 Stockholm, Sweden, and Petersburg Nuclear Physics Institute, Molecular and Radiation Biology Division, Russian Academy of Science, Gatchina, St. Petersburg 188300, Russia
| | - Harry Brumer
- School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, SE-106 91 Stockholm, Sweden, and Petersburg Nuclear Physics Institute, Molecular and Radiation Biology Division, Russian Academy of Science, Gatchina, St. Petersburg 188300, Russia
| |
Collapse
|
40
|
A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger: recombinant expression, purification and characterization. Biochem J 2008; 411:161-70. [PMID: 18072936 DOI: 10.1042/bj20070819] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new GH12 (glycosyl hydrolase 12) family XEG [xyloglucan-specific endo-β-1,4-glucanase (EC 3.2.1.151)] from Aspergillus niger, AnXEG12A, was overexpressed, purified and characterized. Whereas seven xyloglucanases from GH74 and two xyloglucanases from GH5 have been characterized previously, this is only the third characterized example of a GH12 family xyloglucanase. GH12 enzymes are structurally and mechanistically distinct from GH74 enzymes. Although over 100 GH12 sequences are now available, little is known about the structural and biochemical bases of xyloglucan binding and hydrolysis by GH12 enzymes. Comparison of the AnXEG12A cDNA sequence with the genome sequence of A. niger showed the presence of two introns, one in the coding region and the second one in the 333-nt-long 3′-untranslated region of the transcript. The enzyme was expressed recombinantly in A. niger and was readily purified from the culture supernatant. The isolated enzyme appeared to have been processed by a kexin-type protease, which removed a short prosequence. The substrate specificity was restricted to xyloglucan, with cleavage at unbranched glucose in the backbone. The apparent kinetic parameters were similar to those reported for other xyloglucan-degrading endoglucanases. The pH optimum (5.0) and temperature resulting in highest enzyme activity (50–60 °C) were higher than those reported for a GH12 family xyloglucanase from Aspergillus aculeatus, but similar to those of cellulose-specific endoglucanases from the GH12 family. Phylogenetic, sequence and structural comparisons of GH12 family endoglucanases helped to delineate features that appear to be correlated to xyloglucan specificity.
Collapse
|