1
|
Madorran E, Ambrož M, Knez J, Sobočan M. An Overview of the Current State of Cell Viability Assessment Methods Using OECD Classification. Int J Mol Sci 2024; 26:220. [PMID: 39796074 PMCID: PMC11719996 DOI: 10.3390/ijms26010220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Over the past century, numerous methods for assessing cell viability have been developed, and there are many different ways to categorize these methods accordingly. We have chosen to use the Organisation for Economic Co-operation and Development (OECD) classification due to its regulatory importance. The OECD categorizes these methods into four groups: non-invasive cell structure damage, invasive cell structure damage, cell growth, and cellular metabolism. Despite the variety of cell viability methods available, they can all be categorized within these four groups, except for two novel methods based on the cell membrane potential, which we added to the list. Each method operates on different principles and has its own advantages and disadvantages, making it essential for researchers to choose the method that best fits their experimental design. This review aims to assist researchers in making this decision by describing these methods regarding their potential use and providing direct references to the cell viability assessment methods. Additionally, we use the OECD classification to facilitate potential regulatory use and to highlight the need for adding a new category to their list.
Collapse
Affiliation(s)
- Eneko Madorran
- Faculty of Medicine, Institute of Anatomy, Histology and Embryology, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Faculty of Medicine, Institute of Translational and Clinical Research, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.A.); (M.S.)
| | - Miha Ambrož
- Faculty of Medicine, Institute of Translational and Clinical Research, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.A.); (M.S.)
| | - Jure Knez
- Department for Gynaecologic Oncology and Oncology of the Breast, University Division for Gynaecology and Perinatology, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Monika Sobočan
- Faculty of Medicine, Institute of Translational and Clinical Research, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.A.); (M.S.)
- Division of Gynaecology and Perinatology, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
2
|
Varela AT, Neves RAF, Nascimento SM, Oliveira PJ, Pardal MA, Rodrigues ET, Moreno AJ. Exposure to marine benthic dinoflagellate toxins may lead to mitochondrial dysfunction. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108937. [PMID: 33171298 DOI: 10.1016/j.cbpc.2020.108937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/10/2023]
Abstract
Even though marine dinoflagellates are important primary producers, many toxic species may alter the natural equilibrium of aquatic ecosystems and even generate human intoxication incidents, as they are the major causative agents of harmful algal blooms. In order to deepen the knowledge regarding benthic dinoflagellate adverse effects, the present study aims to clarify the influence of Gambierdiscus excentricus strain UNR-08, Ostreopsis cf. ovata strain UNR-03 and Prorocentrum lima strain UNR-01 crude extracts on rat mitochondrial energetic function and permeability transition pore (mPTP) induction. Our results, expressed in number of dinoflagellate cell toxic compounds tested in a milligram of mitochondrial protein, revealed that 934 cells mg prot-1 of G. excentricus, and 7143 cells mg prot-1 of both O. cf. ovata and P. lima negatively affect mitochondrial function, including by decreasing ATP synthesis-related membrane potential variations. Moreover, considerably much lower concentrations of dinoflagellate extracts (117 cells mg prot-1 of G. excentricus, 1429 cells mg prot-1 of O. cf. ovata and 714 cells mg prot-1 of P. lima) produced mPTP-induced swelling in Ca2+-loaded isolated mitochondria. The present study clearly demonstrates the toxicity of G. excentricus, O. cf. ovata and P. lima extracts at the mitochondrial level, which may lead to mitochondrial failure and consequent cell toxicity, and that G. excentricus always provide much more severe effects than O. cf. ovata and P. lima.
Collapse
Affiliation(s)
- Ana T Varela
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Raquel A F Neves
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Laboratory of Marine Microalgae, Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur 458-314B, 22290-240 Rio de Janeiro, Brazil.
| | - Silvia M Nascimento
- Laboratory of Marine Microalgae, Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur 458-314B, 22290-240 Rio de Janeiro, Brazil.
| | - Paulo J Oliveira
- Centre for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal.
| | - Miguel A Pardal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Elsa T Rodrigues
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - António J Moreno
- Centre for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
3
|
Cen J, Cui L, Duan Y, Zhang H, Lin Y, Zheng J, Lu S. Effects of palytoxins extracted from Ostreopsis ovata on the oxidative stress and immune responses in Pacific white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 95:670-678. [PMID: 31689553 DOI: 10.1016/j.fsi.2019.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Palytoxins (PLTXs) are a group of complex and poisonous marine natural products that are toxic to marine life and even human beings. In the present study, the oxidative stress and immune response in the hepatopancreas and gills of Litopenaeus vannamei were assessed for 72 h after injection with PLTX extracts. Chemical and physiological parameters, e.g., the respiratory burst (O2-), activities of antioxidant enzymes, oxidative damage to lipids, carbonylation of proteins, and immune gene mRNA expression levels, were analysed. The results showed that the PLTX extract was not fatal to the shrimp but could reduce their mobility. The O2- levels in the gills gradually increased after exposure to PLTX extracts and were significantly higher than those in the control from 6 to 72 h. The malondialdehyde content, lipid peroxidation, protein carbonyl levels, and total antioxidant capacity in the gills all peaked at 12 h. At the same time, the gills were loosely connected, there was a clear disintegration of the epithelial tissue, and the stratum corneum disappeared after 12 h. In addition, compared to those in the control group, the PLTX extract treatment increased the O2- content, malondialdehyde content, lipid peroxidation, and protein carbonyl levels from 12 to 72 h, 24-48 h, 12-24 h, and 12-72 h after injection in the hepatopancreas of the shrimp, respectively. Both the Crustin and Toll gene expression levels significantly increased in the hepatopancreas compared to those in the control 6-72 h after injection of the toxin. In parallel, the expression levels of the manganese superoxide dismutase gene gradually decreased from 6 to 48 h and returned to normal levels after 72 h. Interestingly, the total antioxidant capacity also significantly increased compared to that in the control from 6 to 72 h. Our results indicate that although PLTX extracts cause lipid peroxidation and carbonylation of proteins in hepatopancreatic cells, leading to their damage, they did not cause a decrease in the total antioxidant capacity of the hepatopancreas.
Collapse
Affiliation(s)
- Jingyi Cen
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algae Blooms of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Lei Cui
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algae Blooms of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China.
| | - Hua Zhang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algae Blooms of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Yarou Lin
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algae Blooms of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Jiping Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algae Blooms of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Songhui Lu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algae Blooms of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
4
|
Farabegoli F, Blanco L, Rodríguez LP, Vieites JM, Cabado AG. Phycotoxins in Marine Shellfish: Origin, Occurrence and Effects on Humans. Mar Drugs 2018; 16:E188. [PMID: 29844286 PMCID: PMC6025170 DOI: 10.3390/md16060188] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
Massive phytoplankton proliferation, and the consequent release of toxic metabolites, can be responsible for seafood poisoning outbreaks: filter-feeding mollusks, such as shellfish, mussels, oysters or clams, can accumulate these toxins throughout the food chain and present a threat for consumers' health. Particular environmental and climatic conditions favor this natural phenomenon, called harmful algal blooms (HABs); the phytoplankton species mostly involved in these toxic events are dinoflagellates or diatoms belonging to the genera Alexandrium, Gymnodinium, Dinophysis, and Pseudo-nitzschia. Substantial economic losses ensue after HABs occurrence: the sectors mainly affected include commercial fisheries, tourism, recreational activities, and public health monitoring and management. A wide range of symptoms, from digestive to nervous, are associated to human intoxication by biotoxins, characterizing different and specific syndromes, called paralytic shellfish poisoning, amnesic shellfish poisoning, diarrhetic shellfish poisoning, and neurotoxic shellfish poisoning. This review provides a complete and updated survey of phycotoxins usually found in marine invertebrate organisms and their relevant properties, gathering information about the origin, the species where they were found, as well as their mechanism of action and main effects on humans.
Collapse
Affiliation(s)
- Federica Farabegoli
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| | - Lucía Blanco
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| | - Laura P Rodríguez
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| | - Juan Manuel Vieites
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| | - Ana García Cabado
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| |
Collapse
|
5
|
Pelin M, Brovedani V, Sosa S, Tubaro A. Palytoxin-Containing Aquarium Soft Corals as an Emerging Sanitary Problem. Mar Drugs 2016; 14:E33. [PMID: 26861356 PMCID: PMC4771986 DOI: 10.3390/md14020033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 01/24/2023] Open
Abstract
Palytoxin (PLTX), one the most potent marine toxins, and/or its analogs, have been identified in different marine organisms, such as Palythoa soft corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. Although the main concern for human health is PLTXs entrance in the human food chain, there is growing evidence of adverse effects associated with inhalational, cutaneous, and/or ocular exposure to aquarium soft corals contaminated by PLTXs or aquaria waters. Indeed, the number of case reports describing human poisonings after handling these cnidarians is continuously increasing. In general, the signs and symptoms involve mainly the respiratory (rhinorrhea and coughing), skeletomuscular (myalgia, weakness, spasms), cardiovascular (electrocardiogram alterations), gastrointestinal (nausea), and nervous (paresthesia, ataxia, tremors) systems or apparates. The widespread phenomenon, the entity of the signs and symptoms of poisoning and the lack of control in the trade of corals as aquaria decorative elements led to consider these poisonings an emerging sanitary problem. This review summarizes literature data on human poisonings due to, or ascribed to, PLTX-containing soft corals, focusing on the different PLTX congeners identified in these organisms and their toxic potential.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Sciences, University of Trieste, Via Valerio 6, 34127 Trieste, Italy.
| | - Valentina Brovedani
- Department of Life Sciences, University of Trieste, Via Valerio 6, 34127 Trieste, Italy.
| | - Silvio Sosa
- Department of Life Sciences, University of Trieste, Via Valerio 6, 34127 Trieste, Italy.
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Via Valerio 6, 34127 Trieste, Italy.
| |
Collapse
|
6
|
Patocka J, Gupta RC, Wu QH, Kuca K. Toxic potential of palytoxin. ACTA ACUST UNITED AC 2015; 35:773-780. [DOI: 10.1007/s11596-015-1506-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 07/06/2015] [Indexed: 01/07/2023]
|
7
|
Quantitative histopathology of the Mediterranean mussel (Mytilus galloprovincialis L.) exposed to the harmful dinoflagellate Ostreopsis cf. ovata. J Invertebr Pathol 2015; 127:130-40. [DOI: 10.1016/j.jip.2015.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 02/28/2015] [Accepted: 03/04/2015] [Indexed: 01/28/2023]
|
8
|
Carelli-Alinovi C, Tellone E, Russo AM, Ficarra S, Pirolli D, Galtieri A, Giardina B, Misiti F. NO Metabolites Levels in Human Red Blood Cells are Affected by Palytoxin, an Inhibitor of Na(+)/K(+)-ATPase Pump. Open Biochem J 2014; 8:68-73. [PMID: 25246985 PMCID: PMC4157343 DOI: 10.2174/1874091x01408010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/22/2022] Open
Abstract
Palytoxin (PTX), a marine toxin, represents an increasing hazard for human health. Despite its high toxicity for biological systems, the mechanisms triggered by PTX, are not well understood. The high affinity of PTX for erythrocyte Na(+)/K(+)-ATPase pump is largely known, and it indicates PTX as a sensitive tool to characterize the signal transducer role for Na(+)/K(+)-ATPase pump. Previously, it has been reported that in red blood cells (RBC), probably via a signal transduction generated by the formation of a PTX-Na(+)/K(+)-ATPase complex, PTX alters band 3 functions and glucose metabolism. The present study addresses the question of which other signaling pathways are regulated by Na(+)/K(+)-ATPase in RBC. Here it has been evidenced that PTX following its interaction with Na(+)/K(+)-ATPase pump, alters RBC morphology and this event is correlated to decreases by 30% in nitrites and nitrates levels, known as markers of plasma membrane eNOS activity. Orthovanadate (OV), an antagonist of PTX binding to Na(+)/K(+)-ATPase pump, was able to reverse the effects elicited by PTX. Finally, current investigation firstly suggests that Na(+)/K(+)-ATPase pump, following its interaction with PTX, triggers a signal transduction involved in NO metabolism regulation.
Collapse
Affiliation(s)
- Cristiana Carelli-Alinovi
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L.go F. Vito n.1, 00168 Rome, Italy
| | - Ester Tellone
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagnod'Alcontres 31, 98166 Messina, Italy
| | - Anna Maria Russo
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagnod'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagnod'Alcontres 31, 98166 Messina, Italy
| | - Davide Pirolli
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L.go F. Vito n.1, 00168 Rome, Italy
| | - Antonio Galtieri
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagnod'Alcontres 31, 98166 Messina, Italy
| | - Bruno Giardina
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L.go F. Vito n.1, 00168 Rome, Italy ; Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council (CNR), L.go F. Vito n.1, 00168 Rome, Italy
| | - Francesco Misiti
- Human, Social and Health Department, University of Cassino and Southern Lazio, V. S. Angelo, Loc. Folcara, 03043 Cassino (FR), Italy
| |
Collapse
|
9
|
In vivo and in vitro effects of 42-hydroxy-palytoxin on mouse skeletal muscle: structural and functional impairment. Toxicol Lett 2013; 225:285-93. [PMID: 24378260 DOI: 10.1016/j.toxlet.2013.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022]
Abstract
Palytoxins (PLTXs) are known seafood contaminants and their entrance into the food chain raises concern about possible effects on human health. The increasing number of analogs being identified in edible marine organisms complicates the estimation of the real hazard associated with the presence of PLTX-like compounds. So far, 42-OH-PLTX is one of the few congeners available, and the study of its toxicity represents an important step toward a better comprehension of the mechanism of action of this family of compounds. From this perspective, the aim of this work was to investigate the in vivo and in vitro effect of 42-OH-PLTX on skeletal muscle, one of the most sensitive targets for PLTXs. Our results demonstrate that 42-OH-PLTX causes damage at the skeletal muscle level with a cytotoxic potency similar to that of PLTX. 42-OH-PLTX induces cytotoxicity and cell swelling in a Na(+)-dependent manner similar to the parent compound. However, the limited Ca(2+)-dependence of the toxic insult induced by 42-OH-PLTX suggests a specific mechanism of action for this analog. Our results also suggest an impaired response to the physiological agonist acetylcholine and altered cell elasticity.
Collapse
|
10
|
Fernández DA, Louzao MC, Vilariño N, Espiña B, Fraga M, Vieytes MR, Román A, Poli M, Botana LM. The kinetic, mechanistic and cytomorphological effects of palytoxin in human intestinal cells (Caco-2) explain its lower-than-parenteral oral toxicity. FEBS J 2013; 280:3906-19. [DOI: 10.1111/febs.12390] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Diego A. Fernández
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - M. Carmen Louzao
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Natalia Vilariño
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Begoña Espiña
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
- International Iberian Nanotechnology Laboratory (INL); Braga Portugal
| | - María Fraga
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Mercedes R. Vieytes
- Departamento de Fisiología Animal; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Albina Román
- Unidad de Microscopía Electrónica y Confocal; Edificio CACTUS; Lugo Spain
| | - Mark Poli
- Integrated Toxicology Division; US Army Medical Research Institute of Infectious Diseases; Fort Detrick MD USA
| | - Luis M. Botana
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| |
Collapse
|
11
|
Görögh T, Bèress L, Quabius ES, Ambrosch P, Hoffmann M. Head and neck cancer cells and xenografts are very sensitive to palytoxin: decrease of c-jun n-terminale kinase-3 expression enhances palytoxin toxicity. Mol Cancer 2013; 12:12. [PMID: 23409748 PMCID: PMC3585753 DOI: 10.1186/1476-4598-12-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 02/06/2013] [Indexed: 02/01/2023] Open
Abstract
Objectives Palytoxin (PTX), a marine toxin isolated from the Cnidaria (zooanthid) Palythoa caribaeorum is one of the most potent non-protein substances known. It is a very complex molecule that presents both lipophilic and hydrophilic areas. The effect of PTX was investigated in a series of experiments conducted in head and neck squamous cell carcinoma (HNSCC) cell lines and xenografts. Materials and methods Cell viability, and gene expression of the sodium/potassium-transporting ATPase subumit alpha1 (ATP1AL1) and GAPDH were analyzed in HNSCC cells and normal epithelial cells after treatment with PTX using cytotoxicity-, clonogenic-, and enzyme inhibitor assays as well as RT-PCR and Northern Blotting. For xenograft experiments severe combined immunodeficient (SCID) mice were used to analyze tumor regression. The data were statistically analyzed using One-Way Annova (SPSS vs20). Results Significant toxic effects were observed in tumor cells treated with PTX (LD50 of 1.5 to 3.5 ng/ml) in contrast to normal cells. In tumor cells PTX affected both the release of LDH and the expression of the sodium/potassium-transporting ATPase subunit alpha1 gene suggesting loss of cellular integrity, primarily of the plasma membrane. Furthermore, strong repression of the c-Jun N-terminal kinase 3 (JNK3) mRNA expression was found in carcinoma cells which correlated with enhanced toxicity of PTX suggesting an essential role of the mitogen activated protein kinase (MAPK)/JNK signalling cascades pathway in the mechanisms of HNSCC cell resistance to PTX. In mice inoculated with carcinoma cells, injections of PTX into the xenografted tumors resulted within 24 days in extensive tumor destruction in 75% of the treated animals (LD50 of 68 ng/kg to 83 ng/kg) while no tumor regression occurred in control animals. Conclusions These results clearly provide evidence that PTX possesses preferential toxicity for head and neck carcinoma cells and therefore it is worth further studying its impact which may extend our knowledge of the biology of head and neck cancer.
Collapse
Affiliation(s)
- Tibor Görögh
- Department of Otorhinolaryngology- Head and Neck Surgery, Section of Experimental Oncology, University of Kiel Schleswig-Holstein, Kiel, 24105, Germany.
| | | | | | | | | |
Collapse
|
12
|
Crinelli R, Carloni E, Giacomini E, Penna A, Dominici S, Battocchi C, Ciminiello P, Dell'Aversano C, Fattorusso E, Forino M, Tartaglione L, Magnani M. Palytoxin and an Ostreopsis toxin extract increase the levels of mRNAs encoding inflammation-related proteins in human macrophages via p38 MAPK and NF-κB. PLoS One 2012; 7:e38139. [PMID: 22675515 PMCID: PMC3365899 DOI: 10.1371/journal.pone.0038139] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/02/2012] [Indexed: 12/11/2022] Open
Abstract
Background Palytoxin and, likely, its analogues produced by the dinoflagellate genus Ostreopsis, represent a class of non-proteinaceous compounds displaying high toxicity in animals. Owing to the wide distribution and the poisonous effects of these toxins in humans, their chemistry and mechanism of action have generated a growing scientific interest. Depending on the exposure route, palytoxin and its Ostreopsis analogues may cause several adverse effects on human health, including acute inflammatory reactions which seem more typical of cutaneous and inhalation contact. These observations have led us to hypothesize that these toxins may activate pro-inflammatory signalling cascades. Methodology and Principal Findings Here we demonstrate that palytoxin and a semi-purified Ostreopsis cf. ovata toxin extract obtained from a cultured strain isolated in the NW Adriatic Sea and containing a putative palytoxin and all the ovatoxins so far known – including the recently identified ovatoxin-f – significantly increase the levels of mRNAs encoding inflammation-related proteins in immune cells, i.e. monocyte-derived human macrophages, as assessed by Real-Time PCR analysis. Western immunoblot and electrophoretic mobility shift assays revealed that nuclear transcription factor -κB (NF-κB) is activated in cells exposed to toxins in coincidence with reduced levels of the inhibitory protein IκB-α. Moreover, Mitogen-Activated Protein Kinases (MAPK) were phosphorylated in response to palytoxin, as also reported by others, and to the Ostreopsis toxin extract, as shown here for the first time. By using specific chemical inhibitors, the involvement of NF-κB and p38 MAPK in the toxin-induced transcription and accumulation of Cycloxigenase-2, Tumor Necrosis Factor-α, and Interleukin-8 transcripts has been demonstrated. Conclusions and Significance The identification of specific molecular targets of palytoxin and its Ostreopsis analogues, besides contributing to expand the still limited knowledge of the intracellular signalling cascades affected by these toxins, may have important implications in setting up focused pharmacological interventions, replacing currently used symptomatic treatments.
Collapse
Affiliation(s)
- Rita Crinelli
- Section of Biochemistry and Molecular Biology, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ficarra S, Russo A, Stefanizzi F, Mileto M, Barreca D, Bellocco E, Laganà G, Leuzzi U, Giardina B, Galtieri A, Tellone E. Palytoxin Induces Functional Changes of Anion Transport in Red Blood Cells: Metabolic Impact. J Membr Biol 2011; 242:31-9. [DOI: 10.1007/s00232-011-9374-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
|
14
|
Cagide E, Louzao MC, Espiña B, Ares IR, Vieytes MR, Sasaki M, Fuwa H, Tsukano C, Konno Y, Yotsu-Yamashita M, Paquette LA, Yasumoto T, Botana LM. Comparative cytotoxicity of gambierol versus other marine neurotoxins. Chem Res Toxicol 2011; 24:835-42. [PMID: 21517028 DOI: 10.1021/tx200038j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many microalgae produce compounds that exhibit potent biological activities. Ingestion of marine organisms contaminated with those toxins results in seafood poisonings. In many cases, the lack of toxic material turns out to be an obstacle to make the toxicological investigations needed. In this study, we evaluate the cytotoxicity of several marine toxins on neuroblastoma cells, focusing on gambierol and its effect on cytosolic calcium levels. In addition, we compared the effects of this toxin with ciguatoxin, brevetoxin, and gymnocin-A, with which gambierol shares a similar ladder-like backbone, as well as with polycavernoside A analogue 5, a glycosidic macrolide toxin. For this purpose, different fluorescent dyes were used: Fura-2 to monitor variations in cytosolic calcium levels, Alamar Blue to detect cytotoxicity, and Oregon Green 514 Phalloidin to quantify and visualize modifications in the actin cytoskeleton. Data showed that, while gambierol and ciguatoxin were successful in producing a calcium influx in neuroblastoma cells, gymnocin-A was unable to modify this parameter. Nevertheless, none of the toxins induced morphological changes or alterations in the actin assembly. Although polycavernoside A analogue 5 evoked a sharp reduction of the cellular metabolism of neuroblastoma cells, gambierol scarcely reduced it, and ciguatoxin, brevetoxin, and gymnocin-A failed to produce any signs of cytotoxicity. According to this, sharing a similar polycyclic ether backbone is not enough to produce the same effects on neuroblastoma cells; therefore, more studies should be carried out with these toxins, whose effects may be being underestimated.
Collapse
Affiliation(s)
- E Cagide
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Palytoxin toxicology: Animal studies. Toxicon 2011; 57:470-7. [DOI: 10.1016/j.toxicon.2010.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/02/2010] [Accepted: 10/04/2010] [Indexed: 11/17/2022]
|
16
|
Louzao MC, Ares IR, Cagide E, Espiña B, Vilariño N, Alfonso A, Vieytes MR, Botana LM. Palytoxins and cytoskeleton: An overview. Toxicon 2011; 57:460-9. [DOI: 10.1016/j.toxicon.2010.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/23/2010] [Accepted: 09/28/2010] [Indexed: 11/30/2022]
|
17
|
Zhang X, Wang S, Wang Y, Xia T, Chen J, Cai X. Differential enantioselectivity of quizalofop ethyl and its acidic metabolite: direct enantiomeric separation and assessment of multiple toxicological endpoints. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:876-882. [PMID: 21159424 DOI: 10.1016/j.jhazmat.2010.11.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/24/2010] [Accepted: 11/21/2010] [Indexed: 05/30/2023]
Abstract
Transformation products usually differ in environmental and toxicological properties compared to the parent contaminants, thus causing potential and unknown environmental risks. To elucidate differential chiral recognition of the aryloxypropanoate herbicide quizalofop ethyl (QE) and its primary product (quizalofop acid, QA), their enantiomeric separation and toxicological impacts to two freshwater algae were investigated. Addition of trace water (0.02-0.08%, v/v) to the mobile phase selectively affected retention of analyte and induced simultaneous enantio-separation for the two compounds with intrinsical water-specific resolution mechanisms, although they both possessed a chiral center in the 2-position of propionates. In algal suspensions, QE was rapidly degraded to produce the acid metabolite (QA), and the product further declined, whereas a reduction of QA as starting compound did not occur. Uptake and/or transformation of QE and QA were found a lack of enantioselectivity and isomer inversion, while cellular membrane permeability, membrane potential and algal growth showed enantioselectivity to different extents. These results suggested the presence of receptor chirality that was involved in the toxicological processes but invalid for uptake and transformation. Therefore, quizalofop acid, identified as environmentally relevant contaminant associated with application of the herbicide, participated in the toxicological processes of the parent compound, and exhibited distinct toxicological and chromatographic retention properties.
Collapse
Affiliation(s)
- Xiaoxiang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | | | | | | | | | | |
Collapse
|
18
|
Ramos V, Vasconcelos V. Palytoxin and analogs: biological and ecological effects. Mar Drugs 2010; 8:2021-37. [PMID: 20714422 PMCID: PMC2920541 DOI: 10.3390/md8072021] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/14/2010] [Accepted: 06/29/2010] [Indexed: 11/16/2022] Open
Abstract
Palytoxin (PTX) is a potent marine toxin that was originally found in soft corals from tropical areas of the Pacific Ocean. Soon after, its occurrence was observed in numerous other marine organisms from the same ecological region. More recently, several analogs of PTX were discovered, remarkably all from species of the dinoflagellate genus Ostreopsis. Since these dinoflagellates are also found in other tropical and even in temperate regions, the formerly unsuspected broad distribution of these toxins was revealed. Toxicological studies with these compounds shows repeatedly low LD50 values in different mammals, revealing an acute toxic effect on several organs, as demonstrated by different routes of exposure. Bioassays tested for some marine invertebrates and evidences from environmental populations exposed to the toxins also give indications of the high impact that these compounds may have on natural food webs. The recognition of its wide distribution coupled with the poisoning effects that these toxins can have on animals and especially on humans have concerned the scientific community. In this paper, we review the current knowledge on the effects of PTX and its analogs on different organisms, exposing the impact that these toxins may have in coastal ecosystems.
Collapse
Affiliation(s)
- Vítor Ramos
- Marine and Environmental Research Center–CIIMAR/CIMAR, Porto University, Rua dos Bragas, 289, 4050-123 Porto, Portugal; E-Mail:
| | - Vítor Vasconcelos
- Marine and Environmental Research Center–CIIMAR/CIMAR, Porto University, Rua dos Bragas, 289, 4050-123 Porto, Portugal; E-Mail:
- Faculty of Sciences, Porto University, Rua do Campo Alegre, 4169-007 Porto, Portugal
- * Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351 223401814; Fax: +351 223390608
| |
Collapse
|
19
|
Louzao MC, Espiña B, Cagide E, Ares IR, Alfonso A, Vieytes MR, Botana LM. Cytotoxic effect of palytoxin on mussel. Toxicon 2010; 56:842-7. [PMID: 20206198 DOI: 10.1016/j.toxicon.2010.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 02/05/2010] [Accepted: 02/22/2010] [Indexed: 12/01/2022]
Abstract
Palytoxin is a large and complex polyhydroxylated molecule with potent neurotoxic activity. Dinoflagellates from the Ostreopsis genera were demonstrated to be producers of this compound and analogues. Even though initially palytoxin appearance was restricted to tropical areas, the recent occurrence of Ostreopsis outbreaks in Mediterranean Sea point to a worldwide dissemination probably related to climatic change. Those dinoflagellates can bioaccumulate in shellfish, especially in filter-feeding mollusks and have been involved in damaging effects in seafood or human toxic outbreaks. The present study describes palytoxins effect on metabolic activity of mantle and hepatopancreas cells from the mussel Mytilus galloprovincialis Lmk. Our results indicate that palytoxin is highly cytotoxic to mussel cells; unlike it happens with other toxins more common in European coasts such as okadaic acid and azaspiracid. These findings have a special significance for the marine environment and aquiculture since they are evidence for the ability of palytoxin to affect the integrity of bivalve mollusks that are not adapted to the presence of this toxin.
Collapse
Affiliation(s)
- M Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Ares IR, Cagide E, Louzao MC, Espiña B, Vieytes MR, Yasumoto T, Botana LM. Ostreocin-D impact on globular actin of intact cells. Chem Res Toxicol 2009; 22:374-81. [PMID: 19154108 DOI: 10.1021/tx800273f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ostreocin-D, discovered in the past decade, is a marine toxin produced by dinoflagellates. It shares structure with palytoxin, a toxic compound responsible for the seafood intoxication named clupeotoxism. At the cellular level, the action sites and pharmacological effects for ostreocin-D are still almost unknown. Previously, we demonstrated that these toxins change the filamentous actin cytoskeleton, which is essential for multiple cellular functions. However, nothing has yet been reported about what happens with the unpolymerized actin pool. Here (i) the effects induced by ostreocin-D on unpolymerized actin, (ii) the Ca2+ role in such a process, and (iii) the cytotoxic activity of ostreocin-D on the human neuroblastoma BE(2)-M17 cell line are shown for the first time. Fluorescently labeled DNase I was used for staining of monomeric actin prior to detection with both laser-scanning cytometry and confocal microscopy techniques. Cellular viability was tested through a microplate metabolic activity assay. Ostreocin-D elicited a rearrangement of monomeric actin toward the nuclear region. This event was not accompanied by changes in its content. In addition, the presence or absence of external Ca2+ did not change these results. This toxin was also found to cause a decrease in the viability of neuroblastoma cells, which was inhibited by the specific blocker of Na+/K+-ATPase, ouabain. All these responses were comparable to those obtained with palytoxin under identical conditions. The data suggest that ostreocin-D modulates the unassembled actin pool, activating signal transduction pathways not related to Ca2+ influx in the same way as palytoxin.
Collapse
Affiliation(s)
- Isabel R Ares
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Specific and dynamic detection of palytoxins by in vitro microplate assay with human neuroblastoma cells. Biosci Rep 2008; 29:13-23. [DOI: 10.1042/bsr20080080] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Palytoxin is one of the most complex and biggest molecules known to show extreme acute toxicity. The dinoflagellate Ostreopsis spp., the producer organism of palytoxin, has been shown to be distributed worldwide, thus making palytoxin an emerging toxin. Rat-derived hepatocytes (Clone 9) and BE (2)-M17 human neuroblastoma cells were used to test palytoxin or palytoxin-like compounds by measuring the cell metabolic rate with Alamar Blue. The dose-dependent decrease in viability was specifically inhibited by ouabain in the case of BE (2)-M17 neuroblastoma cells. This is a functional, dynamic and simple test for palytoxins with high sensitivity (as low as 0.2 ng/ml). This method was useful for toxin detection in Ostreopsis extracts and naturally contaminated mussel samples. A comparative study testing toxic mussel extracts by LC (liquid chromatography)-MS/MS (tandem MS), MBA (mouse bioassay), haemolysis neutralization assay and a cytotoxicity test indicated that our method is suitable for the routine determination and monitoring of palytoxins and palytoxin-like compounds.
Collapse
|
22
|
Louzao MC, Ares IR, Cagide E. Marine toxins and the cytoskeleton: a new view of palytoxin toxicity. FEBS J 2008; 275:6067-74. [PMID: 19016862 DOI: 10.1111/j.1742-4658.2008.06712.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Palytoxin is a marine toxin first isolated from zoanthids (genus Palythoa), even though dinoflagellates of the genus Ostreopsis are the most probable origin of the toxin. Ostreopsis has a wide distribution in tropical and subtropical areas, but recently these dinoflagellates have also started to appear in the Mediterranean Sea. Two of the most remarkable properties of palytoxin are the large and complex structure (with different analogs, such as ostreocin-D or ovatoxin-a) and the extreme acute animal toxicity. The Na(+)/K(+)-ATPase has been proposed as receptor for palytoxin. The marine toxin is known to act on the Na(+) pump and elicit an increase in Na(+) permeability, which leads to depolarization and a secondary Ca(2+) influx, interfering with some functions of cells. Studies on the cellular cytoskeleton have revealed that the signaling cascade triggered by palytoxin leads to actin filament system distortion. The activity of palytoxin on the actin cytoskeleton is only partially associated with the cytosolic Ca(2+) changes; therefore, this ion represents an important factor in altering this structure, but it is not the only cause. The goal of the present minireview is to compile the findings reported to date about: (a) how palytoxin and analogs are able to modify the actin cytoskeleton within different cellular models; and (b) what signaling mechanisms could be involved in the modulation of cytoskeletal dynamics by palytoxin.
Collapse
Affiliation(s)
- M Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.
| | | | | |
Collapse
|
23
|
Franchini A, Casarini L, Ottaviani E. Toxicological effects of marine palytoxin evaluated by FETAX assay. CHEMOSPHERE 2008; 73:267-271. [PMID: 18672264 DOI: 10.1016/j.chemosphere.2008.06.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/22/2008] [Accepted: 06/15/2008] [Indexed: 05/26/2023]
Abstract
The FETAX (frog embryo teratogenesis assay Xenopus) is considered a useful bioassay to detect health hazard substances. In the study of the marine toxin palytoxin (PTX), FETAX has revealed evident impacts on embryo mortality, teratogenesis and growth at the two highest (370 and 37nM) concentrations used. Significant mortality rates, peaks in the number of malformed embryos and delays in growth were found, while the total sample number fell by about 80% at the end of the assay with the concentrated dose. The histological analysis to evaluate the morpho-functional induced modifications demonstrated damage to the nervous and muscle tissue, a general reduction in the size of the main inner visceral organs and severe injury to the heart structure in some specimens. No inflammatory response was observed.
Collapse
Affiliation(s)
- Antonella Franchini
- Department of Animal Biology, University of Modena and Reggio Emilia, via Campi 213/D, 41100 Modena, Italy
| | | | | |
Collapse
|
24
|
Valverde I, Lago J, Reboreda A, Vieites JM, Cabado AG. Characteristics of palytoxin-induced cytotoxicity in neuroblastoma cells. Toxicol In Vitro 2008; 22:1432-9. [PMID: 18550326 DOI: 10.1016/j.tiv.2008.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 04/14/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
Cation fluxes appear to play a key role in palytoxin-induced signal. There are other cellular targets that have not been described as well as the biochemical signaling cascades that transmit palytoxin-stimulated signals remain to be clarified. Since modifications of cations, mainly calcium, are generally associated to cell death or apoptosis, we wanted to further evaluate the effect of palytoxin on cell death. Then, in vitro cytotoxic effects of palytoxin were characterized on human neuroblastoma cells. By using several techniques, we studied markers of cell death and apoptosis, such as cell detachment, mitochondrial membrane potential, caspases, DNA damage, LDH leakage, propidium iodide uptake, F-actin depolymerization and inhibition of cellular proliferation. Results show that palytoxin triggers a series of toxic responses; it inhibits cell proliferation, induces cell rounding, detachment from the substratum and F-actin disruption. Among the apoptotic markers studied we only detected fall in mitochondrial membrane potential. Neither caspases activation nor chromatin condensation or DNA fragmentation were observed in palytoxin-treated cells.
Collapse
Affiliation(s)
- I Valverde
- Microbiology and Biotoxins Area, ANFACO-CECOPESCA, Campus Univ de Vigo, Vigo, Spain
| | | | | | | | | |
Collapse
|