1
|
Striedner Y, Arbeithuber B, Moura S, Nowak E, Reinhardt R, Muresan L, Salazar R, Ebner T, Tiemann-Boege I. Exploring the Micro-Mosaic Landscape of FGFR3 Mutations in the Ageing Male Germline and Their Potential Implications in Meiotic Differentiation. Genes (Basel) 2024; 15:191. [PMID: 38397181 PMCID: PMC10888257 DOI: 10.3390/genes15020191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Advanced paternal age increases the risk of transmitting de novo germline mutations, particularly missense mutations activating the receptor tyrosine kinase (RTK) signalling pathway, as exemplified by the FGFR3 mutation, which is linked to achondroplasia (ACH). This risk is attributed to the expansion of spermatogonial stem cells carrying the mutation, forming sub-clonal clusters in the ageing testis, thereby increasing the frequency of mutant sperm and the number of affected offspring from older fathers. While prior studies proposed a correlation between sub-clonal cluster expansion in the testis and elevated mutant sperm production in older donors, limited data exist on the universality of this phenomenon. Our study addresses this gap by examining the testis-expansion patterns, as well as the increases in mutations in sperm for two FGFR3 variants-c.1138G>A (p.G380R) and c.1948A>G (p.K650E)-which are associated with ACH or thanatophoric dysplasia (TDII), respectively. Unlike the ACH mutation, which showed sub-clonal expansion events in an aged testis and a significant increase in mutant sperm with the donor's age, as also reported in other studies, the TDII mutation showed focal mutation pockets in the testis but exhibited reduced transmission into sperm and no significant age-related increase. The mechanism behind this divergence remains unclear, suggesting potential pleiotropic effects of aberrant RTK signalling in the male germline, possibly hindering differentiation requiring meiosis. This study provides further insights into the transmission risks of micro-mosaics associated with advanced paternal age in the male germline.
Collapse
Affiliation(s)
- Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
| | - Barbara Arbeithuber
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Johannes Kepler University, 4020 Linz, Austria;
| | - Sofia Moura
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Elisabeth Nowak
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
| | - Ronja Reinhardt
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 2EL, UK;
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Renato Salazar
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
| | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Johannes Kepler University, 4020 Linz, Austria;
| | - Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
| |
Collapse
|
2
|
Hartl I, Brumovska V, Striedner Y, Yasari A, Schütz GJ, Sevcsik E, Tiemann-Boege I. Measurement of FGFR3 signaling at the cell membrane via total internal reflection fluorescence microscopy to compare the activation of FGFR3 mutants. J Biol Chem 2023; 299:102832. [PMID: 36581204 PMCID: PMC9900515 DOI: 10.1016/j.jbc.2022.102832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) initiate signal transduction via the RAS/mitogen-activated protein kinase pathway by their tyrosine kinase activation known to determine cell growth, tissue differentiation, and apoptosis. Recently, many missense mutations have been reported for FGFR3, but we only know the functional effect for a handful of them. Some mutations result in aberrant FGFR3 signaling and are associated with various genetic disorders and oncogenic conditions. Here, we employed micropatterned surfaces to specifically enrich fluorophore-tagged FGFR3 (monomeric GFP [mGFP]-FGFR3) in certain areas of the plasma membrane of living cells. We quantified receptor activation via total internal reflection fluorescence microscopy of FGFR3 signaling at the cell membrane that captured the recruitment of the downstream signal transducer growth factor receptor-bound 2 (GRB2) tagged with mScarlet (GRB2-mScarlet) to FGFR3 micropatterns. With this system, we tested the activation of FGFR3 upon ligand addition (fgf1 and fgf2) for WT and four FGFR3 mutants associated with congenital disorders (G380R, Y373C, K650Q, and K650E). Our data showed that ligand addition increased GRB2 recruitment to WT FGFR3, with fgf1 having a stronger effect than fgf2. For all mutants, we found an increased basal receptor activity, and only for two of the four mutants (G380R and K650Q), activity was further increased upon ligand addition. Compared with previous reports, two mutant receptors (K650Q and K650E) had either an unexpectedly high or low activation state, respectively. This can be attributed to the different methodology, since micropatterning specifically captures signaling events at the plasma membrane. Collectively, our results provide further insight into the functional effects of mutations to FGFR3.
Collapse
Affiliation(s)
- Ingrid Hartl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Atena Yasari
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Eva Sevcsik
- Insitute of Applied Physics, TU Wien, Vienna, Austria.
| | | |
Collapse
|
3
|
Exome sequencing reveals candidate mutations implicated in sinonasal carcinoma and malignant transformation of sinonasal inverted papilloma. Oral Oncol 2021; 124:105663. [PMID: 34915258 DOI: 10.1016/j.oraloncology.2021.105663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022]
Abstract
We explored somatic mutations in dysplastic sinonasal inverted papilloma (SNIP), SNIP with concomitant sinonasal squamous cell carcinoma (SNSCC), and SNSCC without preceding SNIP. Ten SNIP and SNSCC samples were analyzed with exome sequencing and tested for human papillomavirus. The identified mutations were compared to the most frequently mutated genes in head and neck squamous cell carcinoma (HNSCC) in the COSMIC database. Exome sequencing data were also analyzed for mutations not previously linked to SNSCC. Seven of the most commonly mutated genes in HNSCC and SNSCC in COSMIC harbored mutations in our data. In addition, we identified mutations in 23 genes that are likely to contribute to SNIP and SNSCC oncogenesis.
Collapse
|
4
|
Szybowska P, Kostas M, Wesche J, Haugsten EM, Wiedlocha A. Negative Regulation of FGFR (Fibroblast Growth Factor Receptor) Signaling. Cells 2021; 10:cells10061342. [PMID: 34071546 PMCID: PMC8226934 DOI: 10.3390/cells10061342] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
FGFR (fibroblast growth factor receptor) signaling controls fundamental processes in embryonic, fetal and adult human life. The magnitude, duration, and location of FGFR signaling must be strictly controlled in order to induce the correct biological response. Uncontrolled receptor signaling has been shown to lead to a variety of diseases, such as skeletal disorders and cancer. Here we review the numerous cellular mechanisms that regulate and turn off FGFR signaling, once the receptor is activated. These mechanisms include endocytosis and endocytic sorting, phosphatase activity, negative regulatory proteins and negative feedback phosphorylation events. The mechanisms act together simultaneously or sequentially, controlling the same or different steps in FGFR signaling. Although more work is needed to fully understand the regulation of FGFR signaling, it is clear that the cells in our body have evolved an extensive repertoire of mechanisms that together keep FGFR signaling tightly controlled and prevent excess FGFR signaling.
Collapse
Affiliation(s)
- Patrycja Szybowska
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Michal Kostas
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| | - Antoni Wiedlocha
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| |
Collapse
|
5
|
Abstract
The identification of mutations in FGFR3 in bladder tumors in 1999 led to major interest in this receptor and during the subsequent 20 years much has been learnt about the mutational profiles found in bladder cancer, the phenotypes associated with these and the potential of this mutated protein as a target for therapy. Based on mutational and expression data, it is estimated that >80% of non-muscle-invasive bladder cancers (NMIBC) and ∼40% of muscle-invasive bladder cancers (MIBC) have upregulated FGFR3 signalling, and these frequencies are likely to be even higher if alternative splicing of the receptor, expression of ligands and changes in regulatory mechanisms are taken into account. Major efforts by the pharmaceutical industry have led to development of a range of agents targeting FGFR3 and other FGF receptors. Several of these have entered clinical trials, and some have presented very encouraging early results in advanced bladder cancer. Recent reviews have summarised the drugs and related clinical trials in this area. This review will summarise what is known about the effects of FGFR3 and its mutant forms in normal urothelium and bladder tumors, will suggest when and how this protein contributes to urothelial cancer pathogenesis and will highlight areas that may benefit from further study.
Collapse
Affiliation(s)
- Margaret A. Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James’s, St James’s University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
6
|
Clinical features and molecular genetic analysis of thanatophoric dysplasia type I in a neonate with a de novo c.2419 T > C (p. Ter807Arg) (X807R) mutation in FGFR3. Exp Mol Pathol 2019; 111:104297. [PMID: 31476288 DOI: 10.1016/j.yexmp.2019.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 08/13/2019] [Indexed: 11/23/2022]
Abstract
We present a case report that entails prenatal ultrasonography, postnatal characteristics, and molecular genetic analysis of a newborn who presented with thanatophoric dysplasia type I (TDI) with a mutation in the fibroblast growth factor receptor 3 gene (FGFR3). A malformed newborn with tachypnea, delivered by caesarean at the gestational age of 39 weeks, was the first child of nonconsanguineous parents by a spontaneous pregnancy. Features in prenatal ultrasonography and postnatal radiography were consistent with the diagnosis of TDI, presenting with short body length (38 cm, <3rd percentile), redundant skin folds, a narrow thorax with a bust of 29.5 cm (3-5th percentile), and macrocephaly with a head circumference of 36 cm (>97th percentile). The proposita had postnatal dyspnea and unfortunately died of respiratory failure at the age of 13 days. Molecular genetic analysis revealed a mutation of c.2419 T > C (p. Ter807Arg) (X807R) in FGFR3. Live-born infants with TDI are exceedingly rare, and we hereby report a newborn with a c.2419 T > C mutation in FGFR3, emphasizing phenotype with clinical characteristics and ultrasonographic and X-ray findings, to raise awareness about the heterogeneous patterns of TD.
Collapse
|
7
|
Montone R, Romanelli MG, Baruzzi A, Ferrarini F, Liboi E, Lievens PMJ. Mutant FGFR3 associated with SADDAN disease causes cytoskeleton disorganization through PLCγ1/Src-mediated paxillin hyperphosphorylation. Int J Biochem Cell Biol 2017; 95:17-26. [PMID: 29242050 DOI: 10.1016/j.biocel.2017.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/15/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
K650M/E substitutions in the Fibroblast growth factor receptor 3 (FGFR3) are associated with Severe Achondroplasia with Developmental Delay and Acanthosis Nigricans (SADDAN) and Thanatophoric Dysplasia type II (TDII), respectively. Both SADDAN and TDII present with affected endochondral ossification marked by impaired chondrocyte functions and growth plate disorganization. In vitro, K650M/E substitutions confer FGFR3 constitutive kinase activity leading to impaired biosynthesis and accumulation of immature receptors in endoplasmic reticulum (ER)/Golgi. From those compartments, both SADDAN-FGFR3 and TDII-FGFR3 receptors engender uncontrolled signalling, activating PLCγ1, signal transducer and activator of transcription 1, 3 and 5 (STAT1/3/5) and ERK1/2 effectors. Here, we investigated the impact of SADDAN-FGFR3 and TDII-FGFR3 signalling on cytoskeletal organization. We report that SADDAN-FGFR3, but not TDII-FGFR3, affects F-actin organization by inducing tyrosine hyperphosphorylation of paxillin, a key regulator of focal adhesions and actin dynamics. Paxillin phosphorylation was upregulated at tyrosine 118, a functional target of Src and FAK kinases. By using Src-deficient cells and a Src kinase inhibitor, we established a role played by Src activation in paxillin hyperphosphorylation. Moreover, we found that SADDAN-FGFR3 induced FAK phosphorylation at tyrosines 576/577, suggesting its involvement as a Src co-activator in paxillin phosphorylation. Interestingly, paxillin hyperphosphorylation by SADDAN-FGFR3 caused paxillin mislocalization and partial co-localization with the mutant receptor. Finally, the SADDAN-FGFR3 double mutant unable to bind PLCγ1 failed to promote paxillin hyperphosphorylation, pointing to PLCγ1 as an early player in mediating paxillin alterations. Overall, our findings contribute to elucidate the molecular mechanism leading to cell dysfunctions caused by SADDAN-FGFR3 signalling.
Collapse
Affiliation(s)
- R Montone
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - M G Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - A Baruzzi
- Department of Pathology and Diagnostics, University of Verona Medical School, Verona, Italy
| | - F Ferrarini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - E Liboi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - P M-J Lievens
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy.
| |
Collapse
|
8
|
Couser NL, Pande CK, Turcott CM, Spector EB, Aylsworth AS, Powell CM. Mild achondroplasia/hypochondroplasia with acanthosis nigricans, normal development, and a p.Ser348Cys FGFR3 mutation. Am J Med Genet A 2017; 173:1097-1101. [PMID: 28181399 DOI: 10.1002/ajmg.a.38141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/12/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Pathogenic allelic variants in the fibroblast growth factor receptor 3 (FGFR3) gene have been associated with a number of phenotypes including achondroplasia, hypochondroplasia, thanatophoric dysplasia, Crouzon syndrome with acanthosis nigricans (Crouzonodermoskeletal syndrome), and SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans). Crouzon syndrome with acanthosis nigricans is caused by the pathogenic variant c.1172C>A (p.Ala391Glu) in the FGFR3 gene. The p.Lys650Thr pathogenic variant in FGFR3 has been linked to acanthosis nigricans without significant craniofacial or skeletal abnormalities. Recently, an infant with achondroplasia and a novel p.Ser348Cys FGFR3 mutation was reported. We describe the clinical history of an 8-year-old child with a skeletal dysplasia in the achondroplasia-hypochondroplasia spectrum, acanthosis nigricans, typical development, and the recently described p.Ser348Cys FGFR3 mutation.
Collapse
Affiliation(s)
- Natario L Couser
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Chetna K Pande
- Texas Tech Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas.,Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christie M Turcott
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Elaine B Spector
- Department of Pediatrics and Denver Genetic Laboratories, University of Colorado School of Medicine, Aurora, Colorado
| | - Arthur S Aylsworth
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Cynthia M Powell
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Whelan EC, Nwala AC, Osgood C, Olariu S. Selective mutation accumulation: a computational model of the paternal age effect. Bioinformatics 2016; 32:3790-3797. [PMID: 27531106 DOI: 10.1093/bioinformatics/btw528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/12/2016] [Accepted: 08/09/2016] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION As the mean age of parenthood grows, the effect of parental age on genetic disease and child health becomes ever more important. A number of autosomal dominant disorders show a dramatic paternal age effect due to selfish mutations: substitutions that grant spermatogonial stem cells (SSCs) a selective advantage in the testes of the father, but have a deleterious effect in offspring. In this paper we present a computational technique to model the SSC niche in order to examine the phenomenon and draw conclusions across different genes and disorders. RESULTS We used a Markov chain to model the probabilities of mutation and positive selection with cell divisions. The model was fitted to available data on disease incidence and also mutation assays of sperm donors. Strength of selective advantage is presented for a range of disorders including Apert's syndrome and achondroplasia. Incidence of the diseases was predicted closely for most disorders and was heavily influenced by the site-specific mutation rate and the number of mutable alleles. The model also successfully predicted a stronger selective advantage for more strongly activating gain-of-function mutations within the same gene. Both positive selection and the rate of copy-error mutations are important in adequately explaining the paternal age effect. AVAILABILITY AND IMPLEMENTATION C ++/R source codes and documentation including compilation instructions are available under GNU license at https://github.com/anwala/NicheSimulation CONTACT: ewhel001@odu.eduSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Eoin C Whelan
- Department of Biology, Old Dominion University, Norfolk, VA, USA
| | - Alexander C Nwala
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA
| | | | - Stephan Olariu
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
10
|
Sivanesan D, Beauchamp C, Quinou C, Lee J, Lesage S, Chemtob S, Rioux JD, Michnick SW. IL23R (Interleukin 23 Receptor) Variants Protective against Inflammatory Bowel Diseases (IBD) Display Loss of Function due to Impaired Protein Stability and Intracellular Trafficking. J Biol Chem 2016; 291:8673-85. [PMID: 26887945 DOI: 10.1074/jbc.m116.715870] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 01/19/2023] Open
Abstract
Genome-wide association studies as well as murine models have shown that the interleukin 23 receptor (IL23R) pathway plays a pivotal role in chronic inflammatory diseases such as Crohn disease (CD), ulcerative colitis, psoriasis, and type 1 diabetes. Genome-wide association studies and targeted re-sequencing studies have revealed the presence of multiple potentially causal variants of the IL23R. Specifically the G149R, V362I, and R381Q IL23Rα chain variants are linked to protection against the development of Crohn disease and ulcerative colitis in humans. Moreover, the exact mechanism of action of these receptor variants has not been elucidated. We show that all three of these IL23Rα variants cause a reduction in IL23 receptor activation-mediated phosphorylation of the signal-transducing activator of transcription 3 (STAT3) and phosphorylation of signal transducing activator of transcription 4 (STAT4). The reduction in signaling is due to lower levels of cell surface receptor expression. For G149R, the receptor retention in the endoplasmic reticulum is due to an impairment of receptor maturation, whereas the R381Q and V362I variants have reduced protein stability. Finally, we demonstrate that the endogenous expression of IL23Rα protein from V362I and R381Q variants in human lymphoblastoid cell lines exhibited lower expression levels relative to susceptibility alleles. Our results suggest a convergent cause of IL23Rα variant protection against chronic inflammatory disease.
Collapse
Affiliation(s)
- Durga Sivanesan
- From the Department of Biochemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada, University of Ottawa, Department of Biochemistry, Microbiology, and Immunology, Ottawa, Ontario K1H 8M5, Canada
| | - Claudine Beauchamp
- University of Montreal and the Montreal Heart Institute, Research Center, Montreal, Quebec H1T 1C8, Canada
| | - Christiane Quinou
- CHU Sainte-Justine, Research Centre, Montreal, Quebec H3T 1C5, Canada, and
| | - Jonathan Lee
- University of Ottawa, Department of Biochemistry, Microbiology, and Immunology, Ottawa, Ontario K1H 8M5, Canada
| | - Sylvie Lesage
- Centre of Recherche Hospital Maisonneuve-Rosemont, Department of Microbiology, Infection, and Immunology, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Sylvain Chemtob
- CHU Sainte-Justine, Research Centre, Montreal, Quebec H3T 1C5, Canada, and
| | - John D Rioux
- University of Montreal and the Montreal Heart Institute, Research Center, Montreal, Quebec H1T 1C8, Canada
| | - Stephen W Michnick
- From the Department of Biochemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada,
| |
Collapse
|
11
|
Del Piccolo N, Placone J, Hristova K. Effect of thanatophoric dysplasia type I mutations on FGFR3 dimerization. Biophys J 2015; 108:272-8. [PMID: 25606676 DOI: 10.1016/j.bpj.2014.11.3460] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 11/15/2022] Open
Abstract
Thanatophoric dysplasia type I (TDI) is a lethal human skeletal growth disorder with a prevalence of 1 in 20,000 to 1 in 50,000 births. TDI is known to arise because of five different mutations, all involving the substitution of an amino acid with a cysteine in fibroblast growth factor receptor 3 (FGFR3). Cysteine mutations in receptor tyrosine kinases (RTKs) have been previously proposed to induce constitutive dimerization in the absence of ligand, leading to receptor overactivation. However, their effect on RTK dimer stability has never been measured experimentally. In this study, we characterize the effect of three TDI mutations, Arg248Cys, Ser249Cys, and Tyr373Cys, on FGFR3 dimerization in mammalian membranes, in the absence of ligand. We demonstrate that the mutations lead to surprisingly modest dimer stabilization and to structural perturbations of the dimers, challenging the current understanding of the molecular interactions that underlie TDI.
Collapse
Affiliation(s)
- Nuala Del Piccolo
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Jesse Placone
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Kalina Hristova
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
12
|
Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. Clin Cancer Res 2015; 22:259-67. [PMID: 26373574 DOI: 10.1158/1078-0432.ccr-14-3212] [Citation(s) in RCA: 550] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE Molecular profiling may have prognostic and predictive value, and is increasingly used in the clinical setting. There are more than a dozen fibroblast growth factor receptor (FGFR) inhibitors in development. Optimal therapeutic application of FGFR inhibitors requires knowledge of the rates and types of FGFR aberrations in a variety of cancer types. EXPERIMENTAL DESIGN We analyzed frequencies of FGFR aberrations in 4,853 solid tumors that were, on physician request, tested in a Clinical Laboratory Improvement Amendments (CLIA) laboratory (Foundation Medicine) using next-generation sequencing (182 or 236 genes), and analyzed by N-of-One. RESULTS FGFR aberrations were found in 7.1% of cancers, with the majority being gene amplification (66% of the aberrations), followed by mutations (26%) and rearrangements (8%). FGFR1 (mostly amplification) was affected in 3.5% of 4,853 patients; FGFR2 in 1.5%; FGFR3 in 2.0%; and FGFR4 in 0.5%. Almost every type of malignancy examined showed some patients with FGFR aberrations, but the cancers most commonly affected were urothelial (32% FGFR-aberrant); breast (18%); endometrial (∼13%), squamous lung cancers (∼13%), and ovarian cancer (∼9%). Among 35 unique FGFR mutations seen in this dataset, all but two are found in COSMIC. Seventeen of the 35 are known to be activating, and 11 are transforming. CONCLUSIONS FGFR aberrations are common in a wide variety of cancers, with the majority being gene amplifications or activating mutations. These data suggest that FGFR inhibition could be an important therapeutic option across multiple tumor types.
Collapse
Affiliation(s)
- Teresa Helsten
- Center for Personalized Cancer Therapy, UC San Diego Moores Cancer Center, La Jolla, California.
| | | | - Elisa Arthur
- Center for Personalized Cancer Therapy, UC San Diego Moores Cancer Center, La Jolla, California
| | | | | | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, UC San Diego Moores Cancer Center, La Jolla, California
| |
Collapse
|
13
|
Twigg SRF, Wilkie AOM. A Genetic-Pathophysiological Framework for Craniosynostosis. Am J Hum Genet 2015; 97:359-77. [PMID: 26340332 PMCID: PMC4564941 DOI: 10.1016/j.ajhg.2015.07.006] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/14/2015] [Indexed: 12/24/2022] Open
Abstract
Craniosynostosis, the premature fusion of one or more cranial sutures of the skull, provides a paradigm for investigating the interplay of genetic and environmental factors leading to malformation. Over the past 20 years molecular genetic techniques have provided a new approach to dissect the underlying causes; success has mostly come from investigation of clinical samples, and recent advances in high-throughput DNA sequencing have dramatically enhanced the study of the human as the preferred "model organism." In parallel, however, we need a pathogenetic classification to describe the pathways and processes that lead to cranial suture fusion. Given the prenatal onset of most craniosynostosis, investigation of mechanisms requires more conventional model organisms; principally the mouse, because of similarities in cranial suture development. We present a framework for classifying genetic causes of craniosynostosis based on current understanding of cranial suture biology and molecular and developmental pathogenesis. Of note, few pathologies result from complete loss of gene function. Instead, biochemical mechanisms involving haploinsufficiency, dominant gain-of-function and recessive hypomorphic mutations, and an unusual X-linked cellular interference process have all been implicated. Although few of the genes involved could have been predicted based on expression patterns alone (because the genes play much wider roles in embryonic development or cellular homeostasis), we argue that they fit into a limited number of functional modules active at different stages of cranial suture development. This provides a useful approach both when defining the potential role of new candidate genes in craniosynostosis and, potentially, for devising pharmacological approaches to therapy.
Collapse
Affiliation(s)
- Stephen R F Twigg
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Andrew O M Wilkie
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
| |
Collapse
|
14
|
Cota CD, Davidson B. Mitotic Membrane Turnover Coordinates Differential Induction of the Heart Progenitor Lineage. Dev Cell 2015; 34:505-19. [PMID: 26300448 DOI: 10.1016/j.devcel.2015.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 04/14/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023]
Abstract
In response to microenvironmental cues, embryonic cells form adhesive signaling compartments that influence survival and patterning. Dividing cells detach from the surrounding matrix and initiate extensive membrane remodeling, but the in vivo impact of mitosis on adhesion-dependent signaling remains poorly characterized. We investigate in vivo signaling dynamics using the invertebrate chordate, Ciona intestinalis. In Ciona, matrix adhesion polarizes fibroblast growth factor (FGF)-dependent heart progenitor induction. Here, we show that adhesion inhibits mitotic FGF receptor internalization, leading to receptor enrichment along adherent membranes. Targeted disruption of matrix adhesion promotes uniform FGF receptor internalization and degradation while enhanced adhesion suppresses degradation. Chimeric analysis indicates that integrin β chain-specific impacts on induction are dictated by distinct internalization motifs. We also found that matrix adhesion impacts receptor enrichment through Caveolin-rich membrane domains. These results redefine the relationship between cell division and adhesive signaling, revealing how mitotic membrane turnover orchestrates adhesion-dependent signal polarization.
Collapse
Affiliation(s)
- Christina D Cota
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Brad Davidson
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA.
| |
Collapse
|
15
|
Sarabipour S, Del Piccolo N, Hristova K. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer. Acc Chem Res 2015; 48:2262-9. [PMID: 26244699 PMCID: PMC4841635 DOI: 10.1021/acs.accounts.5b00238] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here we describe an experimental tool, termed quantitative imaging Förster resonance energy transfer (QI-FRET), that enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles that bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), a RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor many pathogenic single amino acid mutations that cause skeletal and cranial dysplasias, as well as cancer, we also study the effects of these mutations on dimerization. First, we show that the A391E mutation, linked to Crouzon syndrome with acanthosis nigricans and to bladder cancer, significantly enhances FGFR3 dimerization in the absence of ligand and thus induces aberrant receptor interactions. Second, we present results about the effect of three cysteine mutations that cause thanatophoric dysplasia, a lethal phenotype. Such cysteine mutations have been hypothesized previously to cause constitutive dimerization, but we find instead that they have a surprisingly modest effect on dimerization. Most of the studied pathogenic mutations also altered FGFR3 dimer structure, suggesting that both increases in dimerization propensities and changes in dimer structure contribute to the pathological phenotypes. The results acquired with the QI-FRET method further our understanding of the interactions between FGFR3 molecules and RTK molecules in general. Since RTK dimerization regulates RTK signaling, our findings advance our knowledge of RTK activity in health and disease. The utility of the QI-FRET method is not restricted to RTKs, and we thus hope that in the future the QI-FRET method will be applied to other classes of membrane proteins, such as channels and G protein-coupled receptors.
Collapse
MESH Headings
- Acanthosis Nigricans/etiology
- Acanthosis Nigricans/genetics
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Craniofacial Dysostosis/etiology
- Craniofacial Dysostosis/genetics
- Dimerization
- Fluorescence Resonance Energy Transfer
- Humans
- Mutagenesis, Site-Directed
- Protein Structure, Tertiary
- Receptor, Fibroblast Growth Factor, Type 3/chemistry
- Receptor, Fibroblast Growth Factor, Type 3/deficiency
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Thanatophoric Dysplasia/etiology
- Thanatophoric Dysplasia/genetics
- Transport Vesicles/chemistry
- Transport Vesicles/metabolism
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Nuala Del Piccolo
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
16
|
Takagi M, Kouwaki M, Kawase K, Shinohara H, Hasegawa Y, Yamada T, Fujiwara I, Sawai H, Nishimura G, Hasegawa T. A novel mutation Ser344Cys in FGFR3 causes achondroplasia with severe platyspondyly. Am J Med Genet A 2015; 167A:2851-4. [PMID: 26126848 DOI: 10.1002/ajmg.a.37231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/11/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Masaki Takagi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.,Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Masanori Kouwaki
- Department of Pediatrics (Neonates), Toyohashi Municipal Hospital, Aichi, Japan
| | - Koya Kawase
- Department of Neonatology and Pediatrics, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Hiroyuki Shinohara
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yukihiro Hasegawa
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Takahiro Yamada
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Ikuma Fujiwara
- Department of Pediatrics, Tohoku University School of Medicine, Miyagi, Japan
| | - Hideaki Sawai
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Hyogo, Japan
| | - Gen Nishimura
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Haugsten EM, Brech A, Liestøl K, Norman JC, Wesche J. Photoactivation approaches reveal a role for Rab11 in FGFR4 recycling and signalling. Traffic 2014; 15:665-83. [PMID: 24589086 DOI: 10.1111/tra.12168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/25/2014] [Accepted: 03/03/2014] [Indexed: 12/24/2022]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) plays important roles during development and in the adult to maintain tissue homeostasis. Moreover, overexpression of FGFR4 or activating mutations in FGFR4 has been identified as tumour-promoting events in several forms of cancer. Endocytosis is important for regulation of signalling receptors and we have previously shown that FGFR4 is mainly localized to transferrin-positive structures after ligand-induced endocytosis. Here, using a cell line with a defined pericentriolar endocytic recycling compartment, we show that FGFR4 accumulates in this compartment after endocytosis. Furthermore, using classical recycling assays and a new, photoactivatable FGFR4-PA-GFP fusion protein combined with live-cell imaging, we demonstrate that recycling of FGFR4 is dependent on Rab11. Upon Rab11b depletion, FGFR4 is trapped in the pericentriolar recycling compartment and the total levels of FGFR4 in cells are increased. Moreover, fibroblast growth factor 1 (FGF1)-induced autophosphorylation of FGFR4 as well as phosphorylation of phospholipase C (PLC)-γ is prolonged in cells depleted of Rab11. Interestingly, the activation of mitogen-activated protein kinase and AKT pathways were not prolonged but rather reduced in Rab11-depleted cells, indicating that recycling of FGFR4 is important for the nature of its signalling output. Thus, Rab11-dependent recycling of FGFR4 maintains proper levels of FGFR4 in cells and regulates FGF1-induced FGFR4 signalling.
Collapse
Affiliation(s)
- Ellen M Haugsten
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, 0379, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, 0379, Norway
| | | | | | | | | |
Collapse
|
18
|
Bocharov EV, Lesovoy DM, Goncharuk SA, Goncharuk MV, Hristova K, Arseniev AS. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies. Structure 2013; 21:2087-93. [PMID: 24120763 PMCID: PMC3844157 DOI: 10.1016/j.str.2013.08.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor receptor 3 (FGFR3) transduces biochemical signals via lateral dimerization in the plasma membrane, and plays an important role in human development and disease. Eight different pathogenic mutations, implicated in cancers and growth disorders, have been identified in the FGFR3 transmembrane segment. Here, we describe the dimerization of the FGFR3 transmembrane domain in membrane-mimicking DPC/SDS (9/1) micelles. In the solved NMR structure, the two transmembrane helices pack into a symmetric left-handed dimer, with intermolecular stacking interactions occurring in the dimer central region. Some pathogenic mutations fall within the helix-helix interface, whereas others are located within a putative alternative interface. This implies that although the observed dimer structure is important for FGFR3 signaling, the mechanism of FGFR3-mediated transduction across the membrane is complex. We propose an FGFR3 signaling mechanism that is based on the solved structure, available structures of isolated soluble FGFR domains, and published biochemical and biophysical data.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation.
| | | | | | | | | | | |
Collapse
|
19
|
Chen F, Sarabipour S, Hristova K. Multiple consequences of a single amino acid pathogenic RTK mutation: the A391E mutation in FGFR3. PLoS One 2013; 8:e56521. [PMID: 23437153 PMCID: PMC3577887 DOI: 10.1371/journal.pone.0056521] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/12/2013] [Indexed: 12/30/2022] Open
Abstract
The A391E mutation in fibroblast growth factor receptor 3 (FGFR3) is the genetic cause for Crouzon syndrome with Acanthosis Nigricans. Here we investigate the effect of this mutation on FGFR3 activation in HEK 293 T cells over a wide range of fibroblast growth factor 1 concentrations using a physical-chemical approach that deconvolutes the effects of the mutation on dimerization, ligand binding, and efficiency of phosphorylation. It is believed that the mutation increases FGFR3 dimerization, and our results verify this. However, our results also demonstrate that the increase in dimerization is not the sole effect of the mutation, as the mutation also facilitates the phosphorylation of critical tyrosines in the activation loop of FGFR3. The activation of mutant FGFR3 is substantially increased due to a combination of these two effects. The low expression of the mutant, however, attenuates its signaling and may explain the mild phenotype in Crouzon syndrome with Acanthosis Nigricans. The results presented here provide new knowledge about the physical basis behind growth disorders and highlight the fact that a single RTK mutation may affect multiple steps in RTK activation.
Collapse
Affiliation(s)
- Fenghao Chen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
20
|
Blaas HGK, Vogt C, Eik-Nes SH. Abnormal gyration of the temporal lobe and megalencephaly are typical features of thanatophoric dysplasia and can be visualized prenatally by ultrasound. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2012; 40:230-234. [PMID: 22374812 DOI: 10.1002/uog.11127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
Autopsies of fetuses with thanatophoric dysplasia (TD) have shown abnormal gyration of the temporal lobes. In addition, the head is relatively large compared with the abdomen. We evaluated by ultrasound six consecutive cases of TD at 19 + 0 to 19 + 6 gestational weeks based on last menstrual period. We observed abnormal and deep transverse sulci in the temporal lobes in all cases; these features were confirmed at autopsy. We performed biometric assessment, including biparietal diameter (BPD) and mean abdominal diameter (MAD). For each MAD value in the TD fetuses, we computed mean and SD of the corresponding BPD values from a population-based registry in the relevant age range, and used them to calculate Z-scores for each BPD/MAD ratio. In the general population, the average BPD/MAD ratio was 1.05. In the TD fetuses, the mean BPD was 51.5 (range, 49-54) mm, the MAD was 45 (range, 41-47) mm and the BPD/MAD ratio was 1.15 (range, 1.09-1.20). The average Z-score of the ratios for TD fetuses was 2.44 (range, 1.05-3.39). The ratios for the TD fetuses were significantly higher than were the population ratios (P = 0.016). At autopsy, the mean brain-to-body weight ratio was 20.6% (range, 15.4-24.1%), which was greater than the corresponding mean ratio of 14.9% in normal fetuses. We conclude that abnormal and deep transverse gyration of the temporal lobes can be visualized by ultrasound in mid-second-trimester fetuses with TD. Due to megalencephaly, fetuses with TD have significantly different body proportions, with a larger BPD compared with normal fetuses.
Collapse
Affiliation(s)
- H-G K Blaas
- National Center for Fetal Medicine, Department of Obstetrics and Gynecology, St Olavs Hospital, Trondheim, Norway.
| | | | | |
Collapse
|
21
|
He L, Serrano C, Niphadkar N, Shobnam N, Hristova K. Effect of the G375C and G346E achondroplasia mutations on FGFR3 activation. PLoS One 2012; 7:e34808. [PMID: 22529939 PMCID: PMC3329527 DOI: 10.1371/journal.pone.0034808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.
Collapse
Affiliation(s)
| | | | | | | | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
22
|
Groesser L, Herschberger E, Landthaler M, Hafner C. FGFR3, PIK3CA and RAS mutations in benign lichenoid keratosis. Br J Dermatol 2012; 166:784-8. [PMID: 22188534 DOI: 10.1111/j.1365-2133.2011.10788.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Benign lichenoid keratoses (BLKs) are solitary skin lesions which have been proposed to represent a regressive form of pre-existent epidermal tumours such as solar lentigo or seborrhoeic keratosis. However, the genetic basis of BLK is unknown. OBJECTIVES FGFR3, PIK3CA and RAS mutations have been shown to be involved in the pathogenesis of seborrhoeic keratosis and solar lentigo. We thus investigated whether these mutations are also present in BLK. METHODS After manual microdissection and DNA isolation, 52 BLKs were screened for FGFR3, PIK3CA and RAS hotspot mutations using SNaPshot(®) multiplex assays. RESULTS We identified 6/52 (12%) FGFR3 mutations, 10/52 (19%) PIK3CA mutations, 6/52 (12%) HRAS mutations and 2/52 (4%) KRAS mutations. FGFR3 and RAS mutations were mutually exclusive. One BLK showed a simultaneous PIK3CA and HRAS mutation. In nine BLKs with a mutation, nonlesional control tissue from the epidermal margin and the dermal lymphocytic infiltrate were wild-type, indicating that these mutations are somatic. To demonstrate that these findings are specific, 10 samples of lichen planus were analysed without evidence for FGFR3, PIK3CA or RAS mutations. CONCLUSIONS Our results indicate that FGFR3, PIK3CA and RAS mutations are present in approximately 50% of BLKs. These findings support the concept on the molecular genetic level that at least a proportion of BLKs represents regressive variants resulting from former benign epidermal tumours such as seborrhoeic keratosis and solar lentigo.
Collapse
Affiliation(s)
- L Groesser
- Department of Dermatology, University of Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|
23
|
Foldynova-Trantirkova S, Wilcox WR, Krejci P. Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum Mutat 2011; 33:29-41. [PMID: 22045636 DOI: 10.1002/humu.21636] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/30/2011] [Indexed: 11/09/2022]
Abstract
In 1994, the field of bone biology was significantly advanced by the discovery that activating mutations in the fibroblast growth factor receptor 3 (FGFR3) receptor tyrosine kinase (TK) account for the common genetic form of dwarfism in humans, achondroplasia (ACH). Other conditions soon followed, with the list of human disorders caused by FGFR3 mutations now reaching at least 10. An array of vastly different diagnoses is caused by similar mutations in FGFR3, including syndromes affecting skeletal development (hypochondroplasia [HCH], ACH, thanatophoric dysplasia [TD]), skin (epidermal nevi, seborrhaeic keratosis, acanthosis nigricans), and cancer (multiple myeloma [MM], prostate and bladder carcinoma, seminoma). Despite many years of research, several aspects of FGFR3 function in disease remain obscure or controversial. As FGFR3-related skeletal dysplasias are caused by growth attenuation of the cartilage, chondrocytes appear to be unique in their response to FGFR3 activation. However, the reasons why FGFR3 inhibits chondrocyte growth while causing excessive cellular proliferation in cancer are not clear. Likewise, the full spectrum of molecular events by which FGFR3 mediates its signaling is just beginning to emerge. This article describes the challenging journey to unravel the mechanisms of FGFR3 function in skeletal dysplasias, the extraordinary cellular manifestations of FGFR3 signaling in chondrocytes, and finally, the progress toward therapy for ACH and cancer.
Collapse
|
24
|
Jonquoy A, Mugniery E, Benoist-Lasselin C, Kaci N, Le Corre L, Barbault F, Girard AL, Le Merrer Y, Busca P, Schibler L, Munnich A, Legeai-Mallet L. A novel tyrosine kinase inhibitor restores chondrocyte differentiation and promotes bone growth in a gain-of-function Fgfr3 mouse model. Hum Mol Genet 2011; 21:841-51. [PMID: 22072392 DOI: 10.1093/hmg/ddr514] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Activating germline fibroblast growth factor receptor 3 (FGFR3) mutations cause achondroplasia (ACH), the most common form of human dwarfism and a spectrum of skeletal dysplasias. FGFR3 is a tyrosine kinase receptor and constitutive FGFR3 activation impairs endochondral ossification and triggers severe disorganization of the cartilage with shortening of long bones. To decipher the role of FGFR3 in endochondral ossification, we analyzed the impact of a novel tyrosine kinase inhibitor (TKI), A31, on both human and mouse mutant FGFR3-expressing cells and on the skeleton of Fgfr3(Y367C/+) dwarf mice. We found that A31 inhibited constitutive FGFR3 phosphorylation and restored the size of embryonic dwarf femurs using an ex vivo culture system. The increase in length of the treated mutant femurs was 2.6 times more than for the wild-type. Premature cell cycle exit and defective chondrocyte differentiation were observed in the Fgfr3(Y367C/+) growth plate. A31 restored normal expression of cell cycle regulators (proliferating cell nuclear antigen, KI67, cyclin D1 and p57) and allowed pre-hypertrophic chondrocytes to properly differentiate into hypertrophic chondocytes. Our data reveal a specific role for FGFR3 in the cell cycle and chondrocyte differentiation and support the development of TKIs for the treatment of FGFR3-related chondrodysplasias.
Collapse
Affiliation(s)
- Aurélie Jonquoy
- INSERM U781-Université Paris Descartes-Hôpital Necker-Enfants Malades, Paris 75015, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
He L, Hristova K. Physical-chemical principles underlying RTK activation, and their implications for human disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:995-1005. [PMID: 21840295 DOI: 10.1016/j.bbamem.2011.07.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 12/15/2022]
Abstract
RTKs, the second largest family of membrane receptors, exert control over cell proliferation, differentiation and migration. In recent years, our understanding of RTK structure and activation in health and disease has skyrocketed. Here we describe experimental approaches used to interrogate RTKs, and we review the quantitative biophysical frameworks and structural considerations that shape our understanding of RTK function. We discuss current knowledge about RTK interactions, focusing on the role of different domains in RTK homodimerization, and on the importance and challenges in RTK heterodimerization studies. We also review our understanding of pathogenic RTK mutations, and the underlying physical-chemical causes for the pathologies. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Lijuan He
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
26
|
The A391E mutation enhances FGFR3 activation in the absence of ligand. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2045-50. [PMID: 21536014 DOI: 10.1016/j.bbamem.2011.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 12/20/2022]
Abstract
The A391E mutation in the transmembrane domain of fibroblast growth factor receptor 3 leads to aberrant development of the cranium. It has been hypothesized that the mutant glutamic acid stabilizes the dimeric receptor due to hydrogen bonding and enhances its ligand-independent activation. We previously tested this hypothesis in lipid bilayers and showed that the mutation stabilizes the isolated transmembrane domain dimer by -1.3°kcal/mol. Here we further test the hypothesis, by investigating the effect of the A391E mutation on the activation of full-length fibroblast growth factor receptor 3 in human embryonic kidney 293T cells in the absence of ligand. We find that the mutation enhances the ligand-independent activation propensity of the receptor by -1.7°kcal/mol. This value is consistent with the observed strength of hydrogen bonds in membranes, and supports the above hypothesis.
Collapse
|
27
|
He L, Horton W, Hristova K. Physical basis behind achondroplasia, the most common form of human dwarfism. J Biol Chem 2010; 285:30103-14. [PMID: 20624921 DOI: 10.1074/jbc.m109.094086] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor receptor 3 (FGFR3) is a receptor tyrosine kinase that plays an important role in long bone development. The G380R mutation in FGFR3 transmembrane domain is known as the genetic cause for achondroplasia, the most common form of human dwarfism. Despite many studies, there is no consensus about the exact mechanism underlying the pathology. To gain further understanding into the physical basis behind the disorder, here we measure the activation of wild-type and mutant FGFR3 in mammalian cells using Western blots, and we analyze the activation within the frame of a physical-chemical model describing dimerization, ligand binding, and phosphorylation probabilities within the dimers. The data analysis presented here suggests that the mutation does not increase FGFR3 dimerization, as proposed previously. Instead, FGFR3 activity in achondroplasia is increased due to increased probability for phosphorylation of the unliganded mutant dimers. This finding has implications for the design of targeted molecular treatments for achondroplasia.
Collapse
Affiliation(s)
- Lijuan He
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
28
|
Li E, Hristova K. Receptor tyrosine kinase transmembrane domains: Function, dimer structure and dimerization energetics. Cell Adh Migr 2010; 4:249-54. [PMID: 20168077 DOI: 10.4161/cam.4.2.10725] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transmembrane (TM) domains of receptor tyrosine kinases (RTKs) play an active role in signaling. They contribute to the stability of full-length receptor dimers and to maintaining a signaling-competent dimeric receptor conformation. In an exciting new development, two structures of RTK TM domains have been solved, a break-through achievement in the field. Here we review these structures, and we discuss recent studies of RTK TM domain dimerization energetics, possible synergies between domains, and the effects of pathogenic RTK TM mutations on structure and dimerization.
Collapse
Affiliation(s)
- Edwin Li
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
29
|
Martínez-Frías ML, de Frutos CA, Bermejo E, Nieto MA. Review of the recently defined molecular mechanisms underlying thanatophoric dysplasia and their potential therapeutic implications for achondroplasia. Am J Med Genet A 2009; 152A:245-55. [DOI: 10.1002/ajmg.a.33188] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
di Martino E, L'Hôte CG, Kennedy W, Tomlinson DC, Knowles MA. Mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell type- and mutation-specific manner. Oncogene 2009; 28:4306-16. [PMID: 19749790 PMCID: PMC2789045 DOI: 10.1038/onc.2009.280] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although activating mutations of FGFR3 are frequent in bladder tumors, little information is available on their specific effects in urothelial cells or the basis for the observed mutation spectrum. We investigated the phenotypic and signaling consequences of three FGFR3 mutations (S249C, Y375C, and K652E) in immortalized normal human urothelial cells (TERT-NHUC) and mouse fibroblasts (NIH-3T3). In TERT-NHUC, all mutant forms of FGFR3 induced phosphorylation of FRS2α and ERK1/2, but not AKT or SRC. PLCγ1 phosphorylation was only observed in TERT-NHUC expressing the common S249C and Y375C mutations, and not the rare K652E mutation. Cells expressing S249C and Y375C FGFR3 displayed an increased saturation density, related to increased proliferation and viability. This effect was significantly dependent on PLCγ1 signaling and undetectable in cells expressing K652E FGFR3, which failed to phosphorylate PLCγ1. In contrast to TERT-NHUC, expression of mutant FGFR3 in NIH-3T3 resulted in phosphorylation of Src and Akt. Additionally, all forms of mutant FGFR3 were able to phosphorylate Plcγ1 and induce morphological transformation, cell proliferation, and anchorage independent growth. Our results indicate that the effects of mutant FGFR3 are both cell type- and mutation-specific. Mutant FGFR3 may confer a selective advantage in the urothelium by overcoming normal contact inhibition of proliferation.
Collapse
Affiliation(s)
- E di Martino
- Cancer Research UK Clinical Centre, Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, UK
| | | | | | | | | |
Collapse
|
31
|
Haugsten EM, Malecki J, Bjørklund SMS, Olsnes S, Wesche J. Ubiquitination of fibroblast growth factor receptor 1 is required for its intracellular sorting but not for its endocytosis. Mol Biol Cell 2008; 19:3390-403. [PMID: 18480409 DOI: 10.1091/mbc.e07-12-1219] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endocytosis and targeting of growth factor receptors for lysosomal degradation have been associated with ubiquitination of the intracellular part of the receptors. To elucidate the role of receptor ubiquitination in internalization and sorting of fibroblast growth factor receptor (FGFR), we constructed several mutants of FGFR1 in which lysines, potential ubiquitination sites, were substituted for arginines. Substitution of all lysine residues in the intracellular part of FGFR1 resulted in inactivation of the tyrosine kinase domain of the receptor. However, several multilysine FGFR1 mutants, where up to 26 of 29 lysines in the intracellular part of the receptor were mutated, retained tyrosine kinase activity. The active multilysine mutants were poorly ubiquitinated, but internalized normally, indicating that ubiquitination of the receptor is not required for endocytosis. In contrast, degradation of the multilysine mutants was dramatically reduced as the mutants were inefficiently transported to lysosomes but rather sorted to recycling endosomes. The altered sorting resulted in sustained signaling. The duration of FGFR1 signaling seems to be tightly regulated by receptor ubiquitination and subsequent sorting to the lysosomes for degradation.
Collapse
Affiliation(s)
- Ellen Margrethe Haugsten
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
32
|
Abstract
Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and dimerization. Here, we review the regulatory mechanisms found to control the classical protein-tyrosine phosphatases.
Collapse
|
33
|
Corrigendum. FEBS J 2007. [DOI: 10.1111/j.1742-4658.2007.05963.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|