1
|
Dadhich R, Kapoor S. Various Facets of Pathogenic Lipids in Infectious Diseases: Exploring Virulent Lipid-Host Interactome and Their Druggability. J Membr Biol 2020; 253:399-423. [PMID: 32833058 PMCID: PMC7443855 DOI: 10.1007/s00232-020-00135-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Lipids form an integral, structural, and functional part of all life forms. They play a significant role in various cellular processes such as membrane fusion, fission, endocytosis, protein trafficking, and protein functions. Interestingly, recent studies have revealed their more impactful and critical involvement in infectious diseases, starting with the manipulation of the host membrane to facilitate pathogenic entry. Thereafter, pathogens recruit specific host lipids for the maintenance of favorable intracellular niche to augment their survival and proliferation. In this review, we showcase the lipid-mediated host pathogen interplay in context of life-threatening viral and bacterial diseases including the recent SARS-CoV-2 infection. We evaluate the emergent lipid-centric approaches adopted by these pathogens, while delineating the alterations in the composition and organization of the cell membrane within the host, as well as the pathogen. Lastly, crucial nexus points in their interaction landscape for therapeutic interventions are identified. Lipids act as critical determinants of bacterial and viral pathogenesis by altering the host cell membrane structure and functions.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
2
|
Dumas F, Haanappel E. Lipids in infectious diseases - The case of AIDS and tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1636-1647. [PMID: 28535936 DOI: 10.1016/j.bbamem.2017.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 02/07/2023]
Abstract
Lipids play a central role in many infectious diseases. AIDS (Acquired Immune Deficiency Syndrome) and tuberculosis are two of the deadliest infectious diseases to have struck mankind. The pathogens responsible for these diseases, Human Immunodeficiency Virus-1 and Mycobacterium tuberculosis, rely on lipids and on lipid membrane properties to gain access to their host cells, to persist in them and ultimately to egress from their hosts. In this Review, we discuss the life cycles of these pathogens and the roles played by lipids and membranes. We then give an overview of therapies that target lipid metabolism, modulate host membrane properties or implement lipid-based drug delivery systems. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Fabrice Dumas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
3
|
Oliva R, Emendato A, Vitiello G, De Santis A, Grimaldi M, D'Ursi AM, Busi E, Del Vecchio P, Petraccone L, D'Errico G. On the microscopic and mesoscopic perturbations of lipid bilayers upon interaction with the MPER domain of the HIV glycoprotein gp41. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1904-13. [DOI: 10.1016/j.bbamem.2016.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 12/15/2022]
|
4
|
Dumas F, Preira P, Salomé L. Membrane organization of virus and target cell plays a role in HIV entry. Biochimie 2014; 107 Pt A:22-7. [PMID: 25193376 PMCID: PMC7126522 DOI: 10.1016/j.biochi.2014.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/22/2014] [Indexed: 01/08/2023]
Abstract
The initial steps of the Human Immunodeficiency Virus (HIV) replication cycle play a crucial role that arbitrates viral tropism and infection efficiency. Before the release of its genome into the host cell cytoplasm, viruses operate a complex sequence of events that take place at the plasma membrane of the target cell. The first step is the binding of the HIV protein envelope (Env) to the cellular receptor CD4. This triggers conformational changes of the gp120 viral protein that allow its interaction with a co-receptor that can be either CCR5 or CXCR4, defining the tropism of the virus entering the cell. This sequential interaction finally drives the fusion of the viral and host cell membrane or to the endocytosis of the viruses. Here, we discuss how the membrane composition and organization of both the virus and the target cell can affect these steps and thus influence the capability of the viruses to infect cells. An overview of lipid role in HIV infection is proposed. We discuss the influence of lipid composition on HIV early steps of infection. We discuss the role of membrane organization an dynamics in HIV entry.
Collapse
Affiliation(s)
- Fabrice Dumas
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077 Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France.
| | - Pascal Preira
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077 Toulouse, France
| | - Laurence Salomé
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077 Toulouse, France.
| |
Collapse
|
5
|
Lee KK, Pessi A, Gui L, Santoprete A, Talekar A, Moscona A, Porotto M. Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus. J Biol Chem 2011; 286:42141-42149. [PMID: 21994935 DOI: 10.1074/jbc.m111.254243] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We previously described fusion-inhibitory peptides that are targeted to the cell membrane by cholesterol conjugation and potently inhibit enveloped viruses that fuse at the cell surface, including HIV, parainfluenza, and henipaviruses. However, for viruses that fuse inside of intracellular compartments, fusion-inhibitory peptides have exhibited very low antiviral activity. We propose that for these viruses, too, membrane targeting via cholesterol conjugation may yield potent compounds. Here we compare the activity of fusion-inhibitory peptides derived from the influenza hemagglutinin (HA) and show that although the unconjugated peptides are inactive, the cholesterol-conjugated compounds are effective inhibitors of infectivity and membrane fusion. We hypothesize that the cholesterol moiety, by localizing the peptides to the target cell membrane, allows the peptides to follow the virus to the intracellular site of fusion. The cholesterol-conjugated peptides trap HA in a transient intermediate state after fusion is triggered but before completion of the refolding steps that drive the merging of the viral and cellular membranes. These results provide proof of concept for an antiviral strategy that is applicable to intracellularly fusing viruses, including known and emerging viral pathogens.
Collapse
Affiliation(s)
- Kelly K Lee
- Department of Medicinal Chemistry and Biomolecular Structure and Design Program, University of Washington, Seattle, Washington 98195.
| | - Antonello Pessi
- PeptiPharma, Via dei Castelli Romani 22, 00040 Pomezia, Rome, Italy
| | - Long Gui
- Department of Medicinal Chemistry and Biomolecular Structure and Design Program, University of Washington, Seattle, Washington 98195
| | - Alessia Santoprete
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Aparna Talekar
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Anne Moscona
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Matteo Porotto
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021.
| |
Collapse
|
6
|
Abstract
OBJECTIVES 2F5 and 4E10 are two broadly neutralizing monoclonal antibodies (mAbs) targeting the membrane proximal external region (MPER) of HIV-1 gp41 envelope protein. This region, which contacts the viral membrane, is highly conserved and has been regarded as a promising target for vaccine development. We aimed to clarify the basis of 2F5 and 4E10 molecular interactions with epitope cores in MPER and lipid bilayers. DESIGN Microscopy-based approaches were used to infer and quantify the effects of both mAbs on membranes, in the presence and absence of the epitope cores. Supported lipid bilayers (SLBs), with and without phase separation, were used as membrane models. Fluorescent-labeled and nonlabeled MPER-derived peptides containing both 2F5 and 4E10 epitopes were used. METHODS mAbs 2F5 and 4E10 membrane interactions, in the presence or absence of MPER-derived peptides, were evaluated by combined atomic force and confocal microscopies. RESULTS Both mAbs form lipid-segregated aggregates on SLBs and do not induce other significant membrane perturbations. Furthermore, the affinity of MPER toward membranes is differently affected by both mAbs and correlates with the mAbs-epitope core lipid interactions. 2F5 is able to dock the MPER peptide on the membrane, whereas 4E10 extracts the MPER from the lipid bilayer. CONCLUSION The results reveal the molecular details underneath 2F5/4E10 membrane-epitope binding and a model is proposed to explain the differential mAbs neutralization efficacies, which relates to the exposure of the epitopes in the lipid bilayers and the role of the lipids in mAb-epitope binding.
Collapse
|
7
|
Franquelim HG, Veiga AS, Weissmüller G, Santos NC, Castanho MA. Unravelling the molecular basis of the selectivity of the HIV-1 fusion inhibitor sifuvirtide towards phosphatidylcholine-rich rigid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1234-43. [DOI: 10.1016/j.bbamem.2010.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/19/2010] [Accepted: 02/08/2010] [Indexed: 11/29/2022]
|
8
|
Talhari DT, Moraes ML, Castilho PV, Oliveira ON, Beltramini LM, Araújo APU. Interaction of a C-terminal peptide of Bos taurus diacylglycerol acyltransferase 1 with model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2320-5. [PMID: 19664998 DOI: 10.1016/j.bbamem.2009.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/09/2009] [Accepted: 07/30/2009] [Indexed: 11/24/2022]
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final and dedicated step in the synthesis of triacylglycerol, which is believed to involve the lipids oleoyl coenzyme A (OCoA) and dioleoyl-sn-glycerol (DOG) as substrates. In this work we investigated the interaction of a specific peptide, referred to as SIT2, on the C-terminal of DGAT1 (HKWCIRHFYKP) with model membranes made with OCoA and DOG in Langmuir monolayers and liposomes. According to the circular dichroism and fluorescence data, conformational changes on SIT2 were seen only on liposomes containing OCoA and DOG. In Langmuir monolayers, SIT2 causes the isotherms of neat OCoA and DOG monolayers to be expanded, but has negligible effect on mixed monolayers of OCoA and DOG. This synergistic interaction between SIT2 and DOG+OCoA may be rationalized in terms of a molecular model in which SIT2 may serve as a linkage between the two lipids. Our results therefore provide molecular-level evidence for the interaction between this domain and the substrates OCoA and DOG for the synthesis of triacylglycerol.
Collapse
Affiliation(s)
- Daniella T Talhari
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
D'Errico G, Vitiello G, D'Ursi AM, Marsh D. Interaction of short modified peptides deriving from glycoprotein gp36 of feline immunodeficiency virus with phospholipid membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:873-82. [PMID: 19415263 PMCID: PMC2728064 DOI: 10.1007/s00249-009-0454-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/27/2009] [Accepted: 04/07/2009] [Indexed: 11/26/2022]
Abstract
A tryptophan-rich octapeptide, C8 (Ac-Trp-Glu-Asp-Trp-Val-Gly-Trp-Ile-NH(2)), modelled on the membrane-proximal external region of the feline immunodeficiency virus (FIV) gp36 glycoprotein ectodomain, exhibits potent antiviral activity against FIV. A mechanism has been proposed by which the peptide, being positioned on the surface of the cell membrane, inhibits its fusion with the virus. In the present work, peptide-lipid interactions of C8 with dimyristoyl phosphatidylcholine liposomes are investigated using electron spin resonance spectroscopy of spin-labelled lipids. Three other peptides, obtained from modifications of C8, have also been investigated, in an attempt to clarify the essential molecular features of the interactions involving the tryptophan residues. The results show that C8 adsorbs strongly on the bilayer surface. Membrane binding requires not only the presence of the Trp residues in the sequence, but also their common orientation on one side of the peptide that is engendered by the WX(2) WX(2) W motif. Membrane interaction correlates closely with peptide antiviral activity, indicating that the membrane is essential in stabilizing the peptide conformation that will be able to inhibit viral infection.
Collapse
Affiliation(s)
- Gerardino D'Errico
- Dipartimento di Chimica Paolo Corradini, Università di Napoli Federico II, Complesso di Monte S. Angelo, Via Cinthia, 80126, Naples, Italy.
| | | | | | | |
Collapse
|
10
|
The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol Mol Biol Rev 2008; 72:54-84, table of contents. [PMID: 18322034 DOI: 10.1128/mmbr.00020-07] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Enormous efforts have been made to produce a protective vaccine against human immunodeficiency virus type 1; there has been little success. However, the identification of broadly neutralizing antibodies against epitopes on the highly conserved membrane-proximal external region (MPER) of the gp41 envelope protein has delineated this region as an attractive vaccine target. Furthermore, emerging structural information on the MPER has provided vaccine designers with new insights for building relevant immunogens. This review describes the current state of the field regarding (i) the structure and function of the gp41 MPER; (ii) the structure and binding mechanisms of the broadly neutralizing antibodies 2F5, 4E10, and Z13; and (iii) the development of an MPER-targeting vaccine. In addition, emerging approaches to vaccine design are presented.
Collapse
|
11
|
Franquelim HG, Loura LMS, Santos NC, Castanho MARB. Sifuvirtide screens rigid membrane surfaces. establishment of a correlation between efficacy and membrane domain selectivity among HIV fusion inhibitor peptides. J Am Chem Soc 2008; 130:6215-23. [PMID: 18410103 DOI: 10.1021/ja711247n] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sifuvirtide, a 36 amino acid negatively charged peptide, is a novel and promising HIV fusion inhibitor, presently in clinical trials. Because of the aromatic amino acid residues of the peptide, its behavior in aqueous solution and the interaction with lipid-membrane model systems (large unilammelar vesicles) were studied by using mainly fluorescence spectroscopy techniques (both steady-state and time-resolved). No significant aggregation of the peptide was observed with aqueous solution. Various biological and nonbiological lipid-membrane compositions were analyzed, and atomic force microscopy was used to visualize phase separation in several of those mixtures. Results showed no significant interaction of the peptide, neither with zwitterionic fluid lipid membranes (liquid-disordered phase), nor with cholesterol-rich membranes (liquid-ordered phase). However, significant partitioning was observed with the positively charged lipid models (K(p) = (2.2 +/- 0.3) x 10(3)), serving as a positive control. Fluorescence quenching using Förster resonance acrylamide and lipophilic probes was carried out to study the location of the peptide in the membrane models. In the gel-phase DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) membrane model, an adsorption of the peptide at the surface of these membranes was observed and confirmed by using Förster resonance energy-transfer experiments. These results indicate a targeting of the peptide to gel-phase domains relatively to liquid-disordered or liquid-ordered phase domains. This larger affinity and selectivity toward the more rigid areas of the membranes, where most of the receptors are found, or to viral membrane, may help explain the improved clinical efficiency of sifuvirtide, by providing a local increased concentration of the peptide at the fusion site.
Collapse
Affiliation(s)
- Henri G Franquelim
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | |
Collapse
|
12
|
Pérez-Berná AJ, Guillén J, Moreno MR, Bernabeu A, Pabst G, Laggner P, Villalaín J. Identification of the membrane-active regions of hepatitis C virus p7 protein: biophysical characterization of the loop region. J Biol Chem 2008; 283:8089-101. [PMID: 18198177 DOI: 10.1074/jbc.m709413200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have identified the membrane-active regions of the hepatitis C virus p7 protein by performing an exhaustive study of membrane rupture, hemifusion, and fusion induced by a p7-derived peptide library on model membranes having different phospholipid compositions. We report the identification in p7 of a highly membranotropic region located at the loop domain of the protein. Here, we have investigated the interaction of a peptide patterned after the p7 loop (peptide p7(L)), studying its binding and interaction with the lipid bilayer, and evaluated the binding-induced structural changes of the peptide and the phospholipids. We show that positively rich p7(L) strongly binds to negatively charged phospholipids and it is localized in a shallow position in the bilayer. Furthermore, peptide p7(L) exhibits a high tendency to oligomerize in the presence of phospholipids, which could be the driving force for the formation of the active ion channel. Therefore, our findings suggest that the p7 loop could be an attractive candidate for antiviral drug development, because it could be a target for antiviral compounds that may lead to new vaccine strategies.
Collapse
Affiliation(s)
- Ana J Pérez-Berná
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|