1
|
Kaličanin N, Balaž AM, Prodanović O, Prodanović R. Heterologous Expression and Partial Characterization of a Putative Opine Dehydrogenase from a Metagenomic Sequence of Desulfohalobium retbaense. Chembiochem 2023; 24:e202300414. [PMID: 37531452 DOI: 10.1002/cbic.202300414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
The aim of this research was to prove the function of the putative opine dehydrogenase from Desulfohalobium retbaense and to characterize the enzyme in terms of functional and kinetic parameters. A putative opine dehydrogenase was identified from a metagenomic library by a sequence-based technique search of the metagenomic library, and afterward was successfully heterologously produced in Escherichia coli. In order to examine its potential for applications in the synthesis of secondary amines, first the substrate specificity of the enzyme towards different amino donors and amino acceptors was determined. The highest affinity was observed towards small amino acids, preferentially L-alanine, and when it comes to α-keto acids, pyruvate proved to be a preferential amino acceptor. The highest activity was observed at pH 6.5 in the absence of salts. The enzyme showed remarkable stability in a wide range of experimental conditions, such as broad pH stability (from 6.0-11.0 after 30 min incubation in buffers at a certain pH), stability in the presence of NaCl up to 3.0 M for 24 h, it retained 80 % of the initial activity after 1 h incubation at 45 °C, and 65 % of the initial activity after 24 h incubation in 30 % dimethyl sulfoxide.
Collapse
Affiliation(s)
- Nevena Kaličanin
- University of Belgrade-Institute of Chemistry Technology and Metallurgy National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| | - Ana Marija Balaž
- University of Belgrade-Institute of Chemistry Technology and Metallurgy National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
- Department of Otorhinolaryngology Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany
| | - Olivera Prodanović
- University of Belgrade-Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Radivoje Prodanović
- Department of Biochemistry, University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
2
|
Telek A, Molnár Z, Vértessy BG, Tasnádi G. Opine dehydrogenases, an underexplored enzyme family for the enzymatic synthesis of chiral amines. Biotechnol Bioeng 2023; 120:2793-2808. [PMID: 37334502 DOI: 10.1002/bit.28469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/17/2023] [Accepted: 06/03/2023] [Indexed: 06/20/2023]
Abstract
Opines and opine-type chemicals are valuable natural products with diverse biochemical roles, and potential synthetic building blocks of bioactive compounds. Their synthesis involves reductive amination of ketoacids with amino acids. This transformation has high synthetic potential in producing enantiopure secondary amines. Nature has evolved opine dehydrogenases for this chemistry. To date, only one enzyme has been used as biocatalyst, however, analysis of the available sequence space suggests more enzymes to be exploited in synthetic organic chemistry. This review summarizes the current knowledge of this underexplored enzyme class, highlights key molecular, structural, and catalytic features with the aim to provide a comprehensive general description of opine dehydrogenases, thereby supporting future enzyme discovery and protein engineering studies.
Collapse
Affiliation(s)
- András Telek
- Department of Applied Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
- Servier Research Institute of Medicinal Chemistry, Budapest, Hungary
| | - Zsófia Molnár
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Beáta G Vértessy
- Department of Applied Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor Tasnádi
- Servier Research Institute of Medicinal Chemistry, Budapest, Hungary
| |
Collapse
|
3
|
Li M, Wu B, Zhang P, Li Y, Xu W, Wang K, Qiu Q, Zhang J, Li J, Zhang C, Fan J, Feng C, Chen Z. Genomes of Two Flying Squid Species Provide Novel Sights into Adaptations of Cephalopods to Pelagic Life. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1053-1065. [PMID: 36216027 DOI: 10.1016/j.gpb.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Pelagic cephalopods have evolved a series of fascinating traits, such as excellent visual acuity, high-speed agility, and photophores for adaptation to open pelagic oceans. However, the genetic mechanisms underpinning these traits are not well understood. Thus, in this study, we obtained high-quality genomes of two purpleback flying squid species (Sthenoteuthis oualaniensis and Sthenoteuthis sp.), with sizes of 5450 Mb and 5651 Mb, respectively. Comparative genomic analyses revealed that the S-crystallin subfamily SL20-1 associated with visual acuity in the purpleback flying squid lineage was significantly expanded, and the evolution of high-speed agility for the species was accompanied by significant positive selection pressure on genes related to energy metabolism. These molecular signals might have contributed to the evolution of their adaptative predatory and anti-predatory traits. In addition, the transcriptomic analysis provided clear indications of the evolution of the photophores of purpleback flying squids, especially the recruitment of new genes and energy metabolism-related genes which may have played key functional roles in the process.
Collapse
Affiliation(s)
- Min Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Baosheng Wu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Ye Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jie Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Chi Zhang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Jiangtao Fan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zuozhi Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China.
| |
Collapse
|
4
|
Simple rules govern the diversity of bacterial nicotianamine-like metallophores. Biochem J 2019; 476:2221-2233. [PMID: 31300464 DOI: 10.1042/bcj20190384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
In metal-scarce environments, some pathogenic bacteria produce opine-type metallophores mainly to face the host's nutritional immunity. This is the case of staphylopine, pseudopaline and yersinopine, identified in Staphylococcus aureus, Pseudomonas aeruginosa and Yersinia pestis, respectively. Depending on the species, these metallophores are synthesized by two (CntLM) or three enzymes (CntKLM), CntM catalyzing the last step of biosynthesis using diverse substrates (pyruvate or α-ketoglutarate), pathway intermediates (xNA or yNA) and cofactors (NADH or NADPH). Here, we explored the substrate specificity of CntM by combining bioinformatic and structural analysis with chemical synthesis and enzymatic studies. We found that NAD(P)H selectivity is mainly due to the amino acid at position 33 (S. aureus numbering) which ensures a preferential binding to NADPH when it is an arginine. Moreover, whereas CntM from P. aeruginosa preferentially uses yNA over xNA, the staphylococcal enzyme is not stereospecific. Most importantly, selectivity toward α-ketoacids is largely governed by a single residue at position 150 of CntM (S. aureus numbering): an aspartate at this position ensures selectivity toward pyruvate, whereas an alanine leads to the consumption of both pyruvate and α-ketoglutarate. Modifying this residue in P. aeruginosa led to a complete reversal of selectivity. Thus, the diversity of opine-type metallophore is governed by the absence/presence of a cntK gene encoding a histidine racemase, and the amino acid residue at position 150 of CntM. These two simple rules predict the production of a fourth metallophore by Paenibacillus mucilaginosus, which was confirmed in vitro and called bacillopaline.
Collapse
|
5
|
|
6
|
Gohlke H, Hergert U, Meyer T, Mulnaes D, Grieshaber MK, Smits SHJ, Schmitt L. Binding region of alanopine dehydrogenase predicted by unbiased molecular dynamics simulations of ligand diffusion. J Chem Inf Model 2013; 53:2493-8. [PMID: 24066861 DOI: 10.1021/ci400370y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Opine dehydrogenases catalyze the reductive condensation of pyruvate with L-amino acids. Biochemical characterization of alanopine dehydrogenase from Arenicola marina revealed that this enzyme is highly specific for L-alanine. Unbiased molecular dynamics simulations with a homology model of alanopine dehydrogenase captured the binding of L-alanine diffusing from solvent to a putative binding region near a distinct helix-kink-helix motif. These results and sequence comparisons reveal how mutations and insertions within this motif dictate the L-amino acid specificity.
Collapse
Affiliation(s)
- Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry and ‡Institute of Biochemistry, Department of Mathematics and Natural Sciences, Heinrich-Heine-University , 40204 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Vázquez-Dorado S, de Carlos A, Comesaña AS, Sanjuán A. Phylogenetic comparison of opine dehydrogenase sequences from marine invertebrates. Biochem Genet 2012; 51:154-65. [PMID: 23117699 DOI: 10.1007/s10528-012-9551-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 07/18/2012] [Indexed: 11/24/2022]
Abstract
Three cDNA sequences encoding putative opine dehydrogenase (OpDH) enzymes from the mussel Mytilus galloprovincialis were obtained. The deduced amino acid sequences were clearly distinguishable from each other, showing that several OpDH transcripts could occur in the mussel tissues (p distance 0.46-0.55). When these sequences were aligned and compared with published databank proteins, the range of identity among the M. galloprovincialis OpDH and the strombine dehydrogenase from Ostrea edulis was 51-59 %, the best hit in the three comparisons, followed by OpDH enzymes from other marine invertebrates. Sequence alignment revealed structural motifs possibly related to the binding sites of the substrates. A phylogenetic analysis compared M. galloprovincialis OpDH and annotated sequences belonging to five phyla and seven taxonomic classes, including 19 species, representing the five OpDH protein family members. The phylogenetic tree clustered the OpDH enzymes according to the evolutionary relationships of the species and not to the biochemical reaction catalyzed.
Collapse
Affiliation(s)
- Sandra Vázquez-Dorado
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310, Vigo, Pontevedra, Spain.
| | | | | | | |
Collapse
|
8
|
van Os N, Smits SHJ, Schmitt L, Grieshaber MK. Control of D-octopine formation in scallop adductor muscle as revealed through thermodynamic studies of octopine dehydrogenase. ACTA ACUST UNITED AC 2012; 215:1515-22. [PMID: 22496288 DOI: 10.1242/jeb.069344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Octopine dehydrogenase (OcDH) from the adductor muscle of the great scallop, Pecten maximus (Linné, 1758), catalyses the NADH-dependent condensation of l-arginine and pyruvate to d-octopine, NAD(+) and water during escape swimming and subsequent recovery. During exercise, ATP is mainly provided by the transphosphorylation of phospho-l-arginine and to some extent by anaerobic glycolysis. NADH resulting from the glycolytic oxidation of 3-phosphoglyceraldehyde to 1,3-bisphosphoglycerate is reoxidized during d-octopine formation. In some scallops d-octopine starts to accumulate during prolonged, strong muscular work, whereas in other species d-octopine formation commences towards the end of swimming and continues to rise during subsequent recovery. The activity of OcDH is regulated by a mandatory, consecutive mode of substrate binding in the order NADH, l-arginine and pyruvate, as demonstrated by isothermal titration calorimetry. The first regulatory step in the forward reaction comprises the binding of NADH to OcDH with a dissociation constant K(d) of 0.014±0.006 mmol l(-1), which reflects a high affinity and tight association of the apoenzyme with the co-substrate. In the reverse direction, NAD(+) binds first with a K(d) of 0.20±0.004 mmol l(-1) followed by d-octopine. The binary OcDH-NADH complex associates with l-arginine with a K(d) of 5.5±0.05 mmol l(-1). Only this ternary complex combines with pyruvate, with an estimated K(d) of approximately 0.8 mmol l(-1) as deduced from pyruvate concentrations determined in the muscle of exhausted scallops. At tissue concentrations of pyruvate between 0.5 and 1.2 mmol l(-1) in the valve adductor muscle of fatigued P. maximus, binding of pyruvate to OcDH plays the most decisive role in initiating OcDH activity and, therefore, in controlling the onset of d-octopine formation.
Collapse
Affiliation(s)
- Nadine van Os
- Institute of Zoophysiology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
9
|
Vázquez-Dorado S, Sanjuan A, Comesaña ÁS, de Carlos A. Identification of octopine dehydrogenase from Mytilus galloprovincialis. Comp Biochem Physiol B Biochem Mol Biol 2011; 160:94-103. [DOI: 10.1016/j.cbpb.2011.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/12/2011] [Accepted: 07/12/2011] [Indexed: 11/29/2022]
|
10
|
Smits SHJ, Meyer T, Mueller A, van Os N, Stoldt M, Willbold D, Schmitt L, Grieshaber MK. Insights into the mechanism of ligand binding to octopine dehydrogenase from Pecten maximus by NMR and crystallography. PLoS One 2010; 5:e12312. [PMID: 20808820 PMCID: PMC2924402 DOI: 10.1371/journal.pone.0012312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022] Open
Abstract
Octopine dehydrogenase (OcDH) from the adductor muscle of the great scallop, Pecten maximus, catalyzes the NADH dependent, reductive condensation of L-arginine and pyruvate to octopine, NAD+, and water during escape swimming and/or subsequent recovery. The structure of OcDH was recently solved and a reaction mechanism was proposed which implied an ordered binding of NADH, L-arginine and finally pyruvate. Here, the order of substrate binding as well as the underlying conformational changes were investigated by NMR confirming the model derived from the crystal structures. Furthermore, the crystal structure of the OcDH/NADH/agmatine complex was determined which suggests a key role of the side chain of L-arginine in protein cataylsis. Thus, the order of substrate binding to OcDH as well as the molecular signals involved in octopine formation can now be described in molecular detail.
Collapse
Affiliation(s)
- Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Doucet-Beaupré H, Dubé C, Breton S, Pörtner HO, Blier PU. Thermal sensitivity of metabolic enzymes in subarctic and temperate freshwater mussels (Bivalvia: Unionoida). J Therm Biol 2010. [DOI: 10.1016/j.jtherbio.2009.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Smits SHJ, Mueller A, Grieshaber MK, Schmitt L. Coenzyme- and His-tag-induced crystallization of octopine dehydrogenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:836-9. [PMID: 18765918 DOI: 10.1107/s1744309108025487] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/07/2008] [Indexed: 05/25/2023]
Abstract
Over the last decade, protein purification has become more efficient and standardized through the introduction of affinity tags. The choice and position of the tag, however, can directly influence the process of protein crystallization. Octopine dehydrogenase (OcDH) without a His tag and tagged protein constructs such as OcDH-His(5) and OcDH-LEHis(6) have been investigated for their crystallizability. Only OcDH-His(5) yielded crystals; however, they were multiple. To improve crystal quality, the cofactor NADH was added, resulting in single crystals that were suitable for structure determination. As shown by the structure, the His(5) tag protrudes into the cleft between the NADH and L-arginine-binding domains and is mainly fixed in place by water molecules. The protein is thereby stabilized to such an extent that the formation of crystal contacts can proceed. Together with NADH, the His(5) tag obviously locks the enzyme into a specific conformation which induces crystal growth.
Collapse
Affiliation(s)
- Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
13
|
Smits SHJ, Mueller A, Schmitt L, Grieshaber MK. A structural basis for substrate selectivity and stereoselectivity in octopine dehydrogenase from Pecten maximus. J Mol Biol 2008; 381:200-11. [PMID: 18599075 DOI: 10.1016/j.jmb.2008.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 05/26/2008] [Accepted: 06/01/2008] [Indexed: 11/25/2022]
Abstract
Octopine dehydrogenase [N(2)-(D-1-carboxyethyl)-L-arginine:NAD(+) oxidoreductase] (OcDH) from the adductor muscle of the great scallop Pecten maximus catalyzes the reductive condensation of l-arginine and pyruvate to octopine during escape swimming. This enzyme, which is a prototype of opine dehydrogenases (OpDHs), oxidizes glycolytically born NADH to NAD(+), thus sustaining anaerobic ATP provision during short periods of strenuous muscular activity. In contrast to some other OpDHs, OcDH uses only l-arginine as the amino acid substrate. Here, we report the crystal structures of OcDH in complex with NADH and the binary complexes NADH/l-arginine and NADH/pyruvate, providing detailed information about the principles of substrate recognition, ligand binding and the reaction mechanism. OcDH binds its substrates through a combination of electrostatic forces and size selection, which guarantees that OcDH catalysis proceeds with substrate selectivity and stereoselectivity, giving rise to a second chiral center and exploiting a "molecular ruler" mechanism.
Collapse
Affiliation(s)
- Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | | | | | | |
Collapse
|