1
|
Yang Y, Xu B, Haverstick J, Ibtehaz N, Muszyński A, Chen X, Chowdhury MEH, Zughaier SM, Zhao Y. Differentiation and classification of bacterial endotoxins based on surface enhanced Raman scattering and advanced machine learning. NANOSCALE 2022; 14:8806-8817. [PMID: 35686584 PMCID: PMC9575096 DOI: 10.1039/d2nr01277d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bacterial endotoxin, a major component of the Gram-negative bacterial outer membrane leaflet, is a lipopolysaccharide shed from bacteria during their growth and infection and can be utilized as a biomarker for bacterial detection. Here, the surface enhanced Raman scattering (SERS) spectra of eleven bacterial endotoxins with an average detection amount of 8.75 pg per measurement have been obtained based on silver nanorod array substrates, and the characteristic SERS peaks have been identified. With appropriate spectral pre-processing procedures, different classical machine learning algorithms, including support vector machine, k-nearest neighbor, random forest, etc., and a modified deep learning algorithm, RamanNet, have been applied to differentiate and classify these endotoxins. It has been found that most conventional machine learning algorithms can attain a differentiation accuracy of >99%, while RamanNet can achieve 100% accuracy. Such an approach has the potential for precise classification of endotoxins and could be used for rapid medical diagnoses and therapeutic decisions for pathogenic infections.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| | - Beibei Xu
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - James Haverstick
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Nabil Ibtehaz
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xianyan Chen
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Muhammad E H Chowdhury
- Department of Electrical Engineering, College of Engineering, Qatar University, PO. Box 2713, Doha, Qatar
| | - Susu M Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO. Box 2713, Doha, Qatar.
| | - Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
The intersect of genetics, environment, and microbiota in asthma-perspectives and challenges. J Allergy Clin Immunol 2021; 147:781-793. [PMID: 33678251 DOI: 10.1016/j.jaci.2020.08.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
In asthma, a significant portion of the interaction between genetics and environment occurs through microbiota. The proposed mechanisms behind this interaction are complex and at times contradictory. This review covers recent developments in our understanding of this interaction: the "microbial hypothesis" and the "farm effect"; the role of endotoxin and genetic variation in pattern recognition systems; the interaction with allergen exposure; the additional involvement of host gut and airway microbiota; the role of viral respiratory infections in interaction with the 17q21 and CDHR3 genetic loci; and the importance of in utero and early-life timing of exposures. We propose a unified framework for understanding how all these phenomena interact to drive asthma pathogenesis. Finally, we point out some future challenges for continued research in this field, in particular the need for multiomic integration, as well as the potential utility of asthma endotyping.
Collapse
|
3
|
Liang Y, Guo Z, Gao L, Guo Q, Wang L, Han Y, Duan K, Shen L. The role of the temperature-regulated acyltransferase (PA3242) on growth, antibiotic resistance and virulence in Pseudomonas aeruginosa. Microb Pathog 2016; 101:126-135. [DOI: 10.1016/j.micpath.2016.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/14/2016] [Accepted: 09/21/2016] [Indexed: 11/26/2022]
|
4
|
Identification and characterisation of a biosynthetic locus for Moraxella bovis lipo-oligosaccharide. Carbohydr Res 2016; 421:9-16. [DOI: 10.1016/j.carres.2015.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/13/2015] [Accepted: 12/03/2015] [Indexed: 01/10/2023]
|
5
|
Reinforcing Lipid A Acylation on the Cell Surface of Acinetobacter baumannii Promotes Cationic Antimicrobial Peptide Resistance and Desiccation Survival. mBio 2015; 6:e00478-15. [PMID: 25991684 PMCID: PMC4442142 DOI: 10.1128/mbio.00478-15] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Acinetobacter baumannii is an emerging Gram-negative pathogen found in hospitals and intensive care units. In order to persist in hospital environments, A. baumannii withstands desiccative conditions and can rapidly develop multidrug resistance to conventional antibiotics. Cationic antimicrobial peptides (CAMPs) have served as therapeutic alternatives because they target the conserved lipid A component of the Gram-negative outer membrane to lyse the bacterial cell. However, many Gram-negative pathogenic bacteria, including A. baumannii, fortify their outer membrane with hepta-acylated lipid A to protect the cell from CAMP-dependent cell lysis. Whereas in Escherichia coli and Salmonella, increased production of the outer membrane acyltransferase PagP results in formation of protective hepta-acylated lipid A, which reinforces the lipopolysaccharide portion of the outer membrane barrier, A. baumannii does not carry a gene that encodes a PagP homolog. Instead, A. baumannii has evolved a PagP-independent mechanism to synthesize protective hepta-acylated lipid A. Taking advantage of a recently adapted A. baumannii genetic recombineering system, we characterized two putative acyltransferases in A. baumannii designated LpxLAb (A. baumannii LpxL) and LpxMAb (A. baumannii LpxM), which transfer one and two lauroyl (C12:0) acyl chains, respectively, during lipid A biosynthesis. Hepta-acylation of A. baumannii lipid A promoted resistance to vertebrate and polymyxin CAMPs, which are prescribed as last-resort treatment options. Intriguingly, our analysis also showed that LpxMAb-dependent acylation of lipid A is essential for A. baumannii desiccation survival, a key resistance mechanism for survival in hospital environments. Compounds that inhibit LpxMAb-dependent hepta-acylation of lipid A could act synergistically with CAMPs to provide innovative transmission prevention strategies and treat multidrug-resistant infections. IMPORTANCE Acinetobacter baumannii infections can be life threatening, and disease can progress in a variety of host tissues. Current antibiotic regimen and disinfectant strategies have failed to limit nosocomial A. baumannii infections. Instead, the rate of A. baumannii infection among health care communities has skyrocketed due to the bacterium's adaptability. Its aptitude for survival over extended periods on inanimate objects, such as catheters, respirators, and surfaces in intensive care units, or on the hands of health care workers and its ability to rapidly develop antibiotic resistance make A. baumannii a threat to health care communities. Emergence of multidrug- and extremely drug-resistant A. baumannii illustrates the ineffectiveness of current prevention and treatment options. Our analysis to understand how A. baumannii resists cationic antimicrobial peptide (CAMP)-mediated and desiccative killing revealed two lipid A acyltransferases that produce protective hepta-acylated lipid A. Our work suggests that inhibiting lipid A biosynthesis by targeting the acyltransferase LpxMAb (A. baumannii LpxM) could provide a novel target to combat this pathogen.
Collapse
|
6
|
de Vries SPW, Rademakers RJA, van der Gaast-de Jongh CE, Eleveld MJ, Hermans PWM, Bootsma HJ. Deciphering the genetic basis ofMoraxella catarrhaliscomplement resistance: a critical role for the disulphide bond formation system. Mol Microbiol 2013; 91:522-37. [DOI: 10.1111/mmi.12475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Stefan P. W. de Vries
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Rob J. A. Rademakers
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| | | | - Marc J. Eleveld
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Peter W. M. Hermans
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Hester J. Bootsma
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
7
|
Xu H, Ling J, Gao Q, He H, Mu X, Yan Z, Gao S, Liu X. Role of the lpxM lipid A biosynthesis pathway gene in pathogenicity of avian pathogenic Escherichia coli strain E058 in a chicken infection model. Vet Microbiol 2013; 166:516-26. [DOI: 10.1016/j.vetmic.2013.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/25/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
|
8
|
Murphy TF, Chonmaitree T, Barenkamp S, Kyd J, Nokso-Koivisto J, Patel JA, Heikkinen T, Yamanaka N, Ogra P, Swords WE, Sih T, Pettigrew MM. Panel 5: Microbiology and immunology panel. Otolaryngol Head Neck Surg 2013; 148:E64-89. [PMID: 23536533 DOI: 10.1177/0194599812459636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The objective is to perform a comprehensive review of the literature from January 2007 through June 2011 on the virology, bacteriology, and immunology related to otitis media. DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS Three subpanels with co-chairs comprising experts in the virology, bacteriology, and immunology of otitis media were formed. Each of the panels reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a second draft was created. The entire panel met at the 10th International Symposium on Recent Advances in Otitis Media in June 2011 and discussed the review and refined the content further. A final draft was created, circulated, and approved by the panel. CONCLUSION Excellent progress has been made in the past 4 years in advancing an understanding of the microbiology and immunology of otitis media. Advances include laboratory-based basic studies, cell-based assays, work in animal models, and clinical studies. IMPLICATIONS FOR PRACTICE The advances of the past 4 years formed the basis of a series of short-term and long-term research goals in an effort to guide the field. Accomplishing these goals will provide opportunities for the development of novel interventions, including new ways to better treat and prevent otitis media.
Collapse
Affiliation(s)
- Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, New York 14203, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gao S, Ren D, Peng D, Zhang W, Muszyński A, Carlson RW, Gu XX. Late acyltransferase genes lpxX and lpxL jointly contribute to the biological activities of Moraxella catarrhalis. J Med Microbiol 2013; 62:807-812. [PMID: 23475908 DOI: 10.1099/jmm.0.056846-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipo-oligosaccharide (LOS) is a major surface component and virulence factor of the human respiratory pathogen Moraxella catarrhalis. Two late acyltransferase genes, lpxX and lpxL, have been identified involved in the incorporation of acyloxyacyl-linked secondary acyl chains into lipid A during M. catarrhalis LOS biosynthesis. In this study, a double mutant with a deletion of both the lpxX and lpxL genes in M. catarrhalis strain O35E was constructed and named O35ElpxXL. Structural analysis of lipid A showed that the O35ElpxXL mutant lacked two decanoic acids (10 : 0) and one dodecanoic (lauric) acid (12 : 0). In comparison with the O35E parental strain and the single mutants O35ElpxX and O35ElpxL, the double mutant O35ElpxXL displayed prominently decreased endotoxin content, reduced resistance to normal human serum and accelerated bacterial clearance at 0, 3 and 6 h after an aerosol challenge in a mouse model of bacterial pulmonary clearance. These results indicate that these two genes encoding late acyltransferases responsible for lipid A biosynthesis jointly contribute to the biological activities and pathogenicity of M. catarrhalis. The double mutant O35ElpxXL with dramatically reduced toxicity is proposed as a potential vaccine candidate against M. catarrhalis infections for further investigation.
Collapse
Affiliation(s)
- Song Gao
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Dabin Ren
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Daxin Peng
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Wenhong Zhang
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Russell W Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xin-Xing Gu
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| |
Collapse
|
10
|
Construction of iucB and iucBiutA mutants of avian pathogenic Escherichia coli and evaluation of their pathogenicity. Vet Microbiol 2012; 159:420-31. [DOI: 10.1016/j.vetmic.2012.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 04/14/2012] [Accepted: 04/20/2012] [Indexed: 11/20/2022]
|
11
|
Math RK, Jin HM, Kim JM, Hahn Y, Park W, Madsen EL, Jeon CO. Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism. PLoS One 2012; 7:e35784. [PMID: 22563400 PMCID: PMC3338528 DOI: 10.1371/journal.pone.0035784] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/21/2012] [Indexed: 11/19/2022] Open
Abstract
Alteromonas species are globally distributed copiotrophic bacteria in marine habitats. Among these, sea-tidal flats are distinctive: undergoing seasonal temperature and oxygen-tension changes, plus periodic exposure to petroleum hydrocarbons. Strain SN2 of the genus Alteromonas was isolated from hydrocarbon-contaminated sea-tidal flat sediment and has been shown to metabolize aromatic hydrocarbons there. Strain SN2's genomic features were analyzed bioinformatically and compared to those of Alteromonas macleodii ecotypes: AltDE and ATCC 27126. Strain SN2's genome differs from that of the other two strains in: size, average nucleotide identity value, tRNA genes, noncoding RNAs, dioxygenase gene content, signal transduction genes, and the degree to which genes collected during the Global Ocean Sampling project are represented. Patterns in genetic characteristics (e.g., GC content, GC skew, Karlin signature, CRISPR gene homology) indicate that strain SN2's genome architecture has been altered via horizontal gene transfer (HGT). Experiments proved that strain SN2 was far more cold tolerant, especially at 5°C, than the other two strains. Consistent with the HGT hypothesis, a total of 15 genomic islands in strain SN2 likely confer ecological fitness traits (especially membrane transport, aromatic hydrocarbon metabolism, and fatty acid biosynthesis) specific to the adaptation of strain SN2 to its seasonally cold sea-tidal flat habitat.
Collapse
Affiliation(s)
- Renukaradhya K. Math
- School of Biological Sciences, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Mi Jin
- School of Biological Sciences, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Republic of Korea
| | - Jeong Myeong Kim
- School of Biological Sciences, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Republic of Korea
| | - Yoonsoo Hahn
- School of Biological Sciences, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Republic of Korea
| | - Woojun Park
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Eugene L. Madsen
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Che Ok Jeon
- School of Biological Sciences, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Zhang C, Li Y, Tao G, Li Y, Wang X. Characterization of lipid A Cronobacter sakazakii. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:531-538. [PMID: 20625206 DOI: 10.1255/ejms.1074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have characterized the structure of lipid A in food-borne pathogen Cronobacter sakazakii BAA-894. Lipid A molecules were purified by mild acid hydrolysis, DEAE-cellulose anion exchange chromatography and preparative thin-layer chromatography. Its structure was analyzed by electrospray ionization/mass spectrometry. Two lipid A species have been found in C. sakazakii BAA-894. The majority has a structure of disaccharide of glucosamine, phosphorylated at 1- and 4'-positions, and acylated with primary 3-hydroxymyristoyl chains at 2-, 3-, 2'- and 3'-positions and secondary myristoyl residues at 2'- and 3'- positions. The other contains a secondary lauroyl chain at 2'-position in place of the myristoyl residue.
Collapse
Affiliation(s)
- Chan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | | | | | | | | |
Collapse
|
13
|
Molecular aspects of Moraxella catarrhalis pathogenesis. Microbiol Mol Biol Rev 2009; 73:389-406, Table of Contents. [PMID: 19721084 DOI: 10.1128/mmbr.00007-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, Moraxella catarrhalis has established its position as an important human mucosal pathogen, no longer being regarded as just a commensal bacterium. Further, current research in the field has led to a better understanding of the molecular mechanisms involved in M. catarrhalis pathogenesis, including mechanisms associated with cellular adherence, target cell invasion, modulation of the host's immune response, and metabolism. Additionally, in order to be successful in the host, M. catarrhalis has to be able to interact and compete with the commensal flora and overcome stressful environmental conditions, such as nutrient limitation. In this review, we provide a timely overview of the current understanding of the molecular mechanisms associated with M. catarrhalis virulence and pathogenesis.
Collapse
|
14
|
Corrigendum. FEBS J 2009. [DOI: 10.1111/j.1742-4658.2009.07096.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|