1
|
Yi XF, Gao RL, Sun L, Wu ZX, Zhang SL, Huang LT, Han CB, Ma JT. Dual antitumor immunomodulatory effects of PARP inhibitor on the tumor microenvironment: A counterbalance between anti-tumor and pro-tumor. Biomed Pharmacother 2023; 163:114770. [PMID: 37105074 DOI: 10.1016/j.biopha.2023.114770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023] Open
Abstract
Poly (ADP-ribose)-polymerases (PARPs) play an essential role in the maintenance of genome integrity, DNA repair, and apoptosis. PARP inhibitors (PARPi) exert antitumor effects via synthetic lethality and PARP trapping. PARPi impact the antitumor immune response by modulating the tumor microenvironment, and their effect has dual properties of promoting and inhibiting the antitumor immune response. PARPi promote M1 macrophage polarization, antigen presentation by dendritic cells, infiltration of B and T cells and their killing capacity and inhibit tumor angiogenesis. PARPi can also inhibit the activation and function of immune cells by upregulating PD-L1. In this review, we summarize the dual immunomodulatory effects and possible underlying mechanisms of PARPi, providing a basis for the design of combination regimens for clinical treatment and the identification of populations who may benefit from these therapies.
Collapse
Affiliation(s)
- Xiao-Fang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruo-Lin Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhi-Xuan Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shu-Ling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-Bo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jie-Tao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
He Z, Zhang S. Tumor-Associated Macrophages and Their Functional Transformation in the Hypoxic Tumor Microenvironment. Front Immunol 2021; 12:741305. [PMID: 34603327 PMCID: PMC8481680 DOI: 10.3389/fimmu.2021.741305] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are some of the most abundant immune cells within tumors and perform a broad repertoire of functions via diverse phenotypes. On the basis of their functional differences in tumor growth, TAMs are usually categorized into two subsets of M1 and M2. It is well established that the tumor microenvironment (TME) is characterized by hypoxia along with tumor progression. TAMs adopt an M1-like pro-inflammatory phenotype at the early phases of oncogenesis and mediate immune response that inhibits tumor growth. As tumors progress, anabatic hypoxia of the TME gradually induces the M2-like functional transformation of TAMs by means of direct effects, metabolic influence, lactic acidosis, angiogenesis, remodeled stroma, and then urges them to participate in immunosuppression, angiogenesis and other tumor-supporting procedure. Therefore, thorough comprehension of internal mechanism of this TAM functional transformation in the hypoxic TME is of the essence, and might provide some novel insights in hypoxic tumor immunotherapeutic strategies.
Collapse
Affiliation(s)
- Zicong He
- Department of Radiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuixing Zhang
- Department of Radiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Patel JC, Singh A, Tulswani R, Sharma YK, Khurana P, Ragumani S. Identification of VEGFA-centric temporal hypoxia-responsive dynamic cardiopulmonary network biomarkers. Life Sci 2021; 281:119718. [PMID: 34147483 DOI: 10.1016/j.lfs.2021.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
AIMS Hypoxia, a pathophysiological condition, is profound in several cardiopulmonary diseases (CPD). Every individual's lethality to a hypoxia state differs in terms of hypoxia exposure time, dosage units and dependent on the individual's genetic makeup. Most of the proposed markers for CPD were generally aim to distinguish disease samples from normal samples. Although, as per the 2018 GOLD guidelines, clinically useful biomarkers for several cardio pulmonary disease patients in stable condition have yet to be identified. We attempt to address these key issues through the identification of Dynamic Network Biomarkers (DNB) to detect hypoxia induced early warning signals of CPD before the catastrophic deterioration. MATERIALS AND METHODS The human microvascular endothelial tissues microarray datasets (GSE11341) of lung and cardiac expose to hypoxia (1% O2) for 3, 24 and 48 h were retrieved from the public repository. The time dependent differentially expressed genes were subjected to tissue specificity and promoter analysis to filtrate the noise levels in the networks and to dissect the tissue specific hypoxia induced genes. These filtered out genes were used to construct the dynamic segmentation networks. The hypoxia induced dynamic differentially expressed genes were validated in the lung and heart tissues of male rats. These rats were exposed to hypobaric hypoxia (simulated altitude of 25,000 or PO2 - 282 mm of Hg) progressively for 3, 24 and 48 h. KEY FINDINGS To identify the temporal key genes regulated in hypoxia, we ranked the dominant genes based on their consolidated topological features from tissue specific networks, time dependent networks and dynamic networks. Overall topological ranking described VEGFA as a single node dynamic hub and strongly communicated with tissue specific genes to carry forward their tissue specific information. We named this type of VEGFAcentric dynamic networks as "V-DNBs". As a proof of principle, our methodology helped us to identify the V-DNBs specific for lung and cardiac tissues namely V-DNBL and V-DNBC respectively. SIGNIFICANCE Our experimental studies identified VEGFA, SLC2A3, ADM and ENO2 as the minimum and sufficient candidates of V-DNBL. The dynamic expression patterns could be readily exploited to capture the pre disease state of hypoxia induced pulmonary vascular remodelling. Whereas in V-DNBC the minimum and sufficient candidates are VEGFA, SCL2A3, ADM, NDRG1, ENO2 and BHLHE40. The time dependent single node expansion indicates V-DNBC could also be the pre disease state pathological hallmark for hypoxia-associated cardiovascular remodelling. The network cross-talk and expression pattern between V-DNBL and V-DNBC are completely distinct. On the other hand, the great clinical advantage of V-DNBs for pre disease predictions, a set of samples during the healthy condition should suffice. Future clinical studies might further shed light on the predictive power of V-DNBs as prognostic and diagnostic biomarkers for CPD.
Collapse
Affiliation(s)
- Jai Chand Patel
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Ajeet Singh
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Rajkumar Tulswani
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Yogendra Kumar Sharma
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Pankaj Khurana
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Sugadev Ragumani
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India.
| |
Collapse
|
4
|
Mordhorst BR, Murphy SL, Schauflinger M, Rojas Salazar S, Ji T, Behura SK, Wells KD, Green JA, Prather RS. Porcine Fetal-Derived Fibroblasts Alter Gene Expression and Mitochondria to Compensate for Hypoxic Stress During Culture. Cell Reprogram 2019; 20:225-235. [PMID: 30089028 PMCID: PMC6088251 DOI: 10.1089/cell.2018.0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Warburg effect is characterized by decreased mitochondrial oxidative phosphorylation and increased glycolytic flux in adequate oxygen. The preimplantation embryo has been described to have characteristics of the Warburg effect, including similar changes in gene expression and mitochondria, which are more rudimentary in appearance. We hypothesized hypoxia would facilitate anaerobic glycolysis in fibroblasts thereby promoting gene expression and media metabolite production reflecting the Warburg effect hallmarks in early embryos. Additionally, we speculated that hypoxia would induce a rudimentary small mitochondrial phenotype observed in several cell types evidenced to demonstrate the Warburg effect. While many have examined the role hypoxia plays in pathological conditions, few studies have investigated changes in primary cells which could be used in somatic cell nuclear transfer. We found that cells grown in 1.25% O2 had normal cell viability and more, but smaller mitochondria. Several hypoxia-inducible genes were identified, including seven genes for glycolytic enzymes. In conditioned media from hypoxic cells, the quantities of gluconolactone, cytosine, and uric acid were decreased indicating higher consumption than control cells. These results indicate that fibroblasts alter gene expression and mitochondria to compensate for hypoxic stress and maintain viability. Furthermore, the metabolic changes observed, making them more similar to preimplantation embryos, could be facilitating nuclear reprogramming making these cells more amendable to future use in somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Bethany R Mordhorst
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Stephanie L Murphy
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Martin Schauflinger
- 2 Electron Microscopy Core Facility, University of Missouri , Columbia, Missouri
| | | | - Tieming Ji
- 3 Department of Statistics, University of Missouri , Columbia, Missouri
| | - Susanta K Behura
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Kevin D Wells
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Jonathan A Green
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Randall S Prather
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| |
Collapse
|
5
|
Distinct hypoxic regulation of preadipocyte factor-1 (Pref-1) in preadipocytes and mature adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:334-342. [DOI: 10.1016/j.bbamcr.2017.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/15/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023]
|
6
|
Moon Y, Park B, Park H. Hypoxic repression of CYP7A1 through a HIF-1α- and SHP-independent mechanism. BMB Rep 2017; 49:173-8. [PMID: 26521940 PMCID: PMC4915232 DOI: 10.5483/bmbrep.2016.49.3.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 01/05/2023] Open
Abstract
Liver cells experience hypoxic stress when drug-metabolizing enzymes excessively consume O2 for hydroxylation. Hypoxic stress changes the transcription of several genes by activating a heterodimeric transcription factor called hypoxia-inducible factor- 1α/β (HIF-1α/β). We found that hypoxic stress (0.1% O2) decreased the expression of cytochrome P450 7A1 (CYP7A1), a rate-limiting enzyme involved in bile acid biosynthesis. Chenodeoxycholic acid (CDCA), a major component of bile acids, represses CYP7A1 by activating a transcriptional repressor named small heterodimer partner (SHP). We observed that hypoxia decreased the levels of both CDCA and SHP, suggesting that hypoxia repressed CYP7A1 without inducing SHP. The finding that overexpression of HIF-1α increased the activity of the CYP7A1 promoter suggested that hypoxia decreased the expression of CYP7A1 in a HIF-1-independent manner. Thus, the results of this study suggested that hypoxia decreased the activity of CYP7A1 by limiting its substrate O2, and by decreasing the transcription of CYP7A1. [BMB Reports 2016; 49(3): 173-178].
Collapse
Affiliation(s)
- Yunwon Moon
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Bongju Park
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
7
|
Lin SC, Liao WL, Lee JC, Tsai SJ. Hypoxia-regulated gene network in drug resistance and cancer progression. Exp Biol Med (Maywood) 2014; 239:779-792. [PMID: 24812122 DOI: 10.1177/1535370214532755] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hypoxia is a common phenomenon of solid tumors and contributes to aggressive phenotype and treatment failure. Hypoxia-inducible factor (HIF), a versatile transcription factor that regulates more than 5% of total human genes, not only plays important roles in controlling physiological processes, but is also a crucial mediator in hypoxia-induced tumor progression and chemoresistance. Overexpression of HIF-1α is detected in a wide spectrum of cancers via different kinds of mechanisms, including reduced oxygen concentration, loss-of-function of tumor suppressor gene, activating mutation of oncogenes, and hyperactivation of protein kinase signaling pathways. HIF-regulated genes involve in many pathological processes such as metabolic switch, drug efflux, angiogenesis, cell proliferation, and anti-apoptosis, which ultimately leads to increased tumor growth and drug resistance. Due to the common failure of classic chemotherapeutic agents in treating hypoxic cancers, novel strategies have been developed to target tumors under hypoxic conditions including inhibition of HIF activity and administration of bioreductive drugs. These new strategies may provide more effective and specific methods in targeting hypoxic tumors.
Collapse
Affiliation(s)
- Shao-Chieh Lin
- Department of Surgery, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Wan-Lin Liao
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Jenq-Chang Lee
- Department of Surgery, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| |
Collapse
|
8
|
Lee HY, Choi K, Oh H, Park YK, Park H. HIF-1-dependent induction of Jumonji domain-containing protein (JMJD) 3 under hypoxic conditions. Mol Cells 2014; 37:43-50. [PMID: 24552709 PMCID: PMC3907005 DOI: 10.14348/molcells.2014.2250] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 01/20/2023] Open
Abstract
Jumonji domain-containing proteins (JMJD) catalyze the oxidative demethylation of a methylated lysine residue of histones by using O2, α-ketoglutarate, vitamin C, and Fe(II). Several JMJDs are induced by hypoxic stress to compensate their presumed reduction in catalytic activity under hypoxia. In this study, we showed that an H3K27me3 specific histone demethylase, JMJD3 was induced by hypoxia-inducible factor (HIF)-1α/β under hypoxia and that treatment with Clioquinol, a HIF-1α activator, increased JMJD3 expression even under normoxia. Chromatin immunoprecipitation (ChIP) analyses showed that both HIF-1α and its dimerization partner HIF-1β/Arnt occupied the first intron region of the mouse JMJD3 gene, whereas the HIF-1α/β heterodimer bound to the upstream region of the human JMJD3, indicating that human and mouse JMJD3 have hypoxia-responsive regulatory regions in different locations. This study shows that both mouse and human JMJD3 are induced by HIF-1.
Collapse
Affiliation(s)
- Ho-Youl Lee
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Kang Choi
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Hookeun Oh
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Young-Kwon Park
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| |
Collapse
|
9
|
Härter M, Thierauch KH, Boyer S, Bhargava A, Ellinghaus P, Beck H, Greschat-Schade S, Hess-Stumpp H, Unterschemmann K. Inhibition of Hypoxia-Induced Gene Transcription by Substituted Pyrazolyl Oxadiazoles: Initial Lead Generation and Structure-Activity Relationships. ChemMedChem 2013; 9:61-6. [DOI: 10.1002/cmdc.201300357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/08/2013] [Indexed: 01/23/2023]
|
10
|
Sparkenbaugh EM, Ganey PE, Roth RA. Hypoxia sensitization of hepatocytes to neutrophil elastase-mediated cell death depends on MAPKs and HIF-1α. Am J Physiol Gastrointest Liver Physiol 2012; 302:G748-57. [PMID: 22223132 PMCID: PMC3330781 DOI: 10.1152/ajpgi.00409.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/02/2012] [Indexed: 01/31/2023]
Abstract
The liver is sensitive to pathological conditions associated with tissue hypoxia (Hx) and the presence of activated neutrophils that secrete the serine protease elastase (EL). We demonstrated previously that cotreatment of rat hepatocytes with nontoxic levels of Hx and EL caused synergistic cell death. Hx is sensed by hypoxia-inducible factor (HIF)-1α, a transcription factor that heterodimerizes with HIF-1β/aryl hydrocarbon receptor nuclear translocator and directs expression of many genes, including the pro-cell death gene Bcl-2/adenovirus E1B-interacting protein 3 (BNIP3). Since cell death from EL or Hx also requires MAPK activation, we tested the hypothesis that the cytotoxic interaction of Hx and EL depends on MAPK and HIF-1α signaling. Treatment of Hepa1c1c7 cells with EL in the presence of Hx (2% O(2)) resulted in synergistic cell death. EL reduced phosphorylated ERK in O(2)-replete and Hx-exposed cells, and ERK inhibition enhanced the cytotoxicity of EL alone. Hx-EL cotreatment caused an additive increase in phosphorylated p38, and p38 inhibition attenuated cell death caused by this cotreatment. EL enhanced Hx-induced HIF-1α accumulation and transcription of the HIF-1α-mediated cell death gene BNIP3, and p38 inhibition attenuated BNIP3 expression and production. Cytotoxicity and BNIP3 expression from EL-Hx cotreatment were reduced in HIF-1β-deficient HepaC4 cells compared with Hepa1c1c7 cells. These results suggest that p38 signaling contributes to Hx-EL cotreatment-induced cell death via modulation of HIF-1α-mediated gene transcription. Finally, lipid peroxidation was enhanced in Hx-EL-cotreated cells compared with cells treated with EL or Hx alone. Vitamin E treatment attenuated lipid peroxidation and protected cells from the cytotoxicity of Hx and EL, suggesting that lipid peroxidation plays a role.
Collapse
|
11
|
Wondimu A, Weir L, Robertson D, Mezentsev A, Kalachikov S, Panteleyev AA. Loss of Arnt (Hif1β) in mouse epidermis triggers dermal angiogenesis, blood vessel dilation and clotting defects. J Transl Med 2012; 92:110-24. [PMID: 21946855 DOI: 10.1038/labinvest.2011.134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Targeted ablation of Aryl hydrocarbon receptor nuclear translocator (Arnt) in the mouse epidermis results in severe abnormalities in dermal vasculature reminiscent of petechia induced in human skin by anticoagulants or certain genetic disorders. Lack of Arnt leads to downregulation of Egln3/Phd3 hydroxylase and concomitant hypoxia-independent stabilization of hypoxia-induced factor 1α (Hif1α) along with compensatory induction of Arnt2. Ectopic induction of Arnt2 results in its heterodimerization with stabilized Hif1α and is associated with activation of genes coding for secreted proteins implicated in control of angiogenesis, coagulation, vasodilation and blood vessel permeability such as S100a8/S100a9, S100a10, Serpine1, Defb3, Socs3, Cxcl1 and Thbd. Since ARNT and ARNT2 heterodimers with HIF1α are known to have different (yet overlapping) downstream targets our findings suggest that loss of Arnt in the epidermis activates an aberrant paracrine regulatory pathway responsible for dermal vascular phenotype in K14-Arnt KO mice. This assumption is supported by a significant decline of von Willebrand factor in dermal vasculature of these mice where Arnt level remains normal. Given the essential role of ARNT in the adaptive response to environmental stress and striking similarity between skin vascular phenotype in K14-Arnt KO mice and specific vascular features of tumour stroma and psoriatic skin, we believe that further characterization of Arnt-dependent epidermal-dermal signalling may provide insight into the role of macro- and micro-environmental factors in control of skin vasculature and in pathogenesis of environmentally modulated skin disorders.
Collapse
Affiliation(s)
- Assefa Wondimu
- Department of Dermatology, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia.
Collapse
|
13
|
Trollmann R, Rehrauer H, Schneider C, Krischke G, Huemmler N, Keller S, Rascher W, Gassmann M. Late-gestational systemic hypoxia leads to a similar early gene response in mouse placenta and developing brain. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1489-99. [DOI: 10.1152/ajpregu.00697.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Late-gestational intrauterine hypoxia represents a well-known risk factor of acquired perinatal brain injury. Cell type and age-specific sensitivity of hypoxia-responsive genes to low-oxygen partial pressure is to be considered in the screening for early indicators of fetoplacental tissue hypoxia. To identify early hypoxia-induced alterations in gene expression during late-gestational hypoxia (6% O2, 6 h; gestational day 20) we compared primary mouse placenta and brain transcriptomes using high-density oligonucleotide microarrays. Upregulation of candidate marker genes for hypoxia was confirmed by quantitative RT-PCR and immunohistochemistry. Both developing brain and placenta were highly responsive to systemic hypoxia at the level of gene expression involving hypoxia-inducible transcription factor (HIF)-dependent genes and immediate early genes (IEG) (Fos, Jun, Egr1, Bhlhb2), apoptosis-promoting factors (Bnip3, Dusp1, Ier3) that were all upregulated, and genes modulating RNA binding and translation (Rbm3, Thap2, Lig4, Rbm12b) that mainly were downregulated. Functional activity of the HIF system was obvious from elevated expression of various known HIF target genes (Adm, Vegf, Hk2, Pdk1, Bnip3, Ier3, Dusp-1), indicating immediate availability among early response to acute hypoxia. In addition, genes not yet described as being hypoxia related were identified that are involved in angiogenesis/cell differentiation (Gna13, Gab2), mRNA processing, and embryonic development. RT-PCR of placenta and brain tissues confirmed upregulation of selected HIF target genes and IEG. These data indicate that the early hypoxia-induced genomic response of the placenta mirrors that of developing brain in a temporally parallel manner. Our observations implicate future diagnostic options to identify fetal and cerebral tissue hypoxia.
Collapse
Affiliation(s)
- Regina Trollmann
- Department of Pediatrics, University of Erlangen, Erlangen, Germany; and
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology and
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, University of Zurich, Zurich, Switzerland
| | | | - Gudrun Krischke
- Department of Pediatrics, University of Erlangen, Erlangen, Germany; and
| | - Nicolas Huemmler
- Department of Pediatrics, University of Erlangen, Erlangen, Germany; and
| | - Stephan Keller
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology and
| | - Wolfgang Rascher
- Department of Pediatrics, University of Erlangen, Erlangen, Germany; and
| | - Max Gassmann
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology and
| |
Collapse
|
14
|
Opposing roles for HIF-1α and HIF-2α in the regulation of angiogenesis by mononuclear phagocytes. Blood 2010; 117:323-32. [PMID: 20952691 DOI: 10.1182/blood-2010-01-261792] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Macrophages contribute to tumor growth through the secretion of the proangiogenic molecule vascular endothelial growth factor (VEGF). We previously observed that monocytes treated with the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) produce a soluble form of the VEGF receptor-1 (sVEGFR-1), which neutralizes VEGF biologic activity. The VEGF and VEGFR-1 promoters both contain a hypoxia regulatory element, which binds the hypoxia-inducible factor (HIF) transcription factors under hypoxic conditions. Based on this observation, we examined VEGF and sVEGFR-1 production from monocytes cultured at various O(2) concentrations. The amount of sVEGFR-1 production observed from GM-CSF-treated monocytes increased with decreasing levels of O(2). This sVEGFR-1 was biologically active and sequestered VEGF. To evaluate the role of the HIFs in sVEGFR-1 production, we used macrophages with a genetic deletion of HIF-1α. HIF-1α(-/-) macrophages cultured with GM-CSF at hypoxia secreted diminished amounts of VEGF compared with HIF-1α(+/+) macrophages, whereas sVEGFR-1 secretion was unaffected. In contrast, siRNA-mediated knockdown of HIF-2α inhibited the production of sVEGFR-1 in response to GM-CSF and low O(2), whereas VEGF production was unaffected. These studies suggest that hypoxia, generally thought to promote angiogenesis, can induce antiangiogenic behavior from macrophages within a GM-CSF-rich environment. Furthermore, these results suggest specific and independent roles for HIF-1α and HIF-2α in hypoxic macrophages.
Collapse
|
15
|
Main H, Lee KL, Yang H, Haapa-Paananen S, Edgren H, Jin S, Sahlgren C, Kallioniemi O, Poellinger L, Lim B, Lendahl U. Interactions between Notch- and hypoxia-induced transcriptomes in embryonic stem cells. Exp Cell Res 2010; 316:1610-24. [DOI: 10.1016/j.yexcr.2009.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/15/2009] [Indexed: 12/12/2022]
|
16
|
Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, Ratcliffe PJ. Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 2009; 284:16767-16775. [PMID: 19386601 PMCID: PMC2719312 DOI: 10.1074/jbc.m901790200] [Citation(s) in RCA: 449] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hypoxia-inducible factor (HIF) controls an extensive range of adaptive responses to hypoxia. To better understand this transcriptional cascade we performed genome-wide chromatin immunoprecipitation using antibodies to two major HIF-α subunits, and correlated the results with genome-wide transcript profiling. Within a tiled promoter array we identified 546 and 143 sequences that bound, respectively, to HIF-1α or HIF-2α at high stringency. Analysis of these sequences confirmed an identical core binding motif for HIF-1α and HIF-2α (RCGTG) but demonstrated that binding to this motif was highly selective, with binding enriched at distinct regions both upstream and downstream of the transcriptional start. Comparison of HIF-promoter binding data with bidirectional HIF-dependent changes in transcript expression indicated that whereas a substantial proportion of positive responses (>20% across all significantly regulated genes) are direct, HIF-dependent gene suppression is almost entirely indirect. Comparison of HIF-1α- versus HIF-2α-binding sites revealed that whereas some loci bound HIF-1α in isolation, many bound both isoforms with similar affinity. Despite high-affinity binding to multiple promoters, HIF-2α contributed to few, if any, of the transcriptional responses to acute hypoxia at these loci. Given emerging evidence for biologically distinct functions of HIF-1α versus HIF-2α understanding the mechanisms restricting HIF-2α activity will be of interest.
Collapse
Affiliation(s)
- David R Mole
- From the Henry Wellcome Building of Molecular Physiology, Oxford OX3 7BN, United Kingdom.
| | - Christine Blancher
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Richard R Copley
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Patrick J Pollard
- From the Henry Wellcome Building of Molecular Physiology, Oxford OX3 7BN, United Kingdom
| | - Jonathan M Gleadle
- Renal Unit, Level 6, Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | - Jiannis Ragoussis
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Peter J Ratcliffe
- From the Henry Wellcome Building of Molecular Physiology, Oxford OX3 7BN, United Kingdom
| |
Collapse
|