1
|
Samuvel DJ, Lemasters JJ, Chou CJ, Zhong Z. LP340, a novel histone deacetylase inhibitor, decreases liver injury and fibrosis in mice: role of oxidative stress and microRNA-23a. Front Pharmacol 2024; 15:1386238. [PMID: 38828459 PMCID: PMC11140137 DOI: 10.3389/fphar.2024.1386238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Effective therapy for liver fibrosis is lacking. Here, we examined whether LP340, the lead candidate of a new-generation of hydrazide-based HDAC1,2,3 inhibitors (HDACi), decreases liver fibrosis. Liver fibrosis was induced by CCl4 treatment and bile duct ligation (BDL) in mice. At 6 weeks after CCl4, serum alanine aminotransferase increased, and necrotic cell death and leukocyte infiltration occurred in the liver. Tumor necrosis factor-α and myeloperoxidase markedly increased, indicating inflammation. After 6 weeks, α-smooth muscle actin (αSMA) and collagen-1 expression increased by 80% and 575%, respectively, indicating hepatic stellate cell (HSC) activation and fibrogenesis. Fibrosis detected by trichrome and Sirius-red staining occurred primarily in pericentral regions with some bridging fibrosis in liver sections. 4-Hydroxynonenal adducts (indicator of oxidative stress), profibrotic cytokine transforming growth factor-β (TGFβ), and TGFβ downstream signaling molecules phospho-Smad2/3 also markedly increased. LP340 attenuated indices of liver injury, inflammation, and fibrosis markedly. Moreover, Ski-related novel protein-N (SnoN), an endogenous inhibitor of TGFβ signaling, decreased, whereas SnoN expression suppressor microRNA-23a (miR23a) increased markedly. LP340 (0.05 mg/kg, ig., daily during the last 2 weeks of CCl4 treatment) decreased 4-hydroxynonenal adducts and miR23a production, blunted SnoN decreases, and inhibited the TGFβ/Smad signaling. By contrast, LP340 had no effect on matrix metalloproteinase-9 expression. LP340 increased histone-3 acetylation but not tubulin acetylation, indicating that LP340 inhibited Class-I but not Class-II HDAC in vivo. After BDL, focal necrosis, inflammation, ductular reactions, and portal and bridging fibrosis occurred at 2 weeks, and αSMA and collagen-1 expression increased by 256% and 560%, respectively. LP340 attenuated liver injury, ductular reactions, inflammation, and liver fibrosis. LP340 also decreased 4-hydroxynonenal adducts and miR23a production, prevented SnoN decreases, and inhibited the TGFβ/Smad signaling after BDL. In vitro, LP340 inhibited immortal human hepatic stellate cells (hTERT-HSC) activation in culture (αSMA and collagen-1 expression) as well as miR23a production, demonstrating its direct inhibitory effects on HSC. In conclusions, LP340 is a promising therapy for both portal and pericentral liver fibrosis, and it works by inhibiting oxidative stress and decreasing miR23a.
Collapse
Affiliation(s)
- Devadoss J. Samuvel
- Departments of Drug Discovery and Biomedical Sciences, Charleston, SC, United States
| | - John J. Lemasters
- Departments of Drug Discovery and Biomedical Sciences, Charleston, SC, United States
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - C. James Chou
- Departments of Drug Discovery and Biomedical Sciences, Charleston, SC, United States
- Lydex Pharmaceuticals, Mount Pleasant, SC, United States
| | - Zhi Zhong
- Departments of Drug Discovery and Biomedical Sciences, Charleston, SC, United States
| |
Collapse
|
2
|
Norollahi SE, Vahidi S, Shams S, Keymoradzdeh A, Soleymanpour A, Solymanmanesh N, Mirzajani E, Jamkhaneh VB, Samadani AA. Analytical and therapeutic profiles of DNA methylation alterations in cancer; an overview of changes in chromatin arrangement and alterations in histone surfaces. Horm Mol Biol Clin Investig 2023; 44:337-356. [PMID: 36799246 DOI: 10.1515/hmbci-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
DNA methylation is the most important epigenetic element that activates the inhibition of gene transcription and is included in the pathogenesis of all types of malignancies. Remarkably, the effectors of DNA methylation are DNMTs (DNA methyltransferases) that catalyze de novo or keep methylation of hemimethylated DNA after the DNA replication process. DNA methylation structures in cancer are altered, with three procedures by which DNA methylation helps cancer development which are including direct mutagenesis, hypomethylation of the cancer genome, and also focal hypermethylation of the promoters of TSGs (tumor suppressor genes). Conspicuously, DNA methylation, nucleosome remodeling, RNA-mediated targeting, and histone modification balance modulate many biological activities that are essential and indispensable to the genesis of cancer and also can impact many epigenetic changes including DNA methylation and histone modifications as well as adjusting of non-coding miRNAs expression in prevention and treatment of many cancers. Epigenetics points to heritable modifications in gene expression that do not comprise alterations in the DNA sequence. The nucleosome is the basic unit of chromatin, consisting of 147 base pairs (bp) of DNA bound around a histone octamer comprised of one H3/H4 tetramer and two H2A/H2B dimers. DNA methylation is preferentially distributed over nucleosome regions and is less increased over flanking nucleosome-depleted DNA, implying a connection between nucleosome positioning and DNA methylation. In carcinogenesis, aberrations in the epigenome may also include in the progression of drug resistance. In this report, we report the rudimentary notes behind these epigenetic signaling pathways and emphasize the proofs recommending that their misregulation can conclude in cancer. These findings in conjunction with the promising preclinical and clinical consequences observed with epigenetic drugs against chromatin regulators, confirm the important role of epigenetics in cancer therapy.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Shams
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzdeh
- Department of Neurosurgery, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Soleymanpour
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazanin Solymanmanesh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Vida Baloui Jamkhaneh
- Department of Veterinary Medicine, Islamic Azad University of Babol Branch, Babol, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Goncalves BDS, Meadows A, Pereira DG, Puri R, Pillai SS. Insight into the Inter-Organ Crosstalk and Prognostic Role of Liver-Derived MicroRNAs in Metabolic Disease Progression. Biomedicines 2023; 11:1597. [PMID: 37371692 PMCID: PMC10295788 DOI: 10.3390/biomedicines11061597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Dysfunctional hepatic metabolism has been linked to numerous diseases, including non-alcoholic fatty liver disease, the most common chronic liver disorder worldwide, which can progress to hepatic fibrosis, and is closely associated with insulin resistance and cardiovascular diseases. In addition, the liver secretes a wide array of metabolites, biomolecules, and microRNAs (miRNAs) and many of these secreted factors exert significant effects on metabolic processes both in the liver and in peripheral tissues. In this review, we summarize the involvement of liver-derived miRNAs in biological processes with an emphasis on delineating the communication between the liver and other tissues associated with metabolic disease progression. Furthermore, the review identifies the primary molecular targets by which miRNAs act. These consolidated findings from numerous studies provide insight into the underlying mechanism of various metabolic disease progression and suggest the possibility of using circulatory miRNAs as prognostic predictors and therapeutic targets for improving clinical intervention strategies.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Avery Meadows
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Duane G Pereira
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Raghav Puri
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Sneha S Pillai
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
4
|
Astaxanthin Attenuates the Changes in the Expression of MicroRNAs Involved in the Activation of Hepatic Stellate Cells. Nutrients 2022; 14:nu14050962. [PMID: 35267937 PMCID: PMC8912553 DOI: 10.3390/nu14050962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
We previously demonstrated that astaxanthin (ASTX), a xanthophyll carotenoid, has an antifibrogenic effect in hepatic stellate cells (HSC), primarily responsible for the accumulation of extracellular matrix protein during the development of liver fibrosis. Studies have shown that microRNAs (miRNAs) are involved in HSC activation. Therefore, we analyzed the expression of 84 miRNAs using miRNA arrays in primary mouse quiescent HSC (qHSC) and activated HSC (aHSC) treated with/without ASTX during their activation. Compared with qHSC, the expression of 14 miRNAs and 23 miRNAs was increased and decreased by more than 2-fold, respectively, in aHSC. Among the 14 miRNAs increased in aHSC, the expression of miR-192-5p, miR-382-5p, and miR-874-3p was reduced by ASTX. In addition, ASTX increased the expression of miR-19a-3p, miR-19b-3p, and miR-101a-3p among 23 miRNAs decreased in aHSC. Moreover, we confirmed miR-382-5p expression was ~15-fold higher in aHSC than qHSC, and ASTX markedly inhibited the induction measured by quantitative real-time PCR. We identified that the expression of Baz1a and Zfp462 from the predicted miR-382-5p target genes was significantly reduced in aHSC while increased by ASTX treatment similar to the levels in qHSC. The roles of Baz1a and Zfp462 in HSC activation and the antifibrogenic effect of ASTX need to be further investigated.
Collapse
|
5
|
Chiabotto G, Ceccotti E, Tapparo M, Camussi G, Bruno S. Human Liver Stem Cell-Derived Extracellular Vesicles Target Hepatic Stellate Cells and Attenuate Their Pro-fibrotic Phenotype. Front Cell Dev Biol 2021; 9:777462. [PMID: 34796180 PMCID: PMC8593217 DOI: 10.3389/fcell.2021.777462] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis occurs in response to chronic liver injury and is characterized by an excessive deposition of extracellular matrix. Activated hepatic stellate cells are primarily responsible for this process. A possible strategy to counteract the development of hepatic fibrosis could be the reversion of the activated phenotype of hepatic stellate cells. Extracellular vesicles (EVs) are nanosized membrane vesicles involved in intercellular communication. Our previous studies have demonstrated that EVs derived from human liver stem cells (HLSCs), a multipotent population of adult stem cells of the liver with mesenchymal-like phenotype, exert in vivo anti-fibrotic activity in the liver. However, the mechanism of action of these EVs remains to be determined. We set up an in vitro model of hepatic fibrosis using a human hepatic stellate cell line (LX-2) activated by transforming growth factor-beta 1 (TGF-β1). Then, we investigated the effect of EVs obtained from HLSCs and from human bone marrow-derived mesenchymal stromal cells (MSCs) on activated LX-2. The incubation of activated LX-2 with HLSC-EVs reduced the expression level of alpha-smooth muscle actin (α-SMA). Conversely, MSC-derived EVs induced an increase in the expression of pro-fibrotic markers in activated LX-2. The analysis of the RNA cargo of HLSC-EVs revealed the presence of several miRNAs involved in the regulation of fibrosis and inflammation. Predictive target analysis indicated that several microRNAs (miRNAs) contained into HLSC-EVs could possibly target pro-fibrotic transcripts. In particular, we demonstrated that HLSC-EVs shuttled miR-146a-5p and that treatment with HLSC-EVs increased miR-146a-5p expression in LX-2. In conclusion, this study demonstrates that HLSC-EVs can attenuate the activated phenotype of hepatic stellate cells and that their biological effect may be mediated by the delivery of anti-fibrotic miRNAs, such as miR-146a-5p.
Collapse
Affiliation(s)
- Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Elena Ceccotti
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
6
|
Cong S, Liu Y, Li Y, Chen Y, Chen R, Zhang B, Yu L, Hu Y, Zhao X, Mu M, Cheng M, Huang Z. MiR-571 affects the development and progression of liver fibrosis by regulating the Notch3 pathway. Sci Rep 2021; 11:21854. [PMID: 34750395 PMCID: PMC8575893 DOI: 10.1038/s41598-021-00638-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Exploring the expression of miR-571 in patients with liver fibrosis and its role in the progression of liver fibrosis. A total of 74 patients with liver fibrosis in our institution from September to December 2018 were collected for study, and the expression of miR-571, Notch3 and Jagged1 in patients with different progressions of liver fibrosis was determined by RT-PCR and Western blot analysis. Set up Notch3 up group and Notch3 down regulated group, RT-PCR and Western blot were used to determine the effect of Notch signaling on the expression of fibrogenic factors. CCK-8, cell scratch assays, Transwell assays, flow cytometry were used to determine the effect of miR-571 on LX-2 proliferation, migration, apoptosis in human stem stellate cells, and RT-PCR, Western blot assays were performed to determine the effect of miR-571 on the Notch3 signaling pathway and the expression of profibrogenic factors. miR-571, Notch3 and Jagged1 are up-regulated in patients with liver fibrosis and is associated with the progression of liver fibrosis. Notch3 signaling pathway can promote the expression of fibroblast in human hepatic stellate cells; miR-571 can inhibit the apoptosis of human hepatic stellate cells, promote cell proliferation and migration; up regulation of miR-571 can promote the expression of Notch3 and Jagged1, and up-regulation of miR-571 also promoted the expression of related fibroblasts. MiR-571 can promote the activation of human stem cell stellate cells and the expression of fibroblast related factors through Notch3 signaling pathway.
Collapse
Affiliation(s)
- Shuo Cong
- School of Basic Medicine Sciences, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, China.,Clinical Laboratory Center, Guizhou Cancer Hospital, 1, Beijing West Road, Guiyang, Guizhou, China
| | - Yongmei Liu
- Clinical Laboratory Center, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Yi Li
- College of Medical Laboratory, Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Yu Chen
- Clinical Laboratory Center, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Rui Chen
- Department of Acupuncture and Moxibustion, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Baofang Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Lei Yu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Guiyang Province, 63 Ruijin South Road, Yunyan District, Guiyang City, Guizhou Province, China
| | - Yaxin Hu
- Prenatal Diagnosis Center, The Affiliated Hospital of Guizhou Medical University, 9 Beijing Road, Guiyang City, Guizhou, China
| | - Xueke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Mao Mu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Mingliang Cheng
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China.
| | - Zhi Huang
- School of Basic Medicine Sciences, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, China. .,Department of interventional radiology, the Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, 550005, P. R. China.
| |
Collapse
|
7
|
Chang Y, Han JA, Kang SM, Jeong SW, Ryu T, Park HS, Yoo JJ, Lee SH, Kim SG, Kim YS, Kim HS, Jin SY, Ryu S, Jang JY. Clinical impact of serum exosomal microRNA in liver fibrosis. PLoS One 2021; 16:e0255672. [PMID: 34506494 PMCID: PMC8432846 DOI: 10.1371/journal.pone.0255672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIM We investigated alterations in the expression of serum exosomal miRNAs with the progression of liver fibrosis and evaluated their clinical applicability as biomarkers. METHODS This study prospectively enrolled 71 patients who underwent liver biopsy at an academic hospital in Korea. Exosomes were extracted from serum samples, followed by next-generation sequencing (NGS) of miRNAs and targeted real-time quantitative polymerase chain reaction. A model was derived to discriminate advanced fibrosis based on miRNA levels and the performance of this model was evaluated. Validation of the effect of miRNA on liver fibrosis in vitro was followed. RESULTS NGS data revealed that exosomal miR-660-5p, miR-125a-5p, and miR-122 expression were changed significantly with the progression of liver fibrosis, of which miR-122 exhibited high read counts enough to be used as a biomarker. The level of exosomal miR-122 decreased as the pathologic fibrosis grade progressed and patients with biopsy-proven advanced fibrosis had significantly lower levels of exosomal miR-122 (P < 0.001) than those without advanced fibrosis. Exosomal miR-122 exhibited a fair performance in discriminating advanced fibrosis especially in combination with fibrosis-4 score and transient elastography. In a subgroup of patients with a non-viral etiology of liver disease, the performance of exosomal miR-122 as a biomarker was greatly improved. Inhibition of miR-122 expression increased the proliferation of the human hepatic stellate cell line, LX-2, and upregulated the expression of various fibrosis related proteins. CONCLUSION Exosomal miR-122 may serve as a useful non-invasive biomarker for liver fibrosis, especially in patients with non-viral etiologies of chronic liver disease.
Collapse
Affiliation(s)
- Young Chang
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jae-A. Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Suk Min Kang
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Soung Won Jeong
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Tom Ryu
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Han Seul Park
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Sae Hwan Lee
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Young Seok Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Hong Soo Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - So Young Jin
- Department of Pathology, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Jae Young Jang
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
El-Sebaey AM, Abramov PN. Hepatocyte-derived canine familiaris-microRNAs as serum biomarkers of hepatic steatosis or fibrosis as implicated in the pathogenesis of canine cholecystolithiasis. Vet Clin Pathol 2021; 50 Suppl 1:37-46. [PMID: 34031917 DOI: 10.1111/vcp.12942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hepatic cholesterol accumulation in small breed dogs is a leading risk factor for hepatic fatty changes, gallbladder hypomotility, and cholelith development, which, if not discovered early, could lead to life-threatening choledocholithiasis and acute pancreatitis. OBJECTIVE This study proposed to assess the use of hepatocyte-derived canine familiaris (cfa)-microRNAs (miRNA-122, -34a, and -21) as new diagnostic serum biomarkers of liver steatosis or fibrosis, for which both processes have been implicated in canine cholecystolithiasis. METHODS Forty client-owned dogs diagnosed with cholecystolithiasis and hepatic steatosis (C+HS) or fibrosis (C+HF) based on ultrasonographic, biochemical, and histopathologic findings, and 20 healthy dogs used as controls were included in the study. Serum cfa-miRNA expression was determined using a real-time polymerase chain reaction assay. RESULTS Serum cfa-miRNA-122 and -34a expression was significantly upregulated in the C+HS (P < .001) and C+HF (P < .01) groups compared with the control group and showed a positive correlation with alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), alkaline phosphatase (ALP), γ-glutamyl transferase (GGT), total cholesterol (TC), and triglycerides (TG) levels in the C+HS group. Cfa-miRNA-122 and -34a expression discriminated the diseased groups from the control group better than traditional serum-derived liver biomarkers, as evidenced by areas under the receiver operating characteristic (AUC-ROC) curve of 0.99 and 0.97 for cfa-miRNA-122 expression in the C+HS and C+HF groups, and 1.0 and 0.96 for cfa-miRNA-34a in the C+HS and C+HF groups, respectively. Cfa-miRNA-21 expression was upregulated only in the C+HF group compared with the C+HS (P < .01) and control (P < .001) groups and showed a positive correlation with serum ALT, AST, TBIL, ALP, and GGT and negative correlation with serum TC and TG levels. Cfa-miRNA-21 expression could also differentiate the C+HF group from the control and C+HS groups with a diagnostic performance superior to that of the conventional serum biochemical variables as evidenced by AUCs of 1.0 and 0.98, respectively. CONCLUSIONS Serum cfa-miRNA-122, -34a, and -21 expression was significantly upregulated in dogs with cholecystolithiasis with hepatic steatosis or fibrosis compared with control dogs. These miRNAs could serve as novel biomarkers for hepatic steatosis or fibrosis, which have been implicated in the pathogenesis of cholecystolithiasis.
Collapse
Affiliation(s)
- Ahmed M El-Sebaey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.,Department of Disease Diagnosis, Therapy, Obstetrics, and Animal Reproduction, Moscow State Academy of Veterinary Medicine and Biotechnology - MVA by K. I. Skryabin, Moscow, Russian Federation
| | - Pavel N Abramov
- Department of Disease Diagnosis, Therapy, Obstetrics, and Animal Reproduction, Moscow State Academy of Veterinary Medicine and Biotechnology - MVA by K. I. Skryabin, Moscow, Russian Federation
| |
Collapse
|
9
|
Claveria-Cabello A, Colyn L, Arechederra M, Urman JM, Berasain C, Avila MA, Fernandez-Barrena MG. Epigenetics in Liver Fibrosis: Could HDACs be a Therapeutic Target? Cells 2020; 9:cells9102321. [PMID: 33086678 PMCID: PMC7589994 DOI: 10.3390/cells9102321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic liver diseases (CLD) represent a worldwide health problem. While CLDs may have diverse etiologies, a common pathogenic denominator is the presence of liver fibrosis. Cirrhosis, the end-stage of CLD, is characterized by extensive fibrosis and is markedly associated with the development of hepatocellular carcinoma. The most important event in hepatic fibrogenesis is the activation of hepatic stellate cells (HSC) following liver injury. Activated HSCs acquire a myofibroblast-like phenotype becoming proliferative, fibrogenic, and contractile cells. While transient activation of HSCs is part of the physiological mechanisms of tissue repair, protracted activation of a wound healing reaction leads to organ fibrosis. The phenotypic changes of activated HSCs involve epigenetic mechanisms mediated by non-coding RNAs (ncRNA) as well as by changes in DNA methylation and histone modifications. During CLD these epigenetic mechanisms become deregulated, with alterations in the expression and activity of epigenetic modulators. Here we provide an overview of the epigenetic alterations involved in fibrogenic HSCs transdifferentiation with particular focus on histones acetylation changes. We also discuss recent studies supporting the promising therapeutic potential of histone deacetylase inhibitors in liver fibrosis.
Collapse
Affiliation(s)
- Alex Claveria-Cabello
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
| | - Leticia Colyn
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
| | - Maria Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Jesus M. Urman
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Matias A. Avila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Correspondence: (M.A.A.); (M.G.F.-B.); Tel.: +34-94-819-4700 (M.A.A.); +34-94-819-4700 (M.G.F.-B.)
| | - Maite G. Fernandez-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Correspondence: (M.A.A.); (M.G.F.-B.); Tel.: +34-94-819-4700 (M.A.A.); +34-94-819-4700 (M.G.F.-B.)
| |
Collapse
|
10
|
Pan Q, Guo CJ, Xu QY, Wang JZ, Li H, Fang CH. miR-16 integrates signal pathways in myofibroblasts: determinant of cell fate necessary for fibrosis resolution. Cell Death Dis 2020; 11:639. [PMID: 32801294 PMCID: PMC7429878 DOI: 10.1038/s41419-020-02832-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is characterized by the transdifferentiation of hepatic stellate cells (HSCs) to myofibroblasts and poor response to treatment. This can be attributed to the myofibroblast-specific resistance to phenotype reversal. In this study, we complemented miR-16 into miR-16-deficient myofibroblasts and analyzed the global role of miR-16 using transcriptome profiling and generating a pathway-based action model underlying transcriptomic regulation. Phenotypic analysis of myofibroblasts and fibrogenic characterization were used to understand the effect of miR-16 on phenotypic remodeling of myofibroblasts. miR-16 expression altered the transcriptome of myofibroblasts to resemble that of HSCs. Simultaneous targeting of Smad2 and Wnt3a, etc. by miR-16 integrated signaling pathways of TGF-β and Wnt, etc., which underlay the comprehensive regulation of transcriptome. The synergistic effect of miR-16 on the signaling pathways abolished the phenotypic characteristics of myofibroblasts, including collagen production and inhibition of adipogenesis. In vivo, myofibroblast-specific expression of miR-16 not only eliminated mesenchymal cells with myofibroblast characteristics but also restored the phenotype of HSCs in perisinusoidal space. This phenotypic remodeling resolved liver fibrosis induced by chronic wound healing. Therefore, miR-16 may integrate signaling pathways crucial for the fate determination of myofibroblasts. Its global effect induces the reversal of HSC-to-myofibroblast transdifferentiation and, subsequently, the resolution of fibrogenesis. Taken together, these findings highlight the potential of miR-16 as a promising therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Qin Pan
- Department of Gastroenterology, Xin-Hua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200092, China.
| | - Can-Jie Guo
- Department of Gastroenterology, Ren-Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200001, China
| | - Qing-Yang Xu
- Department of Gastroenterology, Xin-Hua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200092, China
| | - Jin-Zhi Wang
- Department of Gastroenterology, Xin-Hua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200092, China
| | - Han Li
- Department of Gastroenterology, Xin-Hua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200092, China
| | - Chun-Hua Fang
- School of Electronics and Information Engineering, Tong-Ji University, Shanghai, 201804, China
| |
Collapse
|
11
|
Liao X, Zhan W, Tian T, Yu L, Li R, Yang Q. MicroRNA-326 attenuates hepatic stellate cell activation and liver fibrosis by inhibiting TLR4 signaling. J Cell Biochem 2020; 121:3794-3803. [PMID: 31692098 DOI: 10.1002/jcb.29520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Hepatic fibrosis is a chronic inflammatory and reversible repair reaction of the liver under the continuous action of virus or various injuries. In this study, we aimed at identifying the role of miR-326 in the hepatic stellate cell (HSC) activation and liver fibrosis and its potential mechanism. In this study, the liver fibrosis mouse model was developed by injecting CCl4 . Liver tissue morphology was observed and the expression level of α-smooth muscle actin, collagen1α1 and miR-326 was measured. Target gene identification was performed by loss-of-function and gain-of-function. The effect of miR-326 on the expression level of the cytokines associated with the TLR4/MyD88/nuclear factor-κB (NF-κB) pathway was assessed in vitro and in vivo. We show that miR-326 was downregulated in CCl4 -induced fibrotic mice and activated HSCs. The target gene of miR-326 is TLR4. Moreover, miR-326 inhibited the activation of HSCs in vitro through TLR4/MyD88/NF-κB signaling. miR-326 attenuated hepatic fibrosis and inflammation of CCl4 -induced mice in vivo. Our results demonstrate for the first time that miR-326 inhibits HSC activation through TLR4/MyD88/NF-κB signaling. Furthermore, miR-326 plays critical roles in attenuating liver fibrosis and inflammation, suggesting the therapeutic potential of miRNAs.
Collapse
Affiliation(s)
- Xin Liao
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Zhan
- Surgery of Colorectal, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Tian Tian
- Doctoral Graduate Student of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lei Yu
- Department of Pathology, Guiyang Maternal and Child Health Hospital, Guiyang, Guizhou, China
| | - Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Qin Yang
- Department of Pathology and Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Gerhard GS, Davis B, Wu X, Hanson A, Wilhelmsen D, Piras IS, Still CD, Chu X, Petrick AT, DiStefano JK. Differentially expressed mRNAs and lncRNAs shared between activated human hepatic stellate cells and nash fibrosis. Biochem Biophys Rep 2020; 22:100753. [PMID: 32258441 PMCID: PMC7109412 DOI: 10.1016/j.bbrep.2020.100753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
We previously reported dysregulated expression of liver-derived messenger RNA (mRNA) and long noncoding RNA (lncRNA) in patients with advanced fibrosis resulting from nonalcoholic fatty liver disease (NAFLD). Here we sought to identify changes in mRNA and lncRNA levels associated with activation of hepatic stellate cells (HSCs), the predominant source of extracellular matrix production in the liver and key to NAFLD-related fibrogenesis. We performed expression profiling of mRNA and lncRNA from LX-2 cells, an immortalized human HSC cell line, treated to induce phenotypes resembling quiescent and myofibroblastic states. We identified 1964 mRNAs (1377 upregulated and 587 downregulated) and 1460 lncRNAs (665 upregulated and 795 downregulated) showing statistically significant evidence (FDR ≤0.05) for differential expression (fold change ≥|2|) between quiescent and activated states. Pathway analysis of differentially expressed genes showed enrichment for hepatic fibrosis (FDR = 1.35E-16), osteoarthritis (FDR = 1.47E-14), and axonal guidance signaling (FDR = 1.09E-09). We observed 127 lncRNAs/nearby mRNA pairs showing differential expression, the majority of which were dysregulated in the same direction. A comparison of differentially expressed transcripts in LX-2 cells with RNA-sequencing results from NAFLD patients with or without liver fibrosis revealed 1047 mRNAs and 91 lncRNAs shared between the two datasets, suggesting that some of the expression changes occurring during HSC activation can be observed in biopsied human tissue. These results identify lncRNA and mRNA expression patterns associated with activated human HSCs that appear to recapitulate human NAFLD fibrosis.
Collapse
Affiliation(s)
- Glenn S. Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Bethany Davis
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Xiumei Wu
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Amanda Hanson
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Danielle Wilhelmsen
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Ignazio S. Piras
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | | | - Xin Chu
- Geisinger Obesity Institute, Danville, PA, 17822, USA
| | | | - Johanna K. DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| |
Collapse
|
13
|
Bandopadhyay M, Bharadwaj M. Exosomal miRNAs in hepatitis B virus related liver disease: a new hope for biomarker. Gut Pathog 2020; 12:23. [PMID: 32346400 PMCID: PMC7183117 DOI: 10.1186/s13099-020-00353-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
The World Health Organisation, in its 2019 progress report on HIV, viral hepatitis and STDs indicates that 257 million people are afflicted with chronic HBV infections, of which, 1 million patients lose their lives every year due to HBV related chronic liver diseases including serious complications such as liver cirrhosis and hepatocellular carcinoma. The course of HBV infection and associated liver injury depend on several host factors, genetic variability of the virus, and the host viral interplay. The challenge of medical science is the early diagnosis/identification of the potential for development of fatal complications like liver cirrhosis and HCC so that timely medical intervention can improve the chances of survival. Currently, neither the vaccination regime nor the diagnostic methods are completely effective as reflected in the high number of annual deaths. It is evident from numerous publications that microRNAs (miRNAs) are the critical regulators of gene expression and various cellular processes like proliferation, development, differentiation, apoptosis and tumorigenesis. Expressions of these diminutive RNAs are significantly affected in cancerous tissues as a result of numerous genomic and epigenetic modifications. Exosomes are membrane-derived vesicles (30–100 nm) secreted by normal as well as malignant cells, and are present in all body fluids. They are recognized as critical molecules in intercellular communication between cells through horizontal transfer of information via their cargo, which includes selective proteins, mRNAs and miRNAs. Exosomal miRNAs are transferred to recipient cells where they can regulate target gene expression. This provides an insight into the elementary biology of cancer progression and therefore the development of therapeutic approaches. This concise review outlines various on-going research on miRNA mediated regulation of HBV pathogenesis with special emphasis on association of exosomal miRNA in advanced stage liver disease like hepatocellular carcinoma. This review also discusses the possible use of exosomal miRNAs as biomarkers in the early detection of HCC and liver cirrhosis.
Collapse
Affiliation(s)
- Manikankana Bandopadhyay
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research (NICPR), Indian Council of Medical Research (ICMR), Noida, Uttar Pradesh 201301 India
| | - Mausumi Bharadwaj
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research (NICPR), Indian Council of Medical Research (ICMR), Noida, Uttar Pradesh 201301 India
| |
Collapse
|
14
|
Iacob DG, Rosca A, Ruta SM. Circulating microRNAs as non-invasive biomarkers for hepatitis B virus liver fibrosis. World J Gastroenterol 2020; 26:1113-1127. [PMID: 32231417 PMCID: PMC7093315 DOI: 10.3748/wjg.v26.i11.1113] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Viruses can alter the expression of host microRNAs (MiRNA s) and modulate the immune response during a persistent infection. The dysregulation of host MiRNA s by hepatitis B virus (HBV) contributes to the proinflammatory and profibrotic changes within the liver. Multiple studies have documented the differential regulation of intracellular and circulating MiRNA s during different stages of HBV infection. Circulating MiRNA s found in plasma and/or extracellular vesicles can integrate data on viral-host interactions and on the associated liver injury. Hence, the detection of circulating MiRNA s in chronic HBV hepatitis could offer a promising alternative to liver biopsy, as their expression is associated with HBV replication, the progression of liver fibrosis, and the outcome of antiviral treatment. The current review explores the available data on miRNA involvement in HBV pathogenesis with an emphasis on their potential use as biomarkers for liver fibrosis.
Collapse
Affiliation(s)
- Diana Gabriela Iacob
- Infectious Diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest 050474, Romania
- Bucharest Emergency University Hospital, Bucharest 050098, Romania
| | - Adelina Rosca
- Virology Department, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Viral Emerging Diseases Department, Ștefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Simona Maria Ruta
- Virology Department, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Viral Emerging Diseases Department, Ștefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| |
Collapse
|
15
|
Wu SM, Li TH, Yun H, Ai HW, Zhang KH. miR-140-3p Knockdown Suppresses Cell Proliferation and Fibrogenesis in Hepatic Stellate Cells via PTEN-Mediated AKT/mTOR Signaling. Yonsei Med J 2019; 60:561-569. [PMID: 31124340 PMCID: PMC6536388 DOI: 10.3349/ymj.2019.60.6.561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/07/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Liver fibrosis is a major cause of morbidity and mortality and the outcome of various chronic liver diseases. Activation of hepatic stellate cells (HSCs) is the key event in liver fibrosis. Studies have confirmed that miR-140-3p plays a potential regulatory effect on HSC activation. However, whether miR-140-3p mediates the liver fibrosis remains unknown. MATERIALS AND METHODS Expression of miR-140-3p was detected by real-time quantitative PCR (qPCR). Cell proliferation was measured by MTT, while cell apoptosis rate was determined via flow cytometry. Western blot assay was used to detect the expression of cleaved PARP. The fibrogenic effect was evaluated by expression of α-smooth muscle actin and desmin. Functional experiments were performed in transforming growth factor β1 (TGF-β1)-induced HSC-T6 cells with transfection of anti-miR-140-3p and/or siPTEN. Target binding between miR-140-3p and PTEN was predicted by the TargetScan database and identified using luciferase reporter assay and RNA immunoprecipitation. RESULTS TGF-β1 induced the activation of HSC-T6 cells, and miR-140-3p expression varied according to HSC-T6 cell activation status. Knockdown of miR-140-3p reduced cell proliferation and the expressions of α-SMA and desmin, as well as increased apoptosis, in TGF-β1-induced HSC-T6 cells, which could be blocked by PTEN silencing. Additionally, inactivation of the AKT/mTOR signaling pathway stimulated by miR-140-3p knockdown was abolished when silencing PTEN expression. PTEN was negatively regulated by miR-140-3p via direct binding in HSC-T6 cells. CONCLUSION miR-140-3p is an important mediator in HSC-T6 cell activation, and miR-140-3p knockdown suppresses cell proliferation and fibrogenesis in TGF-β1-induced HSC-T6 cells, indicating that miR-140-3p may be a potential novel molecular target for liver fibrosis.
Collapse
Affiliation(s)
- Shi Min Wu
- Wuhan Center for Clinical Laboratory, Wuhan Forth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Hong Li
- Department of Ophthalmology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Yun
- Wuhan Center for Clinical Laboratory, Wuhan Forth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wu Ai
- Department of Clinical Laboratory, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Hui Zhang
- Wuhan Center for Clinical Laboratory, Wuhan Forth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL. miRNA Signature in NAFLD: A Turning Point for a Non-Invasive Diagnosis. Int J Mol Sci 2018; 19:E3966. [PMID: 30544653 PMCID: PMC6320931 DOI: 10.3390/ijms19123966] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) defines a wide pathological spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) which may predispose to liver cirrhosis and hepatocellular carcinoma. It represents the leading cause of hepatic damage worldwide. Diagnosis of NASH still requires liver biopsy but due to the high prevalence of NAFLD, this procedure, which is invasive, is not practicable for mass screening. Thus, it is crucial to non-invasively identify NAFLD patients at higher risk of progression to NASH and fibrosis. It has been demonstrated that hepatic fat content and progressive liver damage have a strong heritable component. Therefore, genetic variants associated with NAFLD have been proposed as non-invasive markers to be used in clinical practice. However, genetic variability is not completely explained by these common variants and it is possible that many of the phenotypic differences result from gene-environment interactions. Indeed, NAFLD development and progression is also modulated by epigenetic factors, in particular microRNAs (miRNAs), which control at post-transcriptional level many complementary target mRNAs and whose dysregulation has been shown to have high prognostic and predictive value in NAFLD. The premise of the current review is to discuss the role of miRNAs as pathogenic factors, risk predictors and therapeutic targets in NAFLD.
Collapse
Affiliation(s)
- Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy.
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy.
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy.
| | - Silvia Fargion
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy.
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy.
| |
Collapse
|
17
|
Roy S, Trautwein C, Luedde T, Roderburg C. A General Overview on Non-coding RNA-Based Diagnostic and Therapeutic Approaches for Liver Diseases. Front Pharmacol 2018; 9:805. [PMID: 30158867 PMCID: PMC6104154 DOI: 10.3389/fphar.2018.00805] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
Liver diseases contribute to the global mortality and morbidity and still represent a major health problem leading to the death of people worldwide. Although there are several treatment options available for Hepatitis C infections, for most liver disease the pharmacological options are still limited. Therefore, the development of new targets against liver diseases is of high interest. Non-coding RNA (ncRNA) such as microRNA (miRNA) or long ncRNA (lncRNA) have been shown to be deeply involved in the pathophysiology of almost all acute and chronic liver diseases. The emerging evidence showed the potential therapeutic use of miRNA associated with different steps of hepatic pathophysiology. In the present review, we summarize emerging insights of ncRNA in liver diseases. We also highlight example of ncRNAs participating in the pathogenesis of different forms of liver disease and how they can be used as potential therapeutic targets for novel treatment paradigms. Furthermore, we describe an overview of up-to-date clinical trials and discuss about its future in clinical applications. Finally, we highlight the role of circulating ncRNAs in diagnosis of liver diseases and discuss the challenges and drawbacks of the usage of ncRNAs in clinical setting.
Collapse
Affiliation(s)
- Sanchari Roy
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
18
|
Bao S, Zheng J, Li N, Huang C, Chen M, Cheng Q, Yu K, Chen S, Zhu M, Shi G. Serum MicroRNA Levels as a Noninvasive Diagnostic Biomarker for the Early Diagnosis of Hepatitis B Virus-Related Liver Fibrosis. Gut Liver 2018; 11:860-869. [PMID: 28750488 PMCID: PMC5669603 DOI: 10.5009/gnl16560] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/06/2017] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
Background/Aims To investigate the role of selected serum microRNA (miRNA) levels as potential noninvasive biomarkers for differentiating S0-S2 (early fibrosis) from S3-S4 (late fibrosis) in patients with a chronic hepatitis B virus (HBV) infection. Methods One hundred twenty-three treatment-naive patients with a chronic HBV infection who underwent a liver biopsy were enrolled in this study. The levels of selected miRNAs were measured using a real-time quantitative polymerase chain reaction assay. A logistic regression analysis was performed to assess factors associated with fibrosis progression. Receiver operating characteristic (ROC) curve and discriminant analyses validated these the ability of these predicted variables to discriminate S0-S2 from S3-S4. Results Serum miR-29, miR-143, miR-223, miR-21, and miR-374 levels were significantly downregulated as fibrosis progressed from S0-S2 to S3-S4 (p<0.05), but not miR-16. The multivariate logistic regression analysis identified a panel of three miRNAs and platelets that were associated with a high diagnostic accuracy in discriminating S0-S2 from S3-S4, with an area under the curve of 0.936. Conclusions The levels of the studied miRNAs, with the exception of miR-16, varied with fibrosis progression. A panel was identified that was capable of discriminating S0-S2 from S3-S4, indicating that serum miRNA levels could serve as a potential noninvasive biomarker of fibrosis progression.
Collapse
Affiliation(s)
- Suxia Bao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianming Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Chong Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingquan Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Cheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengshen Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengqi Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Guangfeng Shi
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology 2018; 67:940-954. [PMID: 29023935 PMCID: PMC5826829 DOI: 10.1002/hep.29586] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 09/02/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common and deadly cancer. Most cases of HCC arise in a cirrhotic/fibrotic liver, indicating that environment may play a paramount role in cancer genesis. Previous studies from our group and others have shown that, in desmoplastic cancers, there is a rich intercellular communication between activated, cancer-associated fibroblasts and cancer cells. Moreover, extracellular vesicles (EVs), or exosomes, have been identified as an important arm of this intercellular communication platform. Finally, these studies have shown that EVs can carry microRNA (miR) species in vivo and deliver them to desmoplastic cancers. The precise role played by activated liver fibroblasts/stellate cells in HCC development is insufficiently known. Based on previous studies, it appears plausible that activated fibroblasts produce signals carried by EVs that promote HCC genesis. In the current study, we first hypothesized and then demonstrated that stellate cell-derived EVs 1) can be loaded with an miR species of choice (miR-335-5p); 2) are taken up by HCC cells in vitro and more importantly in vivo; 3) can supply the miR-335-5p cargo to recipient HCC cells in vitro as well as in vivo; and 4) inhibit HCC cell proliferation and invasion in vitro as well as induce HCC tumor shrinkage in vivo. Finally, we identified messenger RNA targets for miR-335 that are down-regulated after treatment with EV-miR-335-5p. This study informs potential therapeutic strategies in HCC, whereby stellate cell-derived EVs are loaded with therapeutic nucleic acids and delivered in vivo. (Hepatology 2018;67:940-954).
Collapse
Affiliation(s)
- Fang Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Ling Li
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Klaus Piontek
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Masazumi Sakaguchi
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Florin M. Selaru
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- The Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Schueller F, Roy S, Vucur M, Trautwein C, Luedde T, Roderburg C. The Role of miRNAs in the Pathophysiology of Liver Diseases and Toxicity. Int J Mol Sci 2018; 19:ijms19010261. [PMID: 29337905 PMCID: PMC5796207 DOI: 10.3390/ijms19010261] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 12/12/2022] Open
Abstract
Both acute and chronic liver toxicity represents a major global health burden and an important cause of morbidity and lethality worldwide. Despite epochal progress in the treatment of hepatitis C virus infections, pharmacological treatment strategies for most liver diseases are still limited and new targets for prevention or treatment of liver disease are urgently needed. MicroRNAs (miRNAs) represent a new class of highly conserved small non-coding RNAs that are involved in the regulation of gene expression by targeting whole networks of so called “targets”. Previous studies have shown that the expression of miRNAs is specifically altered in almost all acute and chronic liver diseases. In this context, it was shown that miRNA can exert causal roles, being pro- or anti-inflammatory, as well as pro- or antifibrotic mediators or being oncogenes as well as tumor suppressor genes. Recent data suggested a potential therapeutic use of miRNAs by targeting different steps in the hepatic pathophysiology. Here, we review the function of miRNAs in the context of acute and chronic liver diseases. Furthermore, we highlight the potential role of circulating microRNAs in diagnosis of liver diseases and discuss the major challenges and drawbacks that currently prevent the use of miRNAs in clinical routine.
Collapse
Affiliation(s)
- Florian Schueller
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Sanchari Roy
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Mihael Vucur
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
21
|
Chen Y, Ou Y, Dong J, Yang G, Zeng Z, Liu Y, Liu B, Li W, He X, Lan T. Osteopontin promotes collagen I synthesis in hepatic stellate cells by miRNA-129-5p inhibition. Exp Cell Res 2017; 362:343-348. [PMID: 29196165 DOI: 10.1016/j.yexcr.2017.11.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Activation of hepatic stellate cells (HSCs) is an essential event in the initiation and progression of liver fibrosis. HSCs are believed to be the major source of collagen-producing myofibroblasts in fibrotic livers. A key feature in the pathogenesis of liver fibrosis is fibrillar Collagen I (Col 1) deposition. Osteopontin (OPN), an extracellular matrix (ECM) cytokine expressed in HSCs, could drive fibrogenesis by modulating the HSC pro-fibrogenic phenotype and Col 1 expression. Here, we aimed to investigate the molecular mechanism of OPN regulating the activation of HSCs. Our results showed that hepatic expression of OPN was increased in patients with liver fibrosis. In addition, hepatic OPN was positively correlated with Col 1 and α-SMA. Recombinant OPN (rOPN) upregulated Col 1 and α-SMA expression in LX-2 cells. However, OPN knockdown downregulated Col 1 expression. The 3'-UTR of the collagen 1 (Col 1) was identified to bind miR-129-5p. Transfection of miR-129-5p mimic in HSC resulted in a marked reduction of Col 1 expression. Conversely, a decrease in miR-129-5p in HSCs transfected by anti-sense miR-129-5p (AS-miR-129-5p) caused Col 1 upregulation. Furthermore, luciferase reporter assay showed that miR-129-5p directly target the 3'-UTR of Col1α1 mRNA via repressing its post-transcriptional activities. Finally, miR-129-5p level was decreased in fibrotic liver of human, and reduced by rOPN treatment. In contrast, miR-129-5p was induced in HSCs transfected by OPN siRNA. These data suggested that OPN induces Col 1 expression via suppression of miR-129-5p in HSCs.
Collapse
Affiliation(s)
- Yinghua Chen
- Organ Transplantation Center, the First Affiliat ed Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yitao Ou
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiale Dong
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guizhi Yang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhi Zeng
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Liu
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing Liu
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weidong Li
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoshun He
- Organ Transplantation Center, the First Affiliat ed Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Tian Lan
- Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Shaker OG, Senousy MA. Serum microRNAs as predictors for liver fibrosis staging in hepatitis C virus-associated chronic liver disease patients. J Viral Hepat 2017; 24:636-644. [PMID: 28211229 DOI: 10.1111/jvh.12696] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022]
Abstract
Accurate staging of liver fibrosis is important for clinical decision making and personalized management. Liver fibrosis is influenced by patients' genomics, including IFNL3 genotype and microRNA expression. However, incorporating microRNAs into fibrosis prediction algorithms has not been investigated. We examined the potential of eight selected serum microRNAs; miR-122, miR-126, miR-129, miR-199a, miR-155, miR-203a, miR-221, and miR-223 as non-invasive biomarkers to stage liver fibrosis in HCV-associated chronic liver disease (HCV-CLD). 145 Egyptian HCV-CLD patients were divided according to Metavir fibrosis scores. MicroRNAs and IFNL3 rs12979860 genotype were assayed by RT-qPCR and allelic discrimination techniques, respectively. Serum miR-122 was downregulated, whereas miR-203a and miR-223 were upregulated in significant fibrosis (≥F2) compared with no/mild fibrosis (F0-F1). Serum miR-126, miR-129, miR-203a, and miR-223 were upregulated in severe fibrosis (≥F3) and cirrhosis (F4) compared with F0-F2 and F0-F3, respectively. miR-221 was upregulated in ≥F3, but unchanged in F4. miR-155, miR-199a, and IFNL3 rs12979860 genotype were not significantly different in all comparisons. Differentially expressed serum microRNAs discriminated ≥F2, ≥F3, and F4 by receiver-operating-characteristic analysis. Multivariate logistic analysis revealed a model combining miR-129, miR-223, AST, and platelet count with high diagnostic accuracy for ≥F3 (AUC=0.91). The model also discriminated F4 (AUC=0.96) and ≥F2 (AUC=0.783), and was superior to APRI and FIB-4 in discriminating ≥F3 and F4, but not ≥F2. In conclusion, combining serum microRNAs with baseline predictors could serve as a new non-invasive algorithm for staging HCV-associated liver fibrosis. Additional studies are required to confirm this model and test its significance in liver fibrosis of other etiologies.
Collapse
Affiliation(s)
- O G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - M A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Elemeery MN, Badr AN, Mohamed MA, Ghareeb DA. Validation of a serum microRNA panel as biomarkers for early diagnosis of hepatocellular carcinoma post-hepatitis C infection in Egyptian patients. World J Gastroenterol 2017; 23:3864-3875. [PMID: 28638226 PMCID: PMC5467072 DOI: 10.3748/wjg.v23.i21.3864] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the prospective importance of serum micro (mi)RNAs (miR-125b, miR-138b, miR-1269, miR-214-5p, miR-494, miR375 and miR-145) as early biomarkers for the diagnosis of hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC).
METHODS Two-hundred and fifty HCV4a patients, 224 HCV4a-HCC patients, and 84 healthy controls were enrolled in the study. Expression levels of miR214-5p, miR-125b, miR-1269 and miR-375 were quantified using quantitative real-time PCR.
RESULTS Expression of the selected miRNAs in serum was significantly lower in HCC patients than in the healthy controls, except for miR-1269 and miR-494. There was a significant difference between HCC and HCV patients, in particular for HCC and late stage fibrosis, rather than HCV patients and early fibrosis. It is obvious that miR-1269 was significantly upregulated in HCC cases compared to hepatic fibrosis cases. Each miRNA can show HCC progression. Multivariate logistic regression analysis indicated that the tested panel of miRNAs (miR214-5p, miR-125b, miR-1269 and miR-375) represent accurate and specific indictors of HCC development.
CONCLUSION This study presents a panel of miRNAs with strong power as putative diagnostic and prognostic biomarkers for HCV-induced HCC. Moreover, miR-214-5p and miR-1269 could be considered as early biomarkers for tracking the progress of liver fibrosis to HCC.
Collapse
|
24
|
Abstract
Liver fibrosis arises because prolonged injury combined with excessive scar deposition within hepatic parenchyma arising from overactive wound healing response mediated by activated myofibroblasts. Fibrosis is the common end point for any type of chronic liver injury including alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, and cholestatic liver diseases. Although genetic influences are important, it is epigenetic mechanisms that have been shown to orchestrate many aspects of fibrogenesis in the liver. New discoveries in the field are leading toward the development of epigenetic biomarkers and targeted therapies. This review considers epigenetic mechanisms as well as recent advances in epigenetic programming in the context of hepatic fibrosis.
Collapse
Key Words
- CLD, chronic liver disease
- Chronic Liver Disease
- CpG, cytosine-phospho-guanine
- DNA Methylation
- DNMT, DNA methyltransferase
- Epigenetics
- HDAC, histone deacetylase
- HSC, hepatic stellate cell
- Histone Modifications
- Liver Fibrosis
- NAFLD, nonalcoholic fatty liver disease
- PPAR, peroxisome proliferator activated receptor
- TET, Ten Eleven Translocation
- miRNA, microRNA
- ncRNA, non-coding RNA
Collapse
Affiliation(s)
| | - Jelena Mann
- Correspondence Address correspondence to: Jelena Mann, PhD, Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH United Kingdom. fax: +44-191-208-0723.Institute of Cellular MedicineFaculty of Medical Sciences4th FloorWilliam Leech BuildingNewcastle UniversityFramlington PlaceNewcastle upon TyneNE2 4HH United Kingdom
| |
Collapse
|
25
|
Abstract
Studies have shown that transforming growth factor-β (TGF-β) is one of the most important factors to promote hepatic fibrosis (HF), and the TGF-β/Smad pathway is a major signaling pathway involved in HF. Abnormal expression of microRNAs (miRNAs) has a key role in the development of HF. In recent years, studies suggest that regulating miRNAs may affect the TGF-β/Smad pathway. This paper discusses the TGF-β/Smad pathway and the related miRNAs that are associated with HF.
Collapse
|
26
|
Duan B, Hu J, Zhang T, Luo X, Zhou Y, Liu S, Zhu L, Wu C, Liu W, Chen C, Gao H. miRNA-338-3p/CDK4 signaling pathway suppressed hepatic stellate cell activation and proliferation. BMC Gastroenterol 2017; 17:12. [PMID: 28095789 PMCID: PMC5240298 DOI: 10.1186/s12876-017-0571-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/07/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Activated hepatic stellate cell (HSC) is the main fibrogenic cell type in the injured liver. miRNA plays an important role in activation and proliferation of HSC. METHODS Our previous study examined the expression profiles of microRNAs in quiescent and activated HSC. Real-time PCR and western blot were used to detect the expression of Collagen type I (Col 1) and Alpha-Smooth Muscle Actin (α-SMA). CCK-8 and Edu assay was used to measure the proliferation rate of HSC. Luciferase reporter gene assay was used to tested the binding between miR-338-3p and Cyclin-dependent kinase 4 (CDK4). RESULTS We found overexpression of miR-338-3p could inhibit Col 1 and α-SMA, two major HSC activation markers, whereas miR-338-3p inhibitor could promote them. Besides, miR-338-3p overexpression could suppress the growth rate of HSC. Further, we found that CDK4, a pleiotropic signaling protein, was a direct target gene of miR-338-3p. Moreover, we found that overexpression of CDK4 could block the effects of miR-338-3p. CONCLUSIONS We found miR-338-3p is an anti-fibrotic miRNA which inhibits cell activation and proliferation. Our findings suggest that miR-338-3p/CDK4 signaling pathway participates in the regulation of HSC activation and growth and may act as a novel target for further anti-fibrotic therapy.
Collapse
Affiliation(s)
- Bensong Duan
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiangfeng Hu
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Tongyangzi Zhang
- Department of Respiration, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Luo
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Zhou
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shun Liu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Liang Zhu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Cheng Wu
- Digestive Endoscopic Center, Department of Gastroenterology, South Building General Hospital of PLA, Beijing, China
| | - Wenxiang Liu
- Department of Gastroenterology, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Chao Chen
- Department of Gastroenterology, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China.
| | - Hengjun Gao
- National Engineering Center for Biochip at Shanghai, Shanghai, China. .,Department of Gastroenterology, Institute of Digestive Diseases, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Men R, Wen M, Zhao M, Dan X, Yang Z, Wu W, Wang MH, Liu X, Yang L. MircoRNA-145 promotes activation of hepatic stellate cells via targeting krüppel-like factor 4. Sci Rep 2017; 7:40468. [PMID: 28091538 PMCID: PMC5238405 DOI: 10.1038/srep40468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/06/2016] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like Factor 4 (KLF4), a target gene of miR-145, can negatively regulate lung fibrosis. However, the potential role of KLF4 and miR-145 in hepatic stellate cells (HSCs) activation or in hepatic fibrosis keeps unclear. This study aims to characterize miR-145 and KLF4 in activated HSCs and liver cirrhotic, and the underlying molecular basis. miR-145 was significantly up-regulated, while KLF4 was dramatically down-regulated during the activation of rat primary HSCs and TGF-βtreated HSCs. Furthermore, miR-145 mimics induced and inhibition of miR-145 reduced α-SMA and COL-I expression in primary HSCs. Additionally, the mRNA and protein levels of KLF4 in the liver of cirrhotic patients and rats were significantly down-regulated. α-SMA and COL-I were increased after inhibition of KLF4 by specific shRNA in primary HSCs. Forced KLF4 expression led to a reduction of α-SMA and COL-I expression in HSCs. miR-145 promotes HSC activation and liver fibrosis by targeting KLF4.
Collapse
Affiliation(s)
- Ruoting Men
- Division of Gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Biostatistics, JC school of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Maoyao Wen
- Division of Gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingyue Zhao
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuelian Dan
- Division of Gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zongze Yang
- Creation and Management of a Tumour Bank, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Maggie Haitian Wang
- Department of Biostatistics, JC school of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Yang
- Division of Gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Ran LJ, Liang J, Deng X. Latest advances in understanding of relationship between microRNAs and hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2016; 24:4813-4819. [DOI: 10.11569/wcjd.v24.i36.4813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Studies have shown the expression of microRNAs (miRNAs) in hepatic fibrosis. MiRNAs are important in regulating hepatic fibrosis, and have a close relationship with the occurrence, development, diagnosis and treatment of hepatic fibrosis. This article reviews the latest advances in the understanding of the relationship between miRNAs and hepatic fibrosis.
Collapse
|
29
|
Duru N, Zhang Y, Gernapudi R, Wolfson B, Lo PK, Yao Y, Zhou Q. Loss of miR-140 is a key risk factor for radiation-induced lung fibrosis through reprogramming fibroblasts and macrophages. Sci Rep 2016; 6:39572. [PMID: 27996039 PMCID: PMC5172237 DOI: 10.1038/srep39572] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
Radiation-induced lung fibrosis (RILF) is a common side effect for patients with thoracic cancer receiving radiation therapy. RILF is characterized by excessive collagen deposition mediated by TGF-β1 and its downstream factor SMAD3, but the exact molecular mechanism leading to fibrosis is yet to be determined. The present study investigated the impact of miR-140 on RILF development. Herein, we first found that loss of miR-140 is a marker of fibrotic lung tissue in vivo one-year post-radiation treatment. We showed that miR-140 knockout primary lung fibroblasts have a higher percentage of myofibroblasts compared to wild type primary lung fibroblasts, and that loss of miR-140 expression leads to increased activation of TGF-β1 signaling as well as increased myofibroblast differentiation. We also identified fibronectin as a novel miR-140 target gene in lung fibroblasts. Finally, we have shown that miR-140 deficiency promotes accumulation of M2 macrophages in irradiated lung tissues. These data suggest that miR-140 is a key protective molecule against RILF through inhibiting myofibroblast differentiation and inflammation.
Collapse
Affiliation(s)
- Nadire Duru
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yongshu Zhang
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ramkishore Gernapudi
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Benjamin Wolfson
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Pang-Kuo Lo
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yuan Yao
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Qun Zhou
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
30
|
El Taghdouini A, van Grunsven LA. Epigenetic regulation of hepatic stellate cell activation and liver fibrosis. Expert Rev Gastroenterol Hepatol 2016; 10:1397-1408. [PMID: 27762150 DOI: 10.1080/17474124.2016.1251309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic liver injury to hepatocytes or cholangiocytes, when left unmanaged, leads to the development of liver fibrosis, a condition characterized by the excessive intrahepatic deposition of extracellular matrix proteins. Activated hepatic stellate cells constitute the predominant source of extracellular matrix in fibrotic livers and their transition from a quiescent state during fibrogenesis is associated with important alterations in their transcriptional and epigenetic landscape. Areas covered: We briefly describe the processes involved in hepatic stellate cell activation and discuss our current understanding of alterations in the epigenetic landscape, i.e DNA methylation, histone modifications and the functional role of non-coding RNAs that accompany this key event in the development of chronic liver disease. Expert commentary: Although great progress has been made, our understanding of the epigenetic regulation of hepatic stellate cell activation is limited and, thus far, insufficient to allow the development of epigenetic drugs that can selectively interrupt liver fibrosis.
Collapse
Affiliation(s)
- Adil El Taghdouini
- a Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy , Université Catholique de Louvain , Brussels , Belgium.,b Liver Cell Biology Laboratory , Vrije Universiteit Brussel (VUB) , Brussels , Belgium
| | - Leo A van Grunsven
- b Liver Cell Biology Laboratory , Vrije Universiteit Brussel (VUB) , Brussels , Belgium
| |
Collapse
|
31
|
Integrated microRNA and messenger RNA analysis in aortic stenosis. Sci Rep 2016; 6:36904. [PMID: 27876829 PMCID: PMC5120312 DOI: 10.1038/srep36904] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022] Open
Abstract
Aortic valve stenosis (AS) is a major cause of morbidity and mortality, with no effective medical therapies. Investigation into the underlying biology of AS in humans is limited by difficulties in obtaining healthy valvular tissue for use as a control group. However, micro-ribonucleic acids (miRNAs) are stable in post-mortem tissue. We compared valve specimens from patients undergoing aortic valve replacement for AS to non-diseased cadaveric valves. We found 106 differentially expressed miRNAs (p < 0.05, adjusted for multiple comparisons) on microarray analysis, with highly correlated expression among up- and down-regulated miRNAs. Integrated miRNA/gene expression analysis validated the microarray results as a whole, while quantitative polymerase chain reaction confirmed downregulation of miR-122-5p, miR-625-5p, miR-30e-5p and upregulation of miR-21-5p and miR-221-3p. Pathway analysis of the integrated miRNA/mRNA network identified pathways predominantly involved in extracellular matrix function. A number of currently available therapies target products of upregulated genes in the integrated miRNA/mRNA network, with these genes being predominantly more peripheral members of the network. The identification of a group of tissue miRNA associated with AS may contribute to the development of new therapeutic approaches to AS. This study highlights the importance of systems biology-based approaches to complex diseases.
Collapse
|
32
|
Hepatic Stellate Cells and microRNAs in Pathogenesis of Liver Fibrosis. J Clin Med 2016; 5:jcm5030038. [PMID: 26999230 PMCID: PMC4810109 DOI: 10.3390/jcm5030038] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by either blocking translation or inducing degradation of target mRNA. miRNAs play essential roles in diverse biological and pathological processes, including development of hepatic fibrosis. Hepatic stellate cells (HSCs) play a central role in development of hepatic fibrosis and there are intricate regulatory effects of miRNAs on their activation, proliferation, collagen production, migration, and apoptosis. There are multiple differentially expressed miRNAs in activated HSCs, and in this review we aim to summarize current data on miRNAs that participate in the development of hepatic fibrosis. Based on this review, miRNAs may serve as biomarkers for diagnosis of liver disease, as well as markers of disease progression. Most importantly, dysregulated miRNAs may potentially be targeted by novel therapies to treat and reverse progression of hepatic fibrosis.
Collapse
|
33
|
Wu M, Wu D, Wang C, Guo Z, Li B, Zuo Z. Hexabromocyclododecane exposure induces cardiac hypertrophy and arrhythmia by inhibiting miR-1 expression via up-regulation of the homeobox gene Nkx2.5. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:304-313. [PMID: 26476318 DOI: 10.1016/j.jhazmat.2015.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/25/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
Hexabromocyclododecane (HBCD) is one of the most widely used brominated flame retardants. Although studies have reported that HBCD can cause a wide range of toxic effects on animals including humans, limited information can be found about its cardiac toxicity. In the present study, zebrafish embryos were exposed to HBCD at low concentrations of 0, 2, 20 and 200 nM. The results showed that HBCD exposure could induce cardiac hypertrophy and increased deposition of collagen. In addition, disordered calcium (Ca(2+)) handling was observed in H9C2 rat cardiomyocyte cells exposed to HBCD. Using small RNA sequencing and real-time quantitative PCR, HBCD exposure was shown to induce significant changes in the miRNA expression profile associated with the cardiovascular system. Further findings indicated that miR-1, which was depressed by Nkx2.5, might play a fundamental role in mediating cardiac hypertrophy and arrhythmia via its target genes Mef2a and Irx5 after HBCD treatment. HBCD exposure induced an arrhythmogenic disorder, which was triggered by the imbalance of Ryr2, Serca2a and Ncx1 expression, inducing Ca(2+) overload in the sarcoplasmic reticulum and high Ca(2+)-ATPase activities in the H9C2 cells.
Collapse
Affiliation(s)
- Meifang Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Di Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhizhun Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Bowen Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
34
|
El-Ahwany E, Nagy F, Zoheiry M, Shemis M, Nosseir M, Taleb HA, El Ghannam M, Atta R, Zada S. Circulating miRNAs as Predictor Markers for Activation of Hepatic Stellate Cells and Progression of HCV-Induced Liver Fibrosis. Electron Physician 2016; 8:1804-10. [PMID: 26955452 PMCID: PMC4768932 DOI: 10.19082/1804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022] Open
Abstract
Introduction Liver fibrosis is the excessive accumulation of extracellular matrix that occurs by activation of hepatic stellate cells (HSCs), which has been identified as the major driver of liver fibrosis. Several studies confirmed that miRNAs have regulatory effects on the activation of HSCs by affecting the signaling pathways. The aim of this study was to develop non-invasive diagnostic markers by measuring different circulating miRNAs in serum as predictor markers for early diagnosis of liver fibrosis and its progression. Methods In this case-control study, we enrolled 66 subjects with chronic hepatitis C (CHC) with early stage of fibrosis and 65 subjects with CHC with late-stage fibrosis. Also, 40 subjects were included as normal controls. The six main miRNAs, i.e., miR-138, miR-140, miR-143, miR-325, miR-328, and miR-349, were measured using the reverse transcription-polymerase chain reaction. Results In the cases of CHC both with early and late stage of fibrosis, the circulating levels of the six main miRNAs were significantly higher than the levels in the control group. ROC analysis indicated that the sensitivity and specificity of miR-138 were 89.3% and 71.43%, respectively, in the early stage of fibrosis. In the late stage, the sensitivity and specificity of miR-138 were 89.3 and 93.02%, respectively, whereas, for miR-143, they were 75.0 and 88.4%, respectively. Conclusions Circulating miR-138 could serve as a non-invasive biomarker for the detection of early fibrosis. Also, miR-138 and miR-143 could be specific biomarkers for indicating the late stage of liver fibrosis.
Collapse
Affiliation(s)
- Eman El-Ahwany
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Faten Nagy
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mona Zoheiry
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Shemis
- Biochemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mona Nosseir
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hoda Abu Taleb
- Environmental Research Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Maged El Ghannam
- Gastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Rafaat Atta
- Gastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Suher Zada
- Biology Department, American University in Cairo, Cairo, Egypt
| |
Collapse
|
35
|
Fuzheng Huayu Recipe Ameliorates Liver Fibrosis by Restoring Balance between Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Hepatic Stellate Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:935903. [PMID: 26881209 PMCID: PMC4736000 DOI: 10.1155/2015/935903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/16/2015] [Indexed: 11/22/2022]
Abstract
Activation of hepatic stellate cells (HSCs) depending on epithelial-to-mesenchymal transition (EMT) reflects the key event of liver fibrosis. Contrastively, mesenchymal-to-epithelial transition (MET) of HSCs facilitates the fibrosis resolution. Here we investigated the effect of Fuzheng Huayu (FZHY) recipe, a Chinese herbal decoction made of Radix Salviae Miltiorrhizae, Semen Persicae, Cordyceps sinensis, Pollen Pini, and Gynostemma pentaphyllum, on liver fibrosis concerning the balance of EMT and MET in HSCs. In contrast to the increased TGF-β1/BMP-7 ratio in activated HSCs, FZHY administration induced significant upregulation of BMP-7 and downregulation of TGF-β1 at both transcription and translation levels. Restoration of TGF-β1/BMP-7 ratio inhibited the expression of p38 MAPK and phosphorylated p38 MAPK, resulting in the reversal of epithelial-to-mesenchymal transition (EMT) to mesenchymal-to-epithelial transition (MET) as characterized by the abolishment of EMT markers (α-SMA and desmin) and reoccurrence of MET marker (E-cadherin). In vivo treatment of FZHY recipe also demonstrated the statistical reduction of activated HSCs with EMT phenotype, which attenuated the carbon tetrachloride- (CCl4-) induced liver fibrosis in a dose-dependent manner. These findings may highlight a novel antifibrotic role of FZHY recipe on the basis of rebalancing EMT and MET in HSCs.
Collapse
|
36
|
Zhou R, Wang R, Qin Y, Ji J, Xu M, Wu W, Chen M, Wu D, Song L, Shen H, Sha J, Miao D, Hu Z, Xia Y, Lu C, Wang X. Mitochondria-related miR-151a-5p reduces cellular ATP production by targeting CYTB in asthenozoospermia. Sci Rep 2015; 5:17743. [PMID: 26626315 PMCID: PMC4667214 DOI: 10.1038/srep17743] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/04/2015] [Indexed: 12/31/2022] Open
Abstract
Mitochondria, acting as the energy metabolism factory, participate in many key biological processes, including the maintenance of sperm viability. Mitochondria-related microRNA (miRNA), encoded by nuclear genome or mitochondrial genome, may play an important regulatory role in the control of mitochondrial function. To investigate the potential role of mitochondria-related miRNAs in asthenozoospermia, we adopted a strategy consisting of initial screening by TaqMan Low Density Array (TLDA) and further validation with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Validation of the profiling results was conducted in two independent phases. Eventually, two seminal plasma miRNAs (sp-miRs) (miR-101-3p, let-7b-5p) were found to be significantly decreased, while sp-miR-151a-5p was significantly increased in severe asthenozoospermia cases compared with healthy controls. To further study their potential roles in asthenozoospermia, we then evaluated mitochondrial function of GC-2 cells transfected with these potentially functional miRNAs. Our results demonstrated that transfection with miR-151a-5p mimics decreased the mitochondrial respiratory activity. Besides, Adenosine Triphosphate (ATP) level was decreased when transfected with miR-151a-5p mimics. In addition, Cytochrome b (Cytb) mRNA and protein levels were also decreased when miR-151a-5p was overexpressed. These results indicate that miR-151a-5p may participate in the regulation of cellular respiration and ATP production through targeting Cytb.
Collapse
Affiliation(s)
- Ran Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Rong Wang
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Yufeng Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Juan Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Miaofei Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Di Wu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ling Song
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
37
|
Motawi TK, Shaker OG, El-Maraghy SA, Senousy MA. Serum MicroRNAs as Potential Biomarkers for Early Diagnosis of Hepatitis C Virus-Related Hepatocellular Carcinoma in Egyptian Patients. PLoS One 2015; 10:e0137706. [PMID: 26352740 PMCID: PMC4564244 DOI: 10.1371/journal.pone.0137706] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/19/2015] [Indexed: 02/06/2023] Open
Abstract
Circulating microRNAs are deregulated in liver fibrosis and hepatocellular carcinoma (HCC) and are candidate biomarkers. This study investigated the potential of serum microRNAs; miR-19a, miR-296, miR-130a, miR-195, miR-192, miR-34a, and miR-146a as early diagnostic biomarkers for hepatitis C virus (HCV)-related HCC. As how these microRNAs change during liver fibrosis progression is not clear, we explored their serum levels during fibrosis progression in HCV-associated chronic liver disease (CLD) and if they could serve as non-invasive biomarkers for fibrosis progression to HCC. 112 Egyptian HCV-HCC patients, 125 non-malignant HCV-CLD patients, and 42 healthy controls were included. CLD patients were subdivided according to Metavir fibrosis-scoring. Serum microRNAs were measured by qRT-PCR custom array. Serum microRNAs were deregulated in HCC versus controls, and except miR-130a, they were differentially expressed between HCC and CLD or late fibrosis (F3-F4) subgroup. Serum microRNAs were not significantly different between individual fibrosis-stages or between F1-F2 (early/moderate fibrosis) and F3-F4. Only miR-19a was significantly downregulated from liver fibrosis (F1-F3) to cirrhosis (F4) to HCC. Individual microRNAs discriminated HCC from controls, and except miR-130a, they distinguished HCC from CLD or F3-F4 patients by receiver-operating-characteristic analysis. Multivariate logistic analysis revealed a panel of four microRNAs (miR-19a, miR-195, miR-192, and miR-146a) with high diagnostic accuracy for HCC (AUC = 0.946). The microRNA panel also discriminated HCC from controls (AUC = 0.949), CLD (AUC = 0.945), and F3-F4 (AUC = 0.955). Studied microRNAs were positively correlated in HCC group. miR-19a and miR-34a were correlated with portal vein thrombosis and HCC staging scores, respectively. In conclusion, studied microRNAs, but not miR-130a, could serve as potential early biomarkers for HCC in high-risk groups, with miR-19a as a biomarker for liver fibrosis progression to cirrhosis to HCC. We identified a panel of four serum microRNAs with high accuracy in HCC diagnosis. Additional studies are required to confirm this panel and test its prognostic significance.
Collapse
Affiliation(s)
- Tarek K. Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Mahmoud A. Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- * E-mail:
| |
Collapse
|
38
|
Sarkar N, Chakravarty R. Hepatitis B Virus Infection, MicroRNAs and Liver Disease. Int J Mol Sci 2015; 16:17746-62. [PMID: 26247932 PMCID: PMC4581219 DOI: 10.3390/ijms160817746] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) attacks the liver and can cause both acute as well as chronic liver diseases which might lead to liver cirrhosis and hepatocellular carcinoma. Regardless of the availability of a vaccine and numerous treatment options, HBV is a major cause of morbidity and mortality across the world. Recently, microRNAs (miRNAs) have emerged as important modulators of gene function. Studies on the role of miRNA in the regulation of hepatitis B virus gene expression have been the focus of modern antiviral research. miRNAs can regulate viral replication and pathogenesis in a number of different ways, which includefacilitation, direct or indirect inhibition, activation of immune response, epigenetic modulation, etc. Nevertheless, these mechanisms can appropriately be used with a diagnosticand/or therapeutic approach. The present review is an attempt to classify specific miRNAs that are reported to be associated with various aspects of hepatitis B biology, in order to precisely present the participation of individual miRNAs in multiple aspects relating to HBV.
Collapse
Affiliation(s)
- Neelakshi Sarkar
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, Kolkata-700010, India.
| | - Runu Chakravarty
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, Kolkata-700010, India.
| |
Collapse
|
39
|
Lambrecht J, Mannaerts I, van Grunsven LA. The role of miRNAs in stress-responsive hepatic stellate cells during liver fibrosis. Front Physiol 2015; 6:209. [PMID: 26283969 PMCID: PMC4516870 DOI: 10.3389/fphys.2015.00209] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/13/2015] [Indexed: 12/12/2022] Open
Abstract
The progression of liver fibrosis and cirrhosis is associated with the persistence of an injury causing agent, leading to changes in the extracellular environment and a disruption of the cellular homeostasis of liver resident cells. Recruitment of inflammatory cells, apoptosis of hepatocytes, and changes in liver microvasculature are some examples of changing cellular environment that lead to the induction of stress responses in nearby cells. During liver fibrosis, the major stresses include hypoxia, oxidative stress, and endoplasmic reticulum stress. When hepatic stellate cells (HSCs) are subjected to such stress, they modulate fibrosis progression by induction of their activation toward a myofibroblastic phenotype, or by undergoing apoptosis, and thus helping fibrosis resolution. It is widely accepted that microRNAs are import regulators of gene expression, both during normal cellular homeostasis, as well as in pathologic conditions. MicroRNAs are short RNA sequences that regulate the gene expression by mRNA destabilization and inhibition of mRNA translation. Specific microRNAs have been identified to play a role in the activation process of HSCs on the one hand and in stress-responsive pathways on the other hand in other cell types (Table 2). However, so far there are no reports for the involvement of miRNAs in the different stress responses linked to HSC activation. Here, we review briefly the major stress response pathways and propose several miRNAs to be regulated by these stress responsive pathways in activating HSCs, and discuss their potential specific pro-or anti-fibrotic characteristics.
Collapse
Affiliation(s)
- Joeri Lambrecht
- Liver Cell Biology Lab, Department of Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Inge Mannaerts
- Liver Cell Biology Lab, Department of Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Lab, Department of Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| |
Collapse
|
40
|
Pan F, Chen L, Ding F, Zhang J, Gu YD. Expression profiles of MiRNAs for intrinsic musculature of the forepaw and biceps in the rat model simulating irreversible muscular atrophy of obstetric brachial plexus palsy. Gene 2015; 565:268-74. [DOI: 10.1016/j.gene.2015.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022]
|
41
|
Kitab B, Alj HS, Ezzikouri S, Benjelloun S. MicroRNAs as Important Players in Host-hepatitis B Virus Interactions. J Clin Transl Hepatol 2015; 3:149-61. [PMID: 26357642 PMCID: PMC4548348 DOI: 10.14218/jcth.2015.00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) infection, a major public health problem, causes acute and chronic hepatitis that is often complicated by liver cirrhosis and hepatocellular carcinoma. The pathogenic mechanisms of HBV-related liver disease are not well understood, and the current licensed therapies are not effective in permanently clearing virus from the circulation. In recent years, the role of micro-ribonucleic acids (miRNAs) in HBV infection has attracted great interest. Cellular miRNAs can influence HBV replication directly by binding to HBV transcripts and indirectly by targeting cellular factors relevant to the HBV life cycle. They are also involved in the regulation of cellular genes and signaling pathways that have critical roles in HBV pathogenesis. HBV infection, in turn, can trigger changes in cellular miRNA expression that are associated with distinctive miRNA expression profiles depending on the phase of liver disease. These alterations in miRNA expression have been linked to disease progression and hepatocarcinogenesis. We provide here an up to date review regarding the field of miRNAs and HBV interplay and highlight the potential utility of miRNAs as diagnostic biomarkers and therapeutic targets for the management of HBV-related liver disease.
Collapse
Affiliation(s)
- Bouchra Kitab
- Viral Hepatitis Laboratory, Virology Unit, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hanane Salih Alj
- Laboratory of Biology and Health, URAC34, Faculty of Sciences Ben M’sik, University Hassan II Casablanca, Morocco
| | - Sayeh Ezzikouri
- Viral Hepatitis Laboratory, Virology Unit, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Soumaya Benjelloun
- Viral Hepatitis Laboratory, Virology Unit, Institut Pasteur du Maroc, Casablanca, Morocco
- Correspondence to: Soumaya Benjelloun, Virology Unit, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca 20360, Morocco. Tel: +212‐527‐016‐076; +212‐522‐434‐450, Fax: +212‐522‐260‐957, E‐mail:
| |
Collapse
|
42
|
Tu X, Zheng X, Li H, Cao Z, Chang H, Luan S, Zhu J, Chen J, Zang Y, Zhang J. MicroRNA-30 Protects Against Carbon Tetrachloride-induced Liver Fibrosis by Attenuating Transforming Growth Factor Beta Signaling in Hepatic Stellate Cells. Toxicol Sci 2015; 146:157-69. [PMID: 25912033 DOI: 10.1093/toxsci/kfv081] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transforming growth factor beta (TGF-β) is crucial for transdifferentiation of hepatic stellate cells (HSCs) and the blunting of TGF-β signaling in HSCs can effectively prevent liver fibrosis. Krüppel-like factor 11 (KLF11) is an early response transcription factor that potentiates TGF-β/Smad signaling by suppressing the transcription of inhibitory Smad7. Using a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis, we observed significant upregulation of KLF11 in the activated HSCs during liver fibrogenesis. Meanwhile, the downregulation of miR-30 was observed in the HSCs isolated from fibrotic liver. Adenovirus-mediated ectopic expression of miR-30 was under the control of smooth muscle α-actin promoter, showing that the increase in miR-30 in HSC greatly reduced CCl4-induced liver fibrosis. Subsequent investigations showed that miR-30 suppressed KLF11 expression in HSC and led to a significant upregulation of Smad7 in vivo. Mechanistic studies further confirmed that KLF11 was the direct target of miR-30, and revealed that miR-30 blunted the profibrogenic TGF-β signaling in HSC by suppressing KLF11 expression and thus enhanced the negative feedback loop of TGF-β signaling imposed by Smad7. Finally, we demonstrated that miR-30 facilitated the reversal of activated HSC to a quiescent state as indicated by the inhibition of proliferation and migration, the loss of activation markers, and the gain of quiescent HSC markers. In conclusion, our results define miR-30 as a crucial suppressor of TGF-β signaling in HSCs activation and provide useful insights into the mechanisms underlying liver fibrosis.
Collapse
Affiliation(s)
- Xiaolong Tu
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiuxiu Zheng
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Huanan Li
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhipeng Cao
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Hanwen Chang
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shaoyuan Luan
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jie Zhu
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jiangning Chen
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yuhui Zang
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Junfeng Zhang
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
43
|
Vatakuti S, Schoonen WGEJ, Elferink MLG, Groothuis GMM, Olinga P. Acute toxicity of CCl4 but not of paracetamol induces a transcriptomic signature of fibrosis in precision-cut liver slices. Toxicol In Vitro 2015; 29:1012-20. [PMID: 25858767 DOI: 10.1016/j.tiv.2015.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 12/20/2022]
Abstract
In rat in vivo, both paracetamol (APAP) and carbon tetrachloride (CCl4) induce liver necrosis, but long-term treatment with CCl4, in contrast to paracetamol, causes liver fibrosis. The aim of this study was to perform transcriptomic analysis to compare the early changes in mRNA expression profiles induced by APAP and CCl4 in the rat precision-cut liver slice model (PCLS) and to identify early markers that could predict fibrosis-inducing potential. Microarray data of rat PCLS exposed to APAP andCCl4was generated using a toxic dose based on decrease in ATP levels. Toxicity pathway analysis using a custom made fibrosis-related gene list showed fibrosis as one of the predominant toxic endpoints in CCl4-treated, but not in APAP-treated PCLS. Moreover, genes which have a role in fibrosis such as alpha-B crystallin, jun proto-oncogene, mitogen-activated protein kinase 6, serpin peptidase inhibitor and also the transcription factor Kruppel-like-factor-6 were up-regulated by CCl4, but not by APAP. Predicted activation or inhibition of several upstream regulators due to CCl4 is in accordance with their role in fibrosis. In conclusion, transcriptomic analysis of PCLS successfully identified the fibrotic potential of CCl4 as opposed to APAP. The application of PCLS as an ex vivo model to identify early biomarkers to predict the fibrogenic potential of toxic compounds should be further explored.
Collapse
Affiliation(s)
- Suresh Vatakuti
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | - Marieke L G Elferink
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Geny M M Groothuis
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
44
|
Yao P, Wang ZB, Ding YY, Ma JM, Hong T, Pan SN, Zhang J. Regulatory network of differentially expressed genes in metastatic osteosarcoma. Mol Med Rep 2014; 11:2104-10. [PMID: 25434727 DOI: 10.3892/mmr.2014.3009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/31/2014] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the possible molecular mechanisms underlying the pathogenesis of metastatic osteosarcoma (OS), by examining the microarray expression profiles of normal samples, and metastatic and non‑metastatic OS samples. The GSE9508 gene expression profile was downloaded from the Gene Expression Omnibus database, which included 11 human metastatic OS samples, seven non‑metastatic OS samples and five normal samples. Pretreatment of the data was performed using the BioConductor package in R language, and the differentially expressed genes (DEGs) were identified by a t‑test. Furthermore, function and pathway enrichment analyses of the DEGs were conducted using a molecule annotation system. A differential co‑expression network was also constructed, and the submodules were screened using MCODE in Cytoscape. A total of 965 genes were identified as DEGs in metastatic OS. The DEGs were shown to participate in the regulation of DNA‑dependent transcription, the composition of the nucleus, cytoplasm and membrane, and protein and nucleotide binding. Furthermore, the screened DEGs were significantly associated with the ribosome, axon guidance and the cytokine‑cytokine receptor interaction pathway. Certain hub genes were identified in the constructed differential co‑expression network, including matrix metalloproteinase 1 (MMP1), smoothened (SMO), ewing sarcoma breakpoint region 1 (EWSR1) and fasciculation and elongation protein ζ‑1 (FEZ1). Brain selective kinase 2 (BRSK2) and aldo‑keto reductase family 1 member B10 (AKRIB10) were present in the screened submodules. The results of the present study suggest that genes, including MMP1, SMO, EWSR1, FEZ1, BRSK2 and AKRIB10, may be potential targets for the diagnosis and treatment of metastatic OS.
Collapse
Affiliation(s)
- Peng Yao
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhi-Bin Wang
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yuan-Yuan Ding
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jia-Ming Ma
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Tao Hong
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shi-Nong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
45
|
Integrated Computational Model of Intracellular Signaling and microRNA Regulation Predicts the Network Balances and Timing Constraints Critical to the Hepatic Stellate Cell Activation Process. Processes (Basel) 2014. [DOI: 10.3390/pr2040773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
46
|
Page A, Mann DA, Mann J. The mechanisms of HSC activation and epigenetic regulation of HSCs phenotypes. CURRENT PATHOBIOLOGY REPORTS 2014; 2:163-170. [PMID: 27413631 DOI: 10.1007/s40139-014-0052-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epigenetics is a dynamically expanding field of science entailing numerous regulatory mechanisms controlling changes of gene expression in response to environmental factors. Over the recent years there has been a great interest in epigenetic marks as a potential diagnostic and prognostic tool or future target for treatment of various human diseases. There is an increasing body of published research to suggest that epigenetic events regulate progression of chronic liver disease. Experimental manipulation of epigenetic signatures such as DNA methylation, histone acetylation / methylation and the activities of proteins that either annotate or interpret these epigenetic marks can have profound effects on the activation and phenotype of HSC, key cells responsible for onset and progression of liver fibrosis. This review presents recent advances in epigenetic alterations, which could provide mechanistic insight into the pathogenesis of chronic liver disease and provide novel clinical applications.
Collapse
Affiliation(s)
- Agata Page
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Derek A Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jelena Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
47
|
Bi YM, Xu JB, An HY. MicroRNAs and biological functions of hepatic stellate cells. Shijie Huaren Xiaohua Zazhi 2014; 22:3587-3591. [DOI: 10.11569/wcjd.v22.i24.3587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, 18-24 nucleotide long, non-coding RNA molecules which are involved in virtually every cellular process including proliferation, differentiation and apoptosis by specifically interacting with the mRNA and regulating the expression of genes. Recently it has been found that miRNAs cooperate with transforming growth factor (TGF-β), nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α) and other cytokines, and form complex "network" signaling pathways to influence the activation, proliferation, migration and apoptosis of hepatic stellate cells (HSCs), suggesting that miRNAs may regulate biological behaviors of HSCs via various signal transduction pathways, and have a great influence on the development of hepatic fibrosis. This article will review the impact of miRNAs on the biological functions of HSCs via different signal transduction pathways.
Collapse
|
48
|
Tu X, Zhang H, Zhang J, Zhao S, Zheng X, Zhang Z, Zhu J, Chen J, Dong L, Zang Y, Zhang J. MicroRNA-101 suppresses liver fibrosis by targeting the TGFβ signalling pathway. J Pathol 2014; 234:46-59. [PMID: 24817606 DOI: 10.1002/path.4373] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/20/2014] [Accepted: 05/02/2014] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β (TGFβ) is crucial for liver fibrogenesis and the blunting of TGFβ signalling in hepatic stellate cells (HSCs) or hepatocytes can effectively inhibit liver fibrosis. microRNAs (miRNAs) have emerged as key regulators in modulating TGFβ signalling and liver fibrogenesis. However, the regulation of TGFβ receptor I (TβRI) production by miRNA remains poorly understood. Here we demonstrate that the miR-101 family members act as suppressors of TGFβ signalling by targeting TβRI and its transcriptional activator Kruppel-like factor 6 (KLF6) during liver fibrogenesis. Using a mouse model of carbon tetrachloride (CCl4 )-induced liver fibrosis, we conducted a time-course experiment and observed significant down-regulation of miR-101 in the fibrotic liver as well as in the activated HSCs and injured hepatocytes in the process of liver fibrosis. Meanwhile, up-regulation of TβRI/KLF6 was observed in the fibrotic liver. Subsequent investigations validated that TβRI and KLF6 were direct targets of miR-101. Lentivirus-mediated ectopic expression of miR-101 in liver greatly reduced CCl4 -induced liver fibrosis, whereas intravenous administration of antisense miR-101 oligonucleotides aggravated hepatic fibrogenesis. Mechanistic studies revealed that miR-101 inhibited profibrogenic TGFβ signalling by suppressing TβRI expression in both HSCs and hepatocytes. Additionally, miR-101 promoted the reversal of activated HSCs to a quiescent state, as indicated by suppression of proliferation and migration, loss of activation markers and gain of quiescent HSC-specific markers. In hepatocytes, miR-101 attenuated profibrogenic TGFβ signalling and suppressed the consequent up-regulation of profibrogenic cytokines, as well as TGFβ-induced hepatocyte apoptosis and the inhibition of cell proliferation. The pleiotropic roles of miR-101 in hepatic fibrogenesis suggest that it could be a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Xiaolong Tu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Huang J, Yu X, Fries JWU, Zhang L, Odenthal M. MicroRNA function in the profibrogenic interplay upon chronic liver disease. Int J Mol Sci 2014; 15:9360-71. [PMID: 24871365 PMCID: PMC4100099 DOI: 10.3390/ijms15069360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/06/2014] [Accepted: 05/12/2014] [Indexed: 02/07/2023] Open
Abstract
In chronic liver disease leading to fibrosis, hepatic stellate cells (HSC) differentiate into myofibroblasts. Myofibroblastic HSC have taken center stage during liver fibrogenesis, due to their remarkable synthesis of extracellular matrix proteins, their secretion of profibrogenic mediators and their contribution to hypertension, due to elevated contractility. MicroRNAs (miRNAs) are small, noncoding RNA molecules of 19–24 nucleotides in length. By either RNA interference or inhibition of translational initiation and elongation, each miRNA is able to inhibit the gene expression of a wide panel of targeted transcripts. Recently, it was shown that altered miRNA patterns after chronic liver disease highly affect the progression of fibrosis by their potential to target the expression of extracellular matrix proteins and the synthesis of mediators of profibrogenic pathways. Here, we underline the role of miRNAs in the interplay of the profibrogenic cell communication pathways upon myofibroblastic differentiation of hepatic stellate cells in the chronically injured liver.
Collapse
Affiliation(s)
- Jia Huang
- Institute for Pathology, University Hospital of Cologne, Cologne 50924, Germany.
| | - Xiaojie Yu
- Institute for Pathology, University Hospital of Cologne, Cologne 50924, Germany.
| | - Jochen W U Fries
- Institute for Pathology, University Hospital of Cologne, Cologne 50924, Germany.
| | - Li'ang Zhang
- Institute for Pathology, University Hospital of Cologne, Cologne 50924, Germany.
| | - Margarete Odenthal
- Institute for Pathology, University Hospital of Cologne, Cologne 50924, Germany.
| |
Collapse
|
50
|
Therapeutic potential of microRNA: a new target to treat intrahepatic portal hypertension? BIOMED RESEARCH INTERNATIONAL 2014; 2014:797898. [PMID: 24812632 DOI: 10.1155/2014/797898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/09/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
Intrahepatic portal hypertension accounts for most of the morbidity and mortality encountered in patients with liver cirrhosis, due to increased portal inflow and intrahepatic vascular resistance. Most treatments have focused only on portal inflow or vascular resistance. However, miRNA multitarget regulation therapy may potentially intervene in these two processes for therapeutic benefit in cirrhosis and portal hypertension. This review presents an overview of the most recent knowledge of and future possibilities for the use of miRNA therapy. The benefits of this therapeutic modality--which is poorly applied in the clinical setting--are still uncertain. Increasing the knowledge and current understanding of the roles of miRNAs in the development of intrahepatic portal hypertension and hepatic stellate cells (HSCs) functions, as well as their potential as novel drug targets, is critical.
Collapse
|