1
|
Vaher H, Kivihall A, Runnel T, Raam L, Prans E, Maslovskaja J, Abram K, Kaldvee B, Mrowietz U, Weidinger S, Kingo K, Rebane A. SERPINB2 and miR-146a/b are coordinately regulated and act in the suppression of psoriasis-associated inflammatory responses in keratinocytes. Exp Dermatol 2019; 29:51-60. [PMID: 31630447 DOI: 10.1111/exd.14049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/13/2019] [Accepted: 10/16/2019] [Indexed: 01/04/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease with numerous involved factors. miR-146a and miR-146b (miR-146a/b) are anti-inflammatory miRNAs that are increased in psoriatic skin. SERPINB2 has been shown to be upregulated in the inflammation and infections. Here we aimed to study the relationship between miR-146a/b and SERPINB2 and to delineate the role of SERPINB2 in association of plaque psoriasis. We report increased SERPINB2 expression in the skin of psoriasis patients, which was in a positive relationship with psoriasis severity and in a negative relationship with miR-146a/b in psoriatic lesions. In cultured keratinocytes, both cellular and secreted SERPINB2 levels were strongly induced in response to IFN-γ and TNF-α. Interestingly, SERPINB2 mRNA was downregulated by IL-17A and the combination of TNF-α and IL-17A at time points when miR-146a was increased. The predicted binding site for miR-146a/b in 3' untranslated region of SERPINB2 revealed no activity in luciferase assay, while siRNA silencing of miR-146a/b direct targets IRAK1 and CARD10 resulted in reduced expression of SERPINB2, suggesting that miR-146a/b indirectly control SERPINB2 expression in the skin. The siRNA silencing of SERPINB2 increased the expression of IL-8, CXCL5 and CCL5 and migration of neutrophils revealing its anti-inflammatory role in keratinocytes. Our data together suggest that SERPINB2 and miR-146a/b are part of disease-related network of molecules that are coordinately regulated and act in controlling the inflammatory responses in psoriatic skin.
Collapse
Affiliation(s)
- Helen Vaher
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anet Kivihall
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Toomas Runnel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liisi Raam
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ele Prans
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Julia Maslovskaja
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristi Abram
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Bret Kaldvee
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ulrich Mrowietz
- Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, Venerology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Külli Kingo
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
The transcription factor C/EBP-β mediates constitutive and LPS-inducible transcription of murine SerpinB2. PLoS One 2013; 8:e57855. [PMID: 23472114 PMCID: PMC3589482 DOI: 10.1371/journal.pone.0057855] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/28/2013] [Indexed: 01/26/2023] Open
Abstract
SerpinB2 or plasminogen activator inhibitor type 2 (PAI-2) is highly induced in macrophages in response to inflammatory stimuli and is linked to the modulation of innate immunity, macrophage survival, and inhibition of plasminogen activators. Lipopolysaccharide (LPS), a potent bacterial endotoxin, can induce SerpinB2 expression via the toll-like receptor 4 (TLR4) by ∼1000-fold over a period of 24 hrs in murine macrophages. To map the LPS-regulated SerpinB2 promoter regions, we transfected reporter constructs driven by the ∼5 kb 5'-flanking region of the murine SerpinB2 gene and several deletion mutants into murine macrophages. In addition, we compared the DNA sequence of the murine 5′ flanking sequence with the sequence of the human gene for homologous functional regulatory elements and identified several regulatory cis-acting elements in the human SERPINB2 promoter conserved in the mouse. Mutation analyses revealed that a CCAAT enhancer binding (C/EBP) element, a cyclic AMP response element (CRE) and two activator protein 1 (AP-1) response elements in the murine SerpinB2 proximal promoter are essential for optimal LPS-inducibility. Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrated that LPS induces the formation of C/EBP-β containing complexes with the SerpinB2 promoter. Importantly, both constitutive and LPS-induced SerpinB2 expression was severely abrogated in C/EBP-β-null mouse embryonic fibroblasts (MEFs) and primary C/EBP-β-deficient peritoneal macrophages. Together, these data provide new insight into C/EBP-β-dependent regulation of inflammation-associated SerpinB2 expression.
Collapse
|
3
|
Major LD, Partridge TS, Gardner J, Kent SJ, de Rose R, Suhrbier A, Schroder WA. Induction of SerpinB2 and Th1/Th2 modulation by SerpinB2 during lentiviral infections in vivo. PLoS One 2013; 8:e57343. [PMID: 23460840 PMCID: PMC3583835 DOI: 10.1371/journal.pone.0057343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/21/2013] [Indexed: 11/25/2022] Open
Abstract
SerpinB2, also known as plasminogen activator inhibitor type 2, is a major product of activated monocytes/macrophages and is often strongly induced during infection and inflammation; however, its physiological function remains somewhat elusive. Herein we show that SerpinB2 is induced in peripheral blood mononuclear cells following infection of pigtail macaques with CCR5-utilizing (macrophage-tropic) SIVmac239, but not the rapidly pathogenic CXCR4-utilizing (T cell-tropic) SHIVmn229. To investigate the role of SerpinB2 in lentiviral infections, SerpinB2(-/-) mice were infected with EcoHIV, a chimeric HIV in which HIV gp120 has been replaced with gp80 from ecotropic murine leukemia virus. EcoHIV infected SerpinB2(-/-) mice produced significantly lower anti-gag IgG1 antibody titres than infected SerpinB2(+/+) mice, and showed slightly delayed clearance of EcoHIV. Analyses of published microarray studies showed significantly higher levels of SerpinB2 mRNA in monocytes from HIV-1 infected patients when compared with uninfected controls, as well as a significant negative correlation between SerpinB2 and T-bet mRNA levels in peripheral blood mononuclear cells. These data illustrate that SerpinB2 can be induced by lentiviral infection in vivo and support the emerging notion that a physiological role of SerpinB2 is modulation of Th1/Th2 responses.
Collapse
Affiliation(s)
- Lee D. Major
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Thomas S. Partridge
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Joy Gardner
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Robert de Rose
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Andreas Suhrbier
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, Australia
| | - Wayne A. Schroder
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Medcalf RL. Plasminogen activator inhibitor type 2: still an enigmatic serpin but a model for gene regulation. Methods Enzymol 2011; 499:105-34. [PMID: 21683251 DOI: 10.1016/b978-0-12-386471-0.00006-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasminogen activator inhibitor type-2 (PAI-2; SERPINB2) is an atypical member of the Ov-serpin family of serine protease inhibitors. While it is an undisputed inhibitor of urokinase and tissue-type plasminogen activator in the extracellular space and on the cell surface, the weight of circumstantial evidence suggests that PAI-2 also fulfills an intracellular role which is independent of plasminogen activator inhibition and indeed may not even involve protease inhibition at all. More and more data continue to implicate a role for PAI-2 in many settings, the most recent associating it as a modulator of the innate immune response. Further to the debates concerning its physiological role, there are few genes, if any, that display the regulation profile of the PAI-2 gene: PAI-2 protein and mRNA levels can be induced in the order of, not hundred-, but thousand-folds in a process that is controlled at many levels including gene transcription and mRNA stability while an epigenetic component is also likely. The ability of some cells, including monocytes, fibroblasts, and neurons to have the capacity to increase PAI-2 synthesis to such high levels is intriguing enough. So why do these cells have the capacity to synthesize so much of this protein? While tantalizing clues continue to be revealed to the field, an understanding of how this gene is regulated so profoundly has provided insights into the broader mechanics of gene expression and regulation.
Collapse
Affiliation(s)
- Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|