1
|
Ahyayauch H, Masserini ME, Alonso A, Goñi FM. Understanding Aβ Peptide Binding to Lipid Membranes: A Biophysical Perspective. Int J Mol Sci 2024; 25:6401. [PMID: 38928107 PMCID: PMC11203662 DOI: 10.3390/ijms25126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Aβ peptides are known to bind neural plasma membranes in a process leading to the deposit of Aβ-enriched plaques. These extracellular structures are characteristic of Alzheimer's disease, the major cause of late-age dementia. The mechanisms of Aβ plaque formation and deposition are far from being understood. A vast number of studies in the literature describe the efforts to analyze those mechanisms using a variety of tools. The present review focuses on biophysical studies mostly carried out with model membranes or with computational tools. This review starts by describing basic physical aspects of lipid phases and commonly used model membranes (monolayers and bilayers). This is followed by a discussion of the biophysical techniques applied to these systems, mainly but not exclusively Langmuir monolayers, isothermal calorimetry, density-gradient ultracentrifugation, and molecular dynamics. The Methodological Section is followed by the core of the review, which includes a summary of important results obtained with each technique. The last section is devoted to an overall reflection and an effort to understand Aβ-bilayer binding. Concepts such as Aβ peptide membrane binding, adsorption, and insertion are defined and differentiated. The roles of membrane lipid order, nanodomain formation, and electrostatic forces in Aβ-membrane interaction are separately identified and discussed.
Collapse
Affiliation(s)
- Hasna Ahyayauch
- Departamento de Bioquímica, Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, 48940 Leioa, Spain; (H.A.); (A.A.)
- Institut Supérieur des Professions Infirmières et Techniques de Santé, Rabat 60000, Morocco
- Laboratoire de Biologie et Santé, Unité Neurosciences, Neuroimmunologie et Comportement, Faculty of Sciences, Ibn Tofail University, Kénitra 14000, Morocco
| | - Massimo E. Masserini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Alicia Alonso
- Departamento de Bioquímica, Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, 48940 Leioa, Spain; (H.A.); (A.A.)
| | - Félix M. Goñi
- Departamento de Bioquímica, Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, 48940 Leioa, Spain; (H.A.); (A.A.)
| |
Collapse
|
2
|
Gamage YI, Pan J. Elucidating the Influence of Lipid Composition on Bilayer Perturbations Induced by the N-terminal Region of the Huntingtin Protein. BIOPHYSICA 2023; 3:582-597. [PMID: 38737720 PMCID: PMC11087071 DOI: 10.3390/biophysica3040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Understanding the membrane interactions of the N-terminal 17 residues of the huntingtin protein (HttN) is essential for unraveling its role in cellular processes and its impact on huntingtin misfolding. In this study, we used atomic force microscopy (AFM) to examine the effects of lipid specificity in mediating bilayer perturbations induced by HttN. Across various lipid environments, the peptide consistently induced bilayer disruptions in the form of holes. Notably, our results unveiled that cholesterol enhanced bilayer perturbation induced by HttN, while phosphatidylethanolamine (PE) lipids suppressed hole formation. Furthermore, anionic phosphatidylglycerol (PG) and cardiolipin lipids, along with cholesterol at high concentrations, promoted the formation of double-bilayer patches. This unique structure suggests that the synergy among HttN, anionic lipids, and cholesterol can enhance bilayer fusion, potentially by facilitating lipid intermixing between adjacent bilayers. Additionally, our AFM-based force spectroscopy revealed that HttN enhanced the mechanical stability of lipid bilayers, as evidenced by an elevated bilayer puncture force. These findings illuminate the complex interplay between HttN and lipid membranes and provide useful insights into the role of lipid composition in modulating membrane interactions with the huntingtin protein.
Collapse
Affiliation(s)
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620
| |
Collapse
|
3
|
Lechner BD, Smith P, McGill B, Marshall S, Trick JL, Chumakov AP, Winlove CP, Konovalov OV, Lorenz CD, Petrov PG. The Effects of Cholesterol Oxidation on Erythrocyte Plasma Membranes: A Monolayer Study. MEMBRANES 2022; 12:828. [PMID: 36135847 PMCID: PMC9506283 DOI: 10.3390/membranes12090828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Cholesterol plays a key role in the molecular and mesoscopic organisation of lipid membranes and it is expected that changes in its molecular structure (e.g., through environmental factors such as oxidative stress) may affect adversely membrane properties and function. In this study, we present evidence that oxidation of cholesterol has significant effects on the mechanical properties, molecular and mesoscopic organisation and lipid-sterol interactions in condensed monolayers composed of the main species found in the inner leaflet of the erythrocyte membrane. Using a combination of experimental methods (static area compressibility, surface dilatational rheology, fluorescence microscopy, and surface sensitive X-ray techniques) and atomistic molecular dynamics simulations, we show that oxidation of cholesterol to 7-ketocholesterol leads to stiffening of the monolayer (under both static and dynamic conditions), significant changes in the monolayer microdomain organisation, disruption in the van der Waals, electrostatic and hydrophobic interactions between the sterol and the other lipid species, and the lipid membrane hydration. Surface sensitive X-ray techniques reveal that, whilst the molecular packing mode is not significantly affected by cholesterol oxidation in these condensed phases, there are subtle changes in membrane thickness and a significant decrease in the coherence length in monolayers containing 7-ketocholesterol.
Collapse
Affiliation(s)
- Bob-Dan Lechner
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Paul Smith
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Beth McGill
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Skye Marshall
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Jemma L. Trick
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Andrei P. Chumakov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Charles Peter Winlove
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Oleg V. Konovalov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Christian D. Lorenz
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Peter G. Petrov
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| |
Collapse
|
4
|
Paul A, Jacoby G, Laor Bar-Yosef D, Beck R, Gazit E, Segal D. Glucosylceramide Associated with Gaucher Disease Forms Amyloid-like Twisted Ribbon Fibrils That Induce α-Synuclein Aggregation. ACS NANO 2021; 15:11854-11868. [PMID: 34213307 PMCID: PMC8397424 DOI: 10.1021/acsnano.1c02957] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A major risk factor for Gaucher's disease is loss of function mutations in the GBA1 gene that encodes lysosomal β-glucocerebrosidase, resulting in accumulation of glucosylceramide (GlcCer), a key lysosomal sphingolipid. GBA1 mutations also enhance the risk for Parkinson's disease, whose hallmark is the aggregation of α-synuclein (αSyn). However, the role of accumulated GlcCer in αSyn aggregation is not completely understood. Using various biophysical assays, we demonstrate that GlcCer self-assembles to form amyloid-like fibrillar aggregates in vitro. The GlcCer assemblies are stable in aqueous media of different pH and exhibit a twisted ribbon-like structure. Near lysosomal pH GlcCer aggregates induced αSyn aggregation and stabilized its nascent oligomers. We found that several bona fide inhibitors of proteinaceous amyloids effectively inhibited aggregation of GlcCer. This study contributes to the growing evidence of cross-talk between proteinaceous amyloids and amyloid-like aggregates of metabolites accumulated in diseases and suggests these aggregates as therapeutic targets.
Collapse
Affiliation(s)
- Ashim Paul
- Department
of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine
and Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Guy Jacoby
- The
Raymond and Beverly Sackler School of Physics and Astronomy, The Center
for Nanoscience and Nanotechnology, and the Center for Physics and
Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dana Laor Bar-Yosef
- Department
of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine
and Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Roy Beck
- The
Raymond and Beverly Sackler School of Physics and Astronomy, The Center
for Nanoscience and Nanotechnology, and the Center for Physics and
Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ehud Gazit
- Department
of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine
and Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
- Department
of Materials Science and Engineering, Iby and Aladar Fleischman Faculty
of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Segal
- Department
of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine
and Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
- Sagol
Interdisciplinary School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|
6
|
Smith P, Quinn PJ, Lorenz CD. Two Coexisting Membrane Structures Are Defined by Lateral and Transbilayer Interactions between Sphingomyelin and Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9786-9799. [PMID: 32701297 DOI: 10.1021/acs.langmuir.0c01237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The structure of fully hydrated bilayers composed of equimolar proportions of palmitoylsphingomyelin (PSM) and cholesterol has been examined by synchrotron X-ray powder diffraction and atomistic molecular dynamics (MD) simulations. Two coexisting bilayer structures, which are distinguished by the transbilayer phosphate-phosphate distance of coupled PSM molecules, are observed by diffraction at 37 °C. The MD simulations reveal that PSM molecules in the thicker membrane are characterized by more ordered, more extended, and less interdigitated hydrocarbon tails compared to those in the thinner membrane. Intermolecular hydrogen bonds further distinguish the two bilayer structures, and we observe the disruption of a sphingomyelin intermolecular hydrogen bond network induced by the proximity of cholesterol. Through an unsupervised clustering of interatomic distances, we show for the first time that the asymmetry of phospholipids is important in driving their interactions with cholesterol. We identify four distinct modes of interaction, two of which lead to the dehydration of cholesterol. These two modes of interaction provide the first description of precise physical mechanisms underlying the umbrella model, which itself explains how phospholipids may shield cholesterol from water. The most dehydrating mode of interaction is particular to the N-acylated fatty acid moiety of PSM and thus may explain the long-held observation that cholesterol preferentially mixes with sphingomyelins over glycerophospholipids.
Collapse
Affiliation(s)
- Paul Smith
- Department of Physics, King's College London, London, WC2R 2LS, U.K
| | - Peter J Quinn
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | | |
Collapse
|
7
|
Neves AR, Nunes C, Amenitsch H, Reis S. Resveratrol Interaction with Lipid Bilayers: A Synchrotron X-ray Scattering Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12914-12922. [PMID: 27788010 DOI: 10.1021/acs.langmuir.6b03591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resveratrol belongs to the large group of biologically active polyphenol compounds, with several beneficial health effects including antioxidant activity, anti-inflammatory action, cardiovascular protection, neuroprotection, and cancer chemoprevention. In the present study, the possibility that the effects of resveratrol described above are caused by resveratrol membrane interactions and structural modifications of lipid bilayers is evaluated. In this context, it is possible that resveratrol interacts selectively with lipid domains present in biological membranes, thereby modulating the localization of the anchored proteins and controlling their intracellular cascades. This study was conducted in a synchrotron particle accelerator, where the influence of resveratrol in the structural organization of lipid domains in bilayers was investigated using small- and wide-angle X-ray scattering (SAXS and WAXS) techniques. Membrane mimetic systems composed of egg l-α-phosphatidylcholine (EPC), cholesterol (CHOL), and sphingomyelin (SM), with different molar ratios, were used to access the effects of resveratrol on the order and structure of the membrane. The results revealed that resveratrol induces phase separation, promoting the formation of lipid domains in EPC, EPC:CHOL [4:1], and EPC:CHOL:SM [1:1:1] bilayers, which brings some structural organization to membranes. Therefore, resveratrol controls lipid packing of bilayers by inducing the organization of lipid rafts. Moreover, the formation of lipid domains is important for modulating the activity of many receptors, transmembrane proteins, and enzymes whose activity depends on the structural organization of the membrane and on the presence or absence of these organized domains. This evidence can thereby explain the therapeutic effects of resveratrol.
Collapse
Affiliation(s)
- Ana Rute Neves
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology , Stremayergasse 6/V, 8010 Graz, Austria
| | - Salette Reis
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Marquês JT, Antunes CA, Santos FC, de Almeida RF. Biomembrane Organization and Function. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2015. [DOI: 10.1016/bs.adplan.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Goñi FM. The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1467-76. [PMID: 24440423 DOI: 10.1016/j.bbamem.2014.01.006] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 01/03/2023]
Abstract
The fluid mosaic model of Singer and Nicolson (1972) is a commonly used representation of the cell membrane structure and dynamics. However a number of features, the result of four decades of research, must be incorporated to obtain a valid, contemporary version of the model. Among the novel aspects to be considered are: (i) the high density of proteins in the bilayer, that makes the bilayer a molecularly "crowded" space, with important physiological consequences; (ii) the proteins that bind the membranes on a temporary basis, thus establishing a continuum between the purely soluble proteins, never in contact with membranes, and those who cannot exist unless bilayer-bound; (iii) the progress in our knowledge of lipid phases, the putative presence of non-lamellar intermediates in membranes, and the role of membrane curvature and its relation to lipid geometry, (iv) the existence of lateral heterogeneity (domain formation) in cell membranes, including the transient microdomains known as rafts, and (v) the possibility of transient and localized transbilayer (flip-flop) lipid motion. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Félix M Goñi
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain; Departamento de Bioquímica, Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
10
|
Pinheiro M, Pereira‐Leite C, Arêde M, Nunes C, Caio JM, Moiteiro C, Giner‐Casares JJ, Lúcio M, Brezesinski G, Camacho L, Reis S. Evaluation of the Structure–Activity Relationship of Rifabutin and Analogs: A Drug–Membrane Study. Chemphyschem 2013; 14:2808-16. [PMID: 23821530 DOI: 10.1002/cphc.201300262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Marina Pinheiro
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050‐313 Porto (Portugal)
| | - Catarina Pereira‐Leite
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050‐313 Porto (Portugal)
| | - Mariana Arêde
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050‐313 Porto (Portugal)
| | - Cláudia Nunes
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050‐313 Porto (Portugal)
| | - João M. Caio
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa (Portugal)
| | - Cristina Moiteiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa (Portugal)
| | - Juan J. Giner‐Casares
- Departamento de Química Física y Termodinámica, Universidad de Córdoba, España (Spain)
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam (Germany)
| | - Marlene Lúcio
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050‐313 Porto (Portugal)
| | - Gerald Brezesinski
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam (Germany)
| | - Luis Camacho
- Departamento de Química Física y Termodinámica, Universidad de Córdoba, España (Spain)
| | - Salette Reis
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050‐313 Porto (Portugal)
| |
Collapse
|
11
|
Gater DL, Réat V, Czaplicki G, Saurel O, Jolibois F, Cherezov V, Milon A. Hydrogen bonding of cholesterol in the lipidic cubic phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8031-8038. [PMID: 23763339 PMCID: PMC3758441 DOI: 10.1021/la401351w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The addition of cholesterol to the monoolein-based lipidic cubic phase (LCP) has been instrumental in obtaining high-resolution crystal structures of several G protein-coupled receptors. Here, we report the use of high-resolution magic angle spinning NMR spectroscopy to record and assign the isotropic (13)C chemical shifts of cholesterol in lipidic lamellar and cubic phases at different hydration levels with monoolein and chain-deuterated DMPC as host lipids. The hydrogen-bonding patterns of cholesterol in these phases were determined from the NMR data by quantum chemical calculations. The results are consistent with the normal orientation of cholesterol in lipid bilayers and with the cholesterol hydroxyl group located at the hydrophobic/hydrophilic interface. The (13)C chemical shifts of cholesterol are mostly affected by the host lipid identity with little or no dependency on the hydration (20% vs 40%) or the phase identity (lamellar vs LCP). In chain-deuterated DMPC bilayers, the hydroxyl group of cholesterol forms most of its hydrogen bonds with water, while in monoolein bilayers it predominately interacts with monoolein. Such differences in the hydrogen-bonding network of cholesterol may have implications for the design of experiments in monoolein-based LCP.
Collapse
Affiliation(s)
- Deborah L. Gater
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS - Université de Toulouse, UPS, BP 64182, 205 route de Narbonne, 31077 Toulouse Cedex04 (France)
| | - Valérie Réat
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS - Université de Toulouse, UPS, BP 64182, 205 route de Narbonne, 31077 Toulouse Cedex04 (France)
| | - Georges Czaplicki
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS - Université de Toulouse, UPS, BP 64182, 205 route de Narbonne, 31077 Toulouse Cedex04 (France)
| | - Olivier Saurel
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS - Université de Toulouse, UPS, BP 64182, 205 route de Narbonne, 31077 Toulouse Cedex04 (France)
| | - Franck Jolibois
- Laboratoire de Physique et Chimie des Nano Objets, UMR 5215, IRSAMC -Université de Toulouse, UPS, 135 Avenue de Rangueil, 31077 Toulouse Cedex04 (France)
| | - Vadim Cherezov
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA 92037 (USA)
| | - Alain Milon
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS - Université de Toulouse, UPS, BP 64182, 205 route de Narbonne, 31077 Toulouse Cedex04 (France)
| |
Collapse
|
12
|
Prades J, Funari SS, Gomez-Florit M, Vögler O, Barceló F. Effect of a 2-hydroxylated fatty acid on Cholesterol-rich membrane domains. Mol Membr Biol 2012; 29:333-43. [DOI: 10.3109/09687688.2012.705023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
|
14
|
Domon M, Nasir MN, Matar G, Pikula S, Besson F, Bandorowicz-Pikula J. Annexins as organizers of cholesterol- and sphingomyelin-enriched membrane microdomains in Niemann-Pick type C disease. Cell Mol Life Sci 2012; 69:1773-85. [PMID: 22159585 PMCID: PMC11114673 DOI: 10.1007/s00018-011-0894-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 01/22/2023]
Abstract
Growing evidence suggests that membrane microdomains enriched in cholesterol and sphingomyelin are sites for numerous cellular processes, including signaling, vesicular transport, interaction with pathogens, and viral infection, etc. Recently some members of the annexin family of conserved calcium and membrane-binding proteins have been recognized as cholesterol-interacting molecules and suggested to play a role in the formation, stabilization, and dynamics of membrane microdomains to affect membrane lateral organization and to attract other proteins and signaling molecules onto their territory. Furthermore, annexins were implicated in the interactions between cytosolic and membrane molecules, in the turnover and storage of cholesterol and in various signaling pathways. In this review, we focus on the mechanisms of interaction of annexins with lipid microdomains and the role of annexins in membrane microdomains dynamics including possible participation of the domain-associated forms of annexins in the etiology of human lysosomal storage disease called Niemann-Pick type C disease, related to the abnormal storage of cholesterol in the lysosome-like intracellular compartment. The involvement of annexins and cholesterol/sphingomyelin-enriched membrane microdomains in other pathologies including cardiac dysfunctions, neurodegenerative diseases, obesity, diabetes mellitus, and cancer is likely, but is not supported by substantial experimental observations, and therefore awaits further clarification.
Collapse
Affiliation(s)
- Magdalena Domon
- Laboratory of Lipid Biochemistry, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
15
|
Haughey NJ, Tovar-y-Romo LB, Bandaru VVR. Roles for biological membranes in regulating human immunodeficiency virus replication and progress in the development of HIV therapeutics that target lipid metabolism. J Neuroimmune Pharmacol 2011; 6:284-95. [PMID: 21445582 DOI: 10.1007/s11481-011-9274-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/08/2011] [Indexed: 01/14/2023]
Abstract
Infection by the human immunodeficiency virus (HIV) involves a number of important interactions with lipid components in host membranes that regulate binding, fusion, internalization, and viral assembly. Available data suggests that HIV actively modifies the sphingolipid content of cellular membranes to create focal environments that are favorable for infection. In this review, we summarize the roles that membrane lipids play in HIV infection and discuss the current status of therapeutics that attempt to modify biological membranes to inhibit HIV.
Collapse
Affiliation(s)
- Norman J Haughey
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Meyer 6-109, 600N. Wolfe Street, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|