1
|
Desmots F, Roussel M, Pangault C, Llamas-Gutierrez F, Pastoret C, Guiheneuf E, Le Priol J, Camara-Clayette V, Caron G, Henry C, Belaud-Rotureau MA, Godmer P, Lamy T, Jardin F, Tarte K, Ribrag V, Fest T. Pan-HDAC Inhibitors Restore PRDM1 Response to IL21 in CREBBP-Mutated Follicular Lymphoma. Clin Cancer Res 2018; 25:735-746. [DOI: 10.1158/1078-0432.ccr-18-1153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/26/2018] [Accepted: 10/17/2018] [Indexed: 11/16/2022]
|
2
|
Wong KK, Gascoyne DM, Soilleux EJ, Lyne L, Spearman H, Roncador G, Pedersen LM, Møller MB, Green TM, Banham AH. FOXP2-positive diffuse large B-cell lymphomas exhibit a poor response to R-CHOP therapy and distinct biological signatures. Oncotarget 2018; 7:52940-52956. [PMID: 27224915 PMCID: PMC5288160 DOI: 10.18632/oncotarget.9507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/04/2016] [Indexed: 01/24/2023] Open
Abstract
FOXP2 shares partially overlapping normal tissue expression and functionality with FOXP1; an established diffuse large B-cell lymphoma (DLBCL) oncogene and marker of poor prognosis. FOXP2 is expressed in the plasma cell malignancy multiple myeloma but has not been studied in DLBCL, where a poor prognosis activated B-cell (ABC)-like subtype display partially blocked plasma cell differentiation. FOXP2 protein expression was detected in ABC-DLBCL cell lines, and in primary DLBCL samples tumoral FOXP2 protein expression was detected in both germinal center B-cell-like (GCB) and non-GCB DLBCL. In biopsies from DLBCL patients treated with immunochemotherapy (R-CHOP), ≥ 20% nuclear tumoral FOXP2-positivity (n = 24/158) correlated with significantly inferior overall survival (OS: P = 0.0017) and progression-free survival (PFS: P = 0.0096). This remained significant in multivariate analysis against either the international prognostic index score or the non-GCB DLBCL phenotype (P < 0.05 for both OS and PFS). Expression of BLIMP1, a marker of plasmacytic differentiation that is commonly inactivated in ABC-DLBCL, did not correlate with patient outcome or FOXP2 expression in this series. Increased frequency of FOXP2 expression significantly correlated with FOXP1-positivity (P = 0.0187), and FOXP1 co-immunoprecipitated FOXP2 from ABC-DLBCL cells indicating that these proteins can co-localize in a multi-protein complex. FOXP2-positive DLBCL had reduced expression of HIP1R (P = 0.0348), which is directly repressed by FOXP1, and exhibited distinct patterns of gene expression. Specifically in ABC-DLBCL these were associated with lower expression of immune response and T-cell receptor signaling pathways. Further studies are warranted to investigate the potential functional cooperativity between FOXP1 and FOXP2 in repressing immune responses during the pathogenesis of high-risk DLBCL.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Duncan M Gascoyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Elizabeth J Soilleux
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Linden Lyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hayley Spearman
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Giovanna Roncador
- Monoclonal Antibody Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Lars M Pedersen
- Department of Haematology, Roskilde Hospital, Roskilde, Denmark
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Alison H Banham
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
3
|
Alexander LEMM, Watters J, Reusch JA, Maurin M, Nepon-Sixt BS, Vrzalikova K, Alexandrow MG, Murray PG, Wright KL. Selective expression of the transcription elongation factor ELL3 in B cells prior to ELL2 drives proliferation and survival. Mol Immunol 2017; 91:8-16. [PMID: 28858629 DOI: 10.1016/j.molimm.2017.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022]
Abstract
B cell activation is dependent on a large increase in transcriptional output followed by focused expression on secreted immunoglobulin as the cell transitions to an antibody producing plasma cell. The rapid transcriptional induction is facilitated by the release of poised RNA pol II into productive elongation through assembly of the super elongation complex (SEC). We report that a SEC component, the Eleven -nineteen Lysine-rich leukemia (ELL) family member 3 (ELL3) is dynamically up-regulated in mature and activated human B cells followed by suppression as B cells transition to plasma cells in part mediated by the transcription repressor PRDM1. Burkitt's lymphoma and a sub-set of Diffuse Large B cell lymphoma cell lines abundantly express ELL3. Depletion of ELL3 in the germinal center derived lymphomas results in severe disruption of DNA replication and cell division along with increased DNA damage and cell death. This restricted utilization and survival dependence reveal a key step in B cell activation and indicate a potential therapeutic target against B cell lymphoma's with a germinal center origin.
Collapse
Affiliation(s)
- Lou-Ella M M Alexander
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, United States; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - January Watters
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, United States; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Jessica A Reusch
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Michelle Maurin
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Brook S Nepon-Sixt
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Katerina Vrzalikova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark G Alexandrow
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Paul G Murray
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kenneth L Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
4
|
Styles CT, Bazot Q, Parker GA, White RE, Paschos K, Allday MJ. EBV epigenetically suppresses the B cell-to-plasma cell differentiation pathway while establishing long-term latency. PLoS Biol 2017; 15:e2001992. [PMID: 28771465 PMCID: PMC5542390 DOI: 10.1371/journal.pbio.2001992] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/10/2017] [Indexed: 11/29/2022] Open
Abstract
Mature human B cells infected by Epstein-Barr virus (EBV) become activated, grow, and proliferate. If the cells are infected ex vivo, they are transformed into continuously proliferating lymphoblastoid cell lines (LCLs) that carry EBV DNA as extra-chromosomal episomes, express 9 latency-associated EBV proteins, and phenotypically resemble antigen-activated B-blasts. In vivo similar B-blasts can differentiate to become memory B cells (MBC), in which EBV persistence is established. Three related latency-associated viral proteins EBNA3A, EBNA3B, and EBNA3C are transcription factors that regulate a multitude of cellular genes. EBNA3B is not necessary to establish LCLs, but EBNA3A and EBNA3C are required to sustain proliferation, in part, by repressing the expression of tumour suppressor genes. Here we show, using EBV-recombinants in which both EBNA3A and EBNA3C can be conditionally inactivated or using virus completely lacking the EBNA3 gene locus, that-after a phase of rapid proliferation-infected primary B cells express elevated levels of factors associated with plasma cell (PC) differentiation. These include the cyclin-dependent kinase inhibitor (CDKI) p18INK4c, the master transcriptional regulator of PC differentiation B lymphocyte-induced maturation protein-1 (BLIMP-1), and the cell surface antigens CD38 and CD138/Syndecan-1. Chromatin immunoprecipitation sequencing (ChIP-seq) and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) indicate that in LCLs inhibition of CDKN2C (p18INK4c) and PRDM1 (BLIMP-1) transcription results from direct binding of EBNA3A and EBNA3C to regulatory elements at these loci, producing stable reprogramming. Consistent with the binding of EBNA3A and/or EBNA3C leading to irreversible epigenetic changes, cells become committed to a B-blast fate <12 days post-infection and are unable to de-repress p18INK4c or BLIMP-1-in either newly infected cells or conditional LCLs-by inactivating EBNA3A and EBNA3C. In vitro, about 20 days after infection with EBV lacking functional EBNA3A and EBNA3C, cells develop a PC-like phenotype. Together, these data suggest that EBNA3A and EBNA3C have evolved to prevent differentiation to PCs after infection by EBV, thus favouring long-term latency in MBC and asymptomatic persistence.
Collapse
Affiliation(s)
- Christine T. Styles
- Molecular Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Quentin Bazot
- Molecular Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Gillian A. Parker
- Molecular Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Robert E. White
- Molecular Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Kostas Paschos
- Molecular Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Martin J. Allday
- Molecular Virology, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells. Cell Rep 2015; 13:1059-71. [DOI: 10.1016/j.celrep.2015.09.051] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 07/06/2015] [Accepted: 09/17/2015] [Indexed: 01/22/2023] Open
|
6
|
Agostinelli C, Paterson JC, Gupta R, Righi S, Sandri F, Piccaluga PP, Bacci F, Sabattini E, Pileri SA, Marafioti T. Detection of LIM domain only 2 (LMO2) in normal human tissues and haematopoietic and non-haematopoietic tumours using a newly developed rabbit monoclonal antibody. Histopathology 2012; 61:33-46. [PMID: 22394247 DOI: 10.1111/j.1365-2559.2012.04198.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS We describe a new rabbit monoclonal antibody, raised against a fixation-resistant epitope of the transcription regulator LIM domain only 2 (LMO2). METHODS AND RESULTS Lymphoma cell lines and a large series of normal and neoplastic samples were investigated by Western blot and immunohistochemistry. The antibody detected nuclear positivity for the protein, with the exception of a proportion of classical Hodgkin lymphomas (HLs), peripheral T cell lymphomas (PTCLs) and solid tumours that showed granular cytoplasmic staining. In normal lympho-haematopoietic tissues, LMO2 was expressed at different intensities by CD34(+) blasts, haematopoietic precursors, germinal centre (GC), mantle and splenic marginal zone B cells. While reactive with only scattered elements in the thymus and nine of 237 PTCLs, the antibody stained 31 of 39 T-acute lymphoblastic lymphoma/leukaemias (T-ALLs) and the T-ALL-derived human leukaemic cell line, CCRF-CEM. LMO2 was found in 88% of B-acute lymphoblastic lymphoma/leukaemias (B-ALLs), 5% chronic lymphocytic leukaemias (CLLs) and 14%, 57% and 41% of mantle, follicular and Burkitt lymphomas, respectively. In the setting of diffuse large B cell lymphomas (DLBCLs), LMO2-positivity was related strongly to a GC phenotype. LMO2 was found in 83% primary mediastinal large B cell lymphomas (PMBLs) and 100% nodular lymphocyte predominant Hodgkin lymphomas (NLPHLs), whereas only 10% of classical HLs were stained. Acute and chronic myeloid leukaemias were usually positive. CONCLUSIONS The new anti-LMO2 antibody can be applied confidently to routine sections, contributing to the differential diagnosis of several lymphoma subtypes, subtyping of DLBCLs and potential development of innovative therapies.
Collapse
Affiliation(s)
- Claudio Agostinelli
- Section of Haematopathology, Department of Haematology and Oncological Sciences Seràgnoli, S Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
HGAL, a prognostic biomarker in patients with diffuse large B-cell lymphoma and classic Hodgkin lymphoma, inhibits lymphocyte and lymphoma cell motility by activating the RhoA signaling cascade and interacting with actin and myosin proteins. Although HGAL expression is limited to germinal center (GC) lymphocytes and GC-derived lymphomas, little is known about its regulation. miR-155 is implicated in control of GC reaction and lymphomagenesis. We demonstrate that miR-155 directly down-regulates HGAL expression by binding to its 3'-untranslated region, leading to decreased RhoA activation and increased spontaneous and chemoattractant-induced lymphoma cell motility. The effects of miR-155 on RhoA activation and cell motility can be rescued by transfection of HGAL lacking the miR-155 binding site. This inhibitory effect of miR-155 suggests that it may have a key role in the loss of HGAL expression on differentiation of human GC B cells to plasma cell. Furthermore, this effect may contribute to lymphoma cell dissemination and aggressiveness, characteristic of activated B cell-like diffuse large B-cell lymphoma typically expressing high levels of miR-155 and lacking HGAL expression.
Collapse
|