1
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Choudhary K, Itzkovich Z, Alonso-Perez E, Bishara H, Dunn B, Sherlock G, Kupiec M. S. cerevisiae Cells Can Grow without the Pds5 Cohesin Subunit. mBio 2022; 13:e0142022. [PMID: 35708277 PMCID: PMC9426526 DOI: 10.1128/mbio.01420-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 12/11/2022] Open
Abstract
During DNA replication, the newly created sister chromatids are held together until their separation at anaphase. The cohesin complex is in charge of creating and maintaining sister chromatid cohesion (SCC) in all eukaryotes. In Saccharomyces cerevisiae cells, cohesin is composed of two elongated proteins, Smc1 and Smc3, bridged by the kleisin Mcd1/Scc1. The latter also acts as a scaffold for three additional proteins, Scc3/Irr1, Wpl1/Rad61, and Pds5. Although the HEAT-repeat protein Pds5 is essential for cohesion, its precise function is still debated. Deletion of the ELG1 gene, encoding a PCNA unloader, can partially suppress the temperature-sensitive pds5-1 allele, but not a complete deletion of PDS5. We carried out a genetic screen for high-copy-number suppressors and another for spontaneously arising mutants, allowing the survival of a pds5Δ elg1Δ strain. Our results show that cells remain viable in the absence of Pds5 provided that there is both an elevation in the level of Mcd1 (which can be due to mutations in the CLN2 gene, encoding a G1 cyclin), and an increase in the level of SUMO-modified PCNA on chromatin (caused by lack of PCNA unloading in elg1Δ mutants). The elevated SUMO-PCNA levels increase the recruitment of the Srs2 helicase, which evicts Rad51 molecules from the moving fork, creating single-stranded DNA (ssDNA) regions that serve as sites for increased cohesin loading and SCC establishment. Thus, our results delineate a double role for Pds5 in protecting the cohesin ring and interacting with the DNA replication machinery. IMPORTANCE Sister chromatid cohesion is vital for faithful chromosome segregation, chromosome folding into loops, and gene expression. A multisubunit protein complex known as cohesin holds the sister chromatids from S phase until the anaphase stage. In this study, we explore the function of the essential cohesin subunit Pds5 in the regulation of sister chromatid cohesion. We performed two independent genetic screens to bypass the function of the Pds5 protein. We observe that Pds5 protein is a cohesin stabilizer, and elevating the levels of Mcd1 protein along with SUMO-PCNA accumulation on chromatin can compensate for the loss of the PDS5 gene. In addition, Pds5 plays a role in coordinating the DNA replication and sister chromatid cohesion establishment. This work elucidates the function of cohesin subunit Pds5, the G1 cyclin Cln2, and replication factors PCNA, Elg1, and Srs2 in the proper regulation of sister chromatid cohesion.
Collapse
Affiliation(s)
- Karan Choudhary
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Ziv Itzkovich
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Elisa Alonso-Perez
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Hend Bishara
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Barbara Dunn
- Departments of Genetics, Stanford University, Stanford, California, USA
| | - Gavin Sherlock
- Departments of Genetics, Stanford University, Stanford, California, USA
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
3
|
Strini EJ, Bertolino LT, San Martin JAB, Souza HAO, Pessotti F, Pinoti VF, Ferreira PB, De Paoli HC, Lubini G, Del-Bem LE, Quiapim AC, Mondin M, Araujo APU, Eloy NB, Barberis M, Goldman MHS. Stigma/Style Cell-Cycle Inhibitor 1, a Regulator of Cell Proliferation, Interacts With a Specific 14-3-3 Protein and Is Degraded During Cell Division. FRONTIERS IN PLANT SCIENCE 2022; 13:857745. [PMID: 35444668 PMCID: PMC9013909 DOI: 10.3389/fpls.2022.857745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The final shape and size of plant organs are determined by a network of genes that modulate cell proliferation and expansion. Among those, SCI1 (Stigma/style Cell-cycle Inhibitor 1) functions by inhibiting cell proliferation during pistil development. Alterations in SCI1 expression levels can lead to remarkable stigma/style size changes. Recently, we demonstrated that SCI1 starts to be expressed at the specification of the Nicotiana tabacum floral meristem and is expressed at all floral meristematic cells. To elucidate how SCI1 regulates cell proliferation, we screened a stigma/style cDNA library through the yeast two-hybrid (Y2H) system, using SCI1 as bait. Among the interaction partners, we identified the 14-3-3D protein of the Non-Epsilon group. The interaction between SCI1 and 14-3-3D was confirmed by pulldown and co-immunoprecipitation experiments. 14-3-3D forms homo- and heterodimers in the cytoplasm of plant cells and interacts with SCI1 in the nucleus, as demonstrated by Bimolecular Fluorescence Complementation (BiFC). Analyses of SCI1-GFP fluorescence through the cell-cycle progression revealed its presence in the nucleoli during interphase and prophase. At metaphase, SCI1-GFP fluorescence faded and was no longer detected at anaphase, reappearing at telophase. Upon treatment with the 26S proteasome inhibitor MG132, SCI1-GFP was stabilized during cell division. Site-directed mutagenesis of seven serines into alanines in the predicted 14-3-3 binding sites on the SCI1 sequence prevented its degradation during mitosis. Our results demonstrate that SCI1 degradation at the beginning of metaphase is dependent on the phosphorylation of serine residues and on the action of the 26S proteasome. We concluded that SCI1 stability/degradation is cell-cycle regulated, consistent with its role in fine-tuning cell proliferation.
Collapse
Affiliation(s)
- Edward J. Strini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lígia T. Bertolino
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Juca A. B. San Martin
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Hebréia A. O. Souza
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Francine Pessotti
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vitor F. Pinoti
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Pedro B. Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Henrique C. De Paoli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Greice Lubini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz-Eduardo Del-Bem
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andréa C. Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mateus Mondin
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| | - Ana Paula U. Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Nubia B. Eloy
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Maria Helena S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Barberis M. Quantitative model of eukaryotic Cdk control through the Forkhead CONTROLLER. NPJ Syst Biol Appl 2021; 7:28. [PMID: 34117265 PMCID: PMC8196193 DOI: 10.1038/s41540-021-00187-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
In budding yeast, synchronization of waves of mitotic cyclins that activate the Cdk1 kinase occur through Forkhead transcription factors. These molecules act as controllers of their sequential order and may account for the separation in time of incompatible processes. Here, a Forkhead-mediated design principle underlying the quantitative model of Cdk control is proposed for budding yeast. This design rationalizes timing of cell division, through progressive and coordinated cyclin/Cdk-mediated phosphorylation of Forkhead, and autonomous cyclin/Cdk oscillations. A "clock unit" incorporating this design that regulates timing of cell division is proposed for both yeast and mammals, and has a DRIVER operating the incompatible processes that is instructed by multiple CLOCKS. TIMERS determine whether the clocks are active, whereas CONTROLLERS determine how quickly the clocks shall function depending on external MODULATORS. This "clock unit" may coordinate temporal waves of cyclin/Cdk concentration/activity in the eukaryotic cell cycle making the driver operate the incompatible processes, at separate times.
Collapse
Affiliation(s)
- Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, UK.
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Mondeel TDGA, Ivanov O, Westerhoff HV, Liebermeister W, Barberis M. Clb3-centered regulations are recurrent across distinct parameter regions in minimal autonomous cell cycle oscillator designs. NPJ Syst Biol Appl 2020; 6:8. [PMID: 32245958 PMCID: PMC7125140 DOI: 10.1038/s41540-020-0125-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Some biological networks exhibit oscillations in their components to convert stimuli to time-dependent responses. The eukaryotic cell cycle is such a case, being governed by waves of cyclin-dependent kinase (cyclin/Cdk) activities that rise and fall with specific timing and guarantee its timely occurrence. Disruption of cyclin/Cdk oscillations could result in dysfunction through reduced cell division. Therefore, it is of interest to capture properties of network designs that exhibit robust oscillations. Here we show that a minimal yeast cell cycle network is able to oscillate autonomously, and that cyclin/Cdk-mediated positive feedback loops (PFLs) and Clb3-centered regulations sustain cyclin/Cdk oscillations, in known and hypothetical network designs. We propose that Clb3-mediated coordination of cyclin/Cdk waves reconciles checkpoint and oscillatory cell cycle models. Considering the evolutionary conservation of the cyclin/Cdk network across eukaryotes, we hypothesize that functional ("healthy") phenotypes require the capacity to oscillate autonomously whereas dysfunctional (potentially "diseased") phenotypes may lack this capacity.
Collapse
Affiliation(s)
- Thierry D G A Mondeel
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, UK.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Oleksandr Ivanov
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Systems, Control and Applied Analysis Group, Johan Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands
| | - Hans V Westerhoff
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Wolfram Liebermeister
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany.,Université Paris-Saclay, INRAE, MaIAGE, Jouy en Josas, France
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK. .,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, UK. .,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Variable Selection and Joint Estimation of Mean and Covariance Models with an Application to eQTL Data. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:4626307. [PMID: 30046352 PMCID: PMC6036858 DOI: 10.1155/2018/4626307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/25/2017] [Accepted: 04/18/2018] [Indexed: 11/24/2022]
Abstract
In genomic data analysis, it is commonplace that underlying regulatory relationship over multiple genes is hardly ascertained due to unknown genetic complexity and epigenetic regulations. In this paper, we consider a joint mean and constant covariance model (JMCCM) that elucidates conditional dependent structures of genes with controlling for potential genotype perturbations. To this end, the modified Cholesky decomposition is utilized to parametrize entries of a precision matrix. The JMCCM maximizes the likelihood function to estimate parameters involved in the model. We also develop a variable selection algorithm that selects explanatory variables and Cholesky factors by exploiting the combination of the GCV and BIC as benchmarks, together with Rao and Wald statistics. Importantly, we notice that sparse estimation of a precision matrix (or equivalently gene network) is effectively achieved via the proposed variable selection scheme and contributes to exploring significant hub genes shown to be concordant to a priori biological evidence. In simulation studies, we confirm that our model selection efficiently identifies the true underlying networks. With an application to miRNA and SNPs data from yeast (a.k.a. eQTL data), we demonstrate that constructed gene networks reproduce validated biological and clinical knowledge with regard to various pathways including the cell cycle pathway.
Collapse
|
7
|
Determination of Cell Cycle Stage and Mitotic Exit Through the Quantification of the Protein Levels of Known Mitotic Regulators. Methods Mol Biol 2018. [PMID: 27826855 DOI: 10.1007/978-1-4939-6502-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
There are multiple processes that occur at certain points during the cell cycle and that affect later steps. Impairment of such processes could cause delays or even completely abolish cell cycle progression. Therefore, it is extremely helpful in order to determine the potential consequences that interfering on a cellular process imposes on cell cycle progression to be able to precisely characterize the cell cycle stage by using molecular markers. Here, we describe the analysis of the protein levels of known mitotic regulators as molecular markers to monitor the progression of cells through the cell cycle by western blot in synchronized yeast cell cultures.
Collapse
|
8
|
TORC1 coordinates the conversion of Sic1 from a target to an inhibitor of cyclin-CDK-Cks1. Cell Discov 2017; 3:17012. [PMID: 28496991 PMCID: PMC5412858 DOI: 10.1038/celldisc.2017.12] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cell cycle progression through G1-S is driven by hormonal and growth-related signals that are transmitted by the target of rapamycin complex 1 (TORC1) pathway. In yeast, inactivation of TORC1 restricts G1-S transition due to the rapid clearance of G1 cyclins (Cln) and the stabilization of the B-type cyclin (Clb) cyclin-dependent kinase (CDK) inhibitor Sic1. The latter mechanism remains mysterious but requires the phosphorylation of Sic1-Thr173 by Mpk1 and inactivation of the Sic1-pThr173-targeting phosphatase (PP2ACdc55) through greatwall kinase-activated endosulfines. Here we show that the Sic1-pThr173 residue serves as a specific docking site for the CDK phospho-acceptor subunit Cks1 that sequesters, together with a C-terminal Clb5-binding motif in Sic1, Clb5-CDK-Cks1 complexes, thereby preventing them from flagging Sic1 for ubiquitin-dependent proteolysis. Interestingly, this functional switch of Sic1 from a target to an inhibitor of cyclin-CDK-Cks1 also operates in proliferating cells and is coordinated by the greatwall kinase, which responds to both Cln-CDK-dependent cell-cycle and TORC1-mediated nutritional cues.
Collapse
|
9
|
Cancer/Testis Antigens: "Smart" Biomarkers for Diagnosis and Prognosis of Prostate and Other Cancers. Int J Mol Sci 2017; 18:ijms18040740. [PMID: 28362316 PMCID: PMC5412325 DOI: 10.3390/ijms18040740] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
A clinical dilemma in the management of prostate cancer (PCa) is to distinguish men with aggressive disease who need definitive treatment from men who may not require immediate intervention. Accurate prediction of disease behavior is critical because radical treatment is associated with high morbidity. Here, we highlight the cancer/testis antigens (CTAs) as potential PCa biomarkers. The CTAs are a group of proteins that are typically restricted to the testis in the normal adult but are aberrantly expressed in several types of cancers. Interestingly, >90% of CTAs are predicted to belong to the realm of intrinsically disordered proteins (IDPs), which do not have unique structures and exist as highly dynamic conformational ensembles, but are known to play important roles in several biological processes. Using prostate-associated gene 4 (PAGE4) as an example of a disordered CTA, we highlight how IDP conformational dynamics may regulate phenotypic heterogeneity in PCa cells, and how it may be exploited both as a potential biomarker as well as a promising therapeutic target in PCa. We also discuss how in addition to intrinsic disorder and post-translational modifications, structural and functional variability induced in the CTAs by alternate splicing represents an important feature that might have different roles in different cancers. Although it is clear that significant additional work needs to be done in the outlined direction, this novel concept emphasizing (multi)functionality as an important trait in selecting a biomarker underscoring the theranostic potential of CTAs that is latent in their structure (or, more appropriately, the lack thereof), and casts them as next generation or “smart” biomarker candidates.
Collapse
|
10
|
Abstract
Precise timing of cell division is achieved by coupling waves of cyclin-dependent kinase (Cdk) activity with a transcriptional oscillator throughout cell cycle progression. Although details of transcription of cyclin genes are known, it is unclear which is the transcriptional cascade that modulates their expression in a timely fashion. Here, we demonstrate that a Clb/Cdk1-mediated regulation of the Fkh2 transcription factor synchronizes the temporal mitotic CLB expression in budding yeast. A simplified kinetic model of the cyclin/Cdk network predicts a linear cascade where a Clb/Cdk1-mediated regulation of an activator molecule drives CLB3 and CLB2 expression. Experimental validation highlights Fkh2 as modulator of CLB3 transcript levels, besides its role in regulating CLB2 expression. A Boolean model based on the minimal number of interactions needed to capture the information flow of the Clb/Cdk1 network supports the role of an activator molecule in the sequential activation, and oscillatory behavior, of mitotic Clb cyclins. This work illustrates how transcription and phosphorylation networks can be coupled by a Clb/Cdk1-mediated regulation that synchronizes them. A dynamic coupling of cyclin-dependent kinase with transcription factors in yeast offers insights into the timely cell cycle progression. An international team lead by Matteo Barberis from University of Amsterdam in The Netherlands studied the molecular mechanisms responsible for the coordination of DNA replication with cell division. The researchers have demonstrated how the sequential order of waves of mitotic cyclins activating cyclin-dependent kinase, or Cdk, is achieved by synchronizing Cdk with transcriptional activities. They have generated a mathematical model that predicts a cyclin/Cdk-mediated regulation of an activator molecule to stimulate mitotic cyclin expression. This prediction was successfully validated experimentally, identifying Forkhead transcription factors, or Fkh, as pivotal molecules. Cyclin waves are temporally synchronized by Fkh, and a mitotic Clb/Cdk1-mediated regulation of Fkh modulates cyclin expression. The findings reveal a novel principle of design, with kinase and transcription activities interlocked to guarantee a timely cell cycle.
Collapse
|
11
|
Barberis M, Todd RG, van der Zee L. Advances and challenges in logical modeling of cell cycle regulation: perspective for multi-scale, integrative yeast cell models. FEMS Yeast Res 2016; 17:fow103. [PMID: 27993914 PMCID: PMC5225787 DOI: 10.1093/femsyr/fow103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023] Open
Abstract
The eukaryotic cell cycle is robustly designed, with interacting molecules organized within a definite topology that ensures temporal precision of its phase transitions. Its underlying dynamics are regulated by molecular switches, for which remarkable insights have been provided by genetic and molecular biology efforts. In a number of cases, this information has been made predictive, through computational models. These models have allowed for the identification of novel molecular mechanisms, later validated experimentally. Logical modeling represents one of the youngest approaches to address cell cycle regulation. We summarize the advances that this type of modeling has achieved to reproduce and predict cell cycle dynamics. Furthermore, we present the challenge that this type of modeling is now ready to tackle: its integration with intracellular networks, and its formalisms, to understand crosstalks underlying systems level properties, ultimate aim of multi-scale models. Specifically, we discuss and illustrate how such an integration may be realized, by integrating a minimal logical model of the cell cycle with a metabolic network.
Collapse
Affiliation(s)
- Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Robert G Todd
- Department of Natural and Applied Sciences, Mount Mercy University, Cedar Rapids, IA 52402, USA
| | - Lucas van der Zee
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
12
|
Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae. Sci Rep 2016; 6:36013. [PMID: 27782169 PMCID: PMC5080547 DOI: 10.1038/srep36013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 10/10/2016] [Indexed: 01/27/2023] Open
Abstract
The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes.
Collapse
|
13
|
Tantos A, Kalmar L, Tompa P. The role of structural disorder in cell cycle regulation, related clinical proteomics, disease development and drug targeting. Expert Rev Proteomics 2016; 12:221-33. [PMID: 25976105 DOI: 10.1586/14789450.2015.1042866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Understanding the molecular mechanisms of the regulation of cell cycle is a central issue in molecular cell biology, due to its fundamental role in the existence of cells. The regulatory circuits that make decisions on when a cell should divide are very complex and particularly subtly balanced in eukaryotes, in which the harmony of many different cells in an organism is essential for life. Several hundred proteins are involved in these processes, and a great deal of studies attests that most of them have functionally relevant intrinsic structural disorder. Structural disorder imparts many functional advantages on these proteins, and we discuss it in detail that it is involved in all key steps from signaling through the cell membrane to regulating transcription of proteins that execute timely responses to an ever-changing environment.
Collapse
Affiliation(s)
- Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
14
|
Banfic H, Crljen V, Lukinovic-Skudar V, Dembitz V, Lalic H, Bedalov A, Visnjic D. Inositol pyrophosphates modulate cell cycle independently of alteration in telomere length. Adv Biol Regul 2016; 60:22-28. [PMID: 26446451 DOI: 10.1016/j.jbior.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Synthesis of inositol pyrophosphates through activation of Kcs1 plays an important role in the signalling response required for cell cycle progression after mating pheromone arrest. Overexpression of Kcs1 doubled the level of inositol pyrophosphates when compared to wild type cells and 30 min following the release from α-factor block further increase in inositol pyrophosphates was observed, which resulted that cells overexpressing Kcs1 reached G2/M phase earlier than wild type cells. Similar effect was observed in ipk1Δ cells, which are unable to synthesize IP6-derived inositol pyrophosphates (IP7 and IP8) but will synthesize IP5-derived inositol pyrophosphates (PP-IP4 and (PP)2-IP3). Although ipk1Δ cells have shorter telomeres than wild type cells, overexpression of Kcs1 in both strains have similar effect on cell cycle progression. As it is known that PP-IP4 regulates telomere length through Tel1, inositol polyphosphates, cell cycle and telomere length were determined in tel1Δ cells. The release of the cells from α-factor block and overexpression of Kcs1 in tel1Δ cells produced similar effects on inositol pyrophosphates level and cell cycle progression when compared to wild type cells, although tel1Δ cells possesses shorter telomeres than wild type cells. It can be concluded that telomere length does not affect cell cycle progression, since cells with short telomeres (ipk1Δ and tel1Δ) progress through cell cycle in a similar manner as wild type cells and that overexpression of Kcs1 in cells with either short or normal telomeres will increase S phase progression without affecting telomere length. Furthermore, IP5-derived inositol pyrophosphates can compensate for the loss of IP6-derived inositol pyrophosphates, in modulating S phase progression of the cell cycle.
Collapse
Affiliation(s)
- Hrvoje Banfic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Vladiana Crljen
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vesna Lukinovic-Skudar
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Antonio Bedalov
- Fred Hutchinson Cancer Reaserch Center, Seattle, WA 98109, USA
| | - Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
15
|
Li J, Santambrogio C, Brocca S, Rossetti G, Carloni P, Grandori R. Conformational effects in protein electrospray-ionization mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:111-22. [PMID: 25952139 DOI: 10.1002/mas.21465] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/14/2015] [Indexed: 05/11/2023]
Abstract
Electrospray-ionization mass spectrometry (ESI-MS) is a key tool of structural biology, complementing the information delivered by conventional biochemical and biophysical methods. Yet, the mechanism behind the conformational effects in protein ESI-MS is an object of debate. Two parameters-solvent-accessible surface area (As) and apparent gas-phase basicity (GBapp)-are thought to play a role in controlling the extent of protein ionization during ESI-MS experiments. This review focuses on recent experimental and theoretical investigations concerning the influence of these parameters on ESI-MS results and the structural information that can be derived. The available evidence supports a unified model for the ionization mechanism of folded and unfolded proteins. These data indicate that charge-state distribution (CSD) analysis can provide valuable structural information on normally folded, as well as disordered structures.
Collapse
Affiliation(s)
- Jinyu Li
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057 Aachen, Germany
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giulia Rossetti
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
16
|
Moreno-Torres M, Jaquenoud M, De Virgilio C. TORC1 controls G1-S cell cycle transition in yeast via Mpk1 and the greatwall kinase pathway. Nat Commun 2015; 6:8256. [PMID: 26356805 PMCID: PMC4579850 DOI: 10.1038/ncomms9256] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/03/2015] [Indexed: 01/16/2023] Open
Abstract
The target of rapamycin complex 1 (TORC1) pathway couples nutrient, energy and hormonal signals with eukaryotic cell growth and division. In yeast, TORC1 coordinates growth with G1–S cell cycle progression, also coined as START, by favouring the expression of G1 cyclins that activate cyclin-dependent protein kinases (CDKs) and by destabilizing the CDK inhibitor Sic1. Following TORC1 downregulation by rapamycin treatment or nutrient limitation, clearance of G1 cyclins and C-terminal phosphorylation of Sic1 by unknown protein kinases are both required for Sic1 to escape ubiquitin-dependent proteolysis prompted by its flagging via the SCFCdc4 (Skp1/Cul1/F-box protein) ubiquitin ligase complex. Here we show that the stabilizing phosphorylation event within the C-terminus of Sic1 requires stimulation of the mitogen-activated protein kinase, Mpk1, and inhibition of the Cdc55 protein phosphatase 2A (PP2ACdc55) by greatwall kinase-activated endosulfines. Thus, Mpk1 and the greatwall kinase pathway serve TORC1 to coordinate the phosphorylation status of Sic1 and consequently START with nutrient availability. The target of rapamycin complex 1 (TORC1) pathway couples nutrient availability with cell growth and division by destabilizing the cyclin-dependent kinase (CDK) inhibitor Sic1. Here the authors show that TORC1 downregulation leads to stabilization of Sic1 via phosphorylation by the MAP kinase Mpk1 and inhibition of dephosphorylation via the greatwall kinase pathway.
Collapse
Affiliation(s)
- Marta Moreno-Torres
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Malika Jaquenoud
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| |
Collapse
|
17
|
Yeast model identifies ENTPD6 as a potential non-obstructive azoospermia pathogenic gene. Sci Rep 2015; 5:11762. [PMID: 26152596 PMCID: PMC4495445 DOI: 10.1038/srep11762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/02/2015] [Indexed: 01/03/2023] Open
Abstract
Approximately ten percent of male infertility is caused by non-obstructive azoospermia (NOA), but the etiologies of many NOA remain elusive. Recently, a genome-wide association study (GWAS) of NOA in Han Chinese men was conducted, and only a few genetic variants associated with NOA were found, which might have resulted from genetic heterogeneity. However, those variants that lack genome-wide significance might still be essential for fertility. Functional analysis of genes surrounding these variants inDrosophilaidentified some spermatogenesis-essential genes. As a complementary method ofDrosophilascreening, SK1 backgroundSaccharomvces cerevisiaewas used as a model to screen meiosis-related genes from the NOA GWAS data in this study. After functional screening,GDA1(orthologous to humanENTPD6) was found to be a novel meiosis-related gene. The deletion ofGDA1resulted in the failure of yeast sporulation. Further investigations showed that Gda1p was important for pre-meiotic S phase entry. Interestingly, the meiotic role of Gda1p was dependent on its guanosine diphosphatase activity, but not it’s cytoplasmic, transmembrane or stem domains. These yeast data suggest thatENTPD6may be a novel meiosis-associated NOA-related gene, and the yeast model provides a good approach to analyze GWAS results of NOA.
Collapse
|
18
|
Ball DA, Adames NR, Reischmann N, Barik D, Franck CT, Tyson JJ, Peccoud J. Measurement and modeling of transcriptional noise in the cell cycle regulatory network. Cell Cycle 2013; 12:3203-18. [PMID: 24013422 PMCID: PMC3865016 DOI: 10.4161/cc.26257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fifty years of genetic and molecular experiments have revealed a wealth of molecular interactions involved in the control of cell division. In light of the complexity of this control system, mathematical modeling has proved useful in analyzing biochemical hypotheses that can be tested experimentally. Stochastic modeling has been especially useful in understanding the intrinsic variability of cell cycle events, but stochastic modeling has been hampered by a lack of reliable data on the absolute numbers of mRNA molecules per cell for cell cycle control genes. To fill this void, we used fluorescence in situ hybridization (FISH) to collect single molecule mRNA data for 16 cell cycle regulators in budding yeast, Saccharomyces cerevisiae. From statistical distributions of single-cell mRNA counts, we are able to extract the periodicity, timing, and magnitude of transcript abundance during the cell cycle. We used these parameters to improve a stochastic model of the cell cycle to better reflect the variability of molecular and phenotypic data on cell cycle progression in budding yeast.
Collapse
Affiliation(s)
- David A Ball
- Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Supady A, Klipp E, Barberis M. A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae. J Biotechnol 2013; 168:174-84. [PMID: 23850861 DOI: 10.1016/j.jbiotec.2013.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/23/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Activation (in the following referred to as firing) of replication origins is a continuous and irreversible process regulated by availability of DNA replication molecules and cyclin-dependent kinase activities, which are often altered in human cancers. The temporal, progressive origin firing throughout S phase appears as a characteristic replication profile, and computational models have been developed to describe this process. Although evidence from yeast to human indicates that a range of replication fork rates is observed experimentally in order to complete a timely S phase, those models incorporate velocities that are uniform across the genome. Taking advantage of the availability of replication profiles, chromosomal position and replication timing, here we investigated how fork rate may affect origin firing in budding yeast. Our analysis suggested that patterns of origin firing can be observed from a modulation of the fork rate that strongly correlates with origin density. Replication profiles of chromosomes with a low origin density were fitted with a variable fork rate, whereas for the ones with a high origin density a constant fork rate was appropriate. This indeed supports the previously reported correlation between inter-origin distance and fork rate changes. Intriguingly, the calculated correlation between fork rate and timing of origin firing allowed the estimation of firing efficiencies for the replication origins. This approach correctly retrieved origin efficiencies previously determined for chromosome VI and provided testable prediction for other chromosomal origins. Our results gain deeper insights into the temporal coordination of genome duplication, indicating that control of the replication fork rate is required for the timely origin firing during S phase.
Collapse
Affiliation(s)
- Adriana Supady
- Institute for Biology, Theoretical Biophysics, Humboldt University Berlin, Invalidenstraβe 42, 10115 Berlin, Germany
| | | | | |
Collapse
|
20
|
Venta R, Valk E, Kõivomägi M, Loog M. Double-negative feedback between S-phase cyclin-CDK and CKI generates abruptness in the G1/S switch. Front Physiol 2012; 3:459. [PMID: 23230424 PMCID: PMC3515773 DOI: 10.3389/fphys.2012.00459] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/19/2012] [Indexed: 11/13/2022] Open
Abstract
The G1/S transition is a crucial decision point in the cell cycle. At G1/S, there is an abrupt switch from a state of high cyclin-dependent kinases (CDK) inhibitor (CKI) levels and low S-phase CDK activity to a state of high S-phase CDK activity and degraded CKI. In budding yeast, this transition is triggered by phosphorylation of the Cdk1 inhibitor Sic1 at multiple sites by G1-phase CDK (Cln1,2-Cdk1) and S-phase CDK (Clb5,6-Cdk1) complexes. Using mathematical modeling we demonstrate that the mechanistic basis for the abruptness of the G1/S transition is the highly specific phosphorylation of Sic1 by S-phase CDK complex. This switch is generated by a double-negative feedback loop in which S-CDK1 phosphorylates Sic1, thus targeting it for destruction, and thereby liberating further S-CDK1 from the inhibitory Sic1-S-CDK1 complex. Our model predicts that the abruptness of the switch depends upon a strong binding affinity within the Sic1-S-CDK inhibitory complex. In vitro phosphorylation analysis using purified yeast proteins revealed that free Clb5-Cdk1 can create positive feedback by phosphorylating Sic1 that is bound in the inhibitory complex, and that Sic1 inhibits Clb5-Cdk1 with a sub-nanomolar inhibition constant. Our model also predicts that if the G1-phase CDK complex is too efficient at targeting Sic1 for destruction, then G1/S becomes a smooth and readily reversible transition. We propose that the optimal role for the G1-phase CDK in the switch would not be to act as a kinase activity directly responsible for abrupt degradation of CKI, but rather to act as a priming signal that initiates a positive feedback loop driven by emerging free S-phase CDK.
Collapse
Affiliation(s)
- Rainis Venta
- Institute of Technology, University of Tartu Tartu, Estonia
| | | | | | | |
Collapse
|
21
|
Lambrughi M, Papaleo E, Testa L, Brocca S, De Gioia L, Grandori R. Intramolecular interactions stabilizing compact conformations of the intrinsically disordered kinase-inhibitor domain of Sic1: a molecular dynamics investigation. Front Physiol 2012. [PMID: 23189058 PMCID: PMC3504315 DOI: 10.3389/fphys.2012.00435] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cyclin-dependent kinase inhibitors (CKIs) are key regulatory proteins of the eukaryotic cell cycle, which modulate cyclin-dependent kinase (Cdk) activity. CKIs perform their inhibitory effect by the formation of ternary complexes with a target kinase and its cognate cyclin. These regulators generally belong to the class of intrinsically disordered proteins (IDPs), which lack a well-defined and organized three-dimensional (3D) structure in their free state, undergoing folding upon binding to specific partners. Unbound IDPs are not merely random-coil structures, but can present intrinsically folded structural units (IFSUs) and collapsed conformations. These structural features can be relevant to protein function in vivo. The yeast CKI Sic1 is a 284-amino acid IDP that binds to Cdk1 in complex with the Clb5,6 cyclins, preventing phosphorylation of G1 substrates and, therefore, entrance to the S phase. Sic1 degradation, triggered by multiple phosphorylation events, promotes cell-cycle progression. Previous experimental studies pointed out a propensity of Sic1 and its isolated domains to populate both extended and compact conformations. The present contribution provides models for compact conformations of the Sic1 kinase-inhibitory domain (KID) by all-atom molecular dynamics (MD) simulations in explicit solvent and in the absence of interactors. The results are integrated by spectroscopic and spectrometric data. Helical IFSUs are identified, along with networks of intramolecular interactions. The results identify a group of putative hub residues and networks of electrostatic interactions, which are likely to be involved in the stabilization of the globular states.
Collapse
Affiliation(s)
- Matteo Lambrughi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milan, Italy
| | | | | | | | | | | |
Collapse
|