1
|
Shirley JD, Gillingham JR, Nauta KM, Diwakar S, Carlson EE. kinact/ KI Value Determination for Penicillin-Binding Proteins in Live Cells. ACS Infect Dis 2024; 10:4137-4145. [PMID: 39628314 DOI: 10.1021/acsinfecdis.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Penicillin-binding proteins (PBPs) are an essential family of bacterial enzymes that are covalently inhibited by the β-lactam class of antibiotics. PBP inhibition disrupts peptidoglycan biosynthesis, which results in deficient growth and proliferation, and ultimately leads to lysis. IC50 values are often employed as descriptors of enzyme inhibition and inhibitor selectivity, but can be misleading in the study of time-dependent, covalent inhibitors. Due to this disconnect, the second-order rate constant, kinact/KI, is a more appropriate metric of covalent-inhibitor potency. Despite being the gold standard measurement of potency, kinact/KI values are typically obtained from in vitro assays, which limits assay throughput if investigating an enzyme family with multiple homologues (such as the PBPs). Therefore, we developed a whole-cell kinact/KI assay to define inhibitor potency for the PBPs in Streptococcus pneumoniae using the fluorescent, activity-based probe, Bocillin-FL. Our results align with in vitro kinact/KI data and show a comparable relationship to previously established IC50 values. These results support the validity of our in vivo kinact/KI method as a means of obtaining β-lactam potency for a suite of PBPs to enable structure-activity relationship studies.
Collapse
Affiliation(s)
- Joshua D Shirley
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
| | - Jacob R Gillingham
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
| | - Kelsie M Nauta
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Shivani Diwakar
- Department of Pharmacology, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
| | - Erin E Carlson
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Pharmacology, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
| |
Collapse
|
2
|
Jang H, Kim CM, Hong E, Park HH. Fully closed conformation of penicillin-binding protein revealed by structure of PBP2 from Acinetobacter baumannii. Biochem Biophys Res Commun 2024; 729:150368. [PMID: 38986258 DOI: 10.1016/j.bbrc.2024.150368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Penicillin-binding protein 2 (PBP2), a vital protein involved in bacterial cell-wall synthesis, serves a target for β-lactam antibiotics. Acinetobacter baumannii is a pathogen notorious for multidrug resistance; therefore, exploration of PBPs is pivotal in the development of new antimicrobial strategies. In this study, the tertiary structure of PBP2 from A. baumannii (abPBP2) was elucidated using X-ray crystallography. The structural analysis demonstrated notable movement in the head domain, potentially critical for its glycosyltransferase function, suggesting that abPBP2 assumes a fully closed conformation. Our findings offer valuable information for developing novel antimicrobial agents targeting abPBP2 that are applicable in combating multidrug-resistant infections.
Collapse
Affiliation(s)
- Hyunseok Jang
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chang Min Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Eunmi Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
3
|
Shirley JD, Nauta KM, Gillingham JR, Diwakar S, Carlson EE. kinact / KI Value Determination for Penicillin-Binding Proteins in Live Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592586. [PMID: 38746240 PMCID: PMC11092749 DOI: 10.1101/2024.05.05.592586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Penicillin-binding proteins (PBPs) are an essential family of bacterial enzymes that are inhibited by the β-lactam class of antibiotics. PBP inhibition disrupts cell wall biosynthesis, which results in deficient growth and proliferation, and ultimately leads to lysis. IC 50 values are often employed as descriptors of enzyme inhibition and inhibitor selectivity but can be misleading in the study of time-dependent, irreversible inhibitors. Due to this disconnect, the second order rate constant k inact / K I is a more appropriate metric of covalent inhibitor potency. Despite being the gold standard measurement of potency, k inact / K I values are typically obtained from in vitro assays, which limits assay throughput if investigating an enzyme family with multiple homologs (such as the PBPs). Therefore, we developed a whole-cell k inact / K I assay to define inhibitor potency for the PBPs in Streptococcus pneumoniae using the fluorescent activity-based probe Bocillin-FL. Our results align with in vitro k inact / K I data and show a comparable relationship to previously established IC 50 values. These results support the validity of our in vivo k inact / K I method as a means of obtaining a full picture of β-lactam potency for a suite of PBPs. Abstract Figure
Collapse
|
4
|
Su Y, Shahriar SSM, Andrabi SM, Wang C, Sharma NS, Xiao Y, Wong SL, Wang G, Xie J. It Takes Two to Tangle: Microneedle Patches Co-delivering Monoclonal Antibodies and Engineered Antimicrobial Peptides Effectively Eradicate Wound Biofilms. Macromol Biosci 2024; 24:e2300519. [PMID: 38217528 DOI: 10.1002/mabi.202300519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/20/2023] [Indexed: 01/15/2024]
Abstract
Wound biofilms pose a great clinical challenge. Herein, this work reports a dissolvable microneedle patch for dual delivery of monoclonal antibodies anti-PBP2a and engineers antimicrobial peptides W379. In vitro antibacterial efficacy testing with microneedle patches containing a combination of 250 ng mL-1 W379 and 250 ng mL-1 anti-BPB2a decreases the bacterial count from ≈3.31 × 107 CFU mL-1 to 1.28 × 102 CFU mL-1 within 2 h without eliciting evident cytotoxicity. Ex vivo testing indicates W379 and anti-PBP2a co-loaded microneedle patch displayed a remarkable reduction of bacterial load by ≈7.18 log CFU after administered only once within 48 h. The bacterial count is significantly diminished compared to the treatment by either W379 or anti-PBP2a-loaded alone microneedle patches. When administered twice within 48 h, no bacteria are identified. Further in vivo study also reveals that after two treatments of W379 and anti-PBP2a co-loaded PVP microneedle patches within 48 h, the bacterial colonies are undetectable in a type II diabetic mouse wound biofilm model. Taken together, W379 and anti-PBP2a co-loaded PVP microneedle patches hold great promise in treating wound biofilms.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shatil S M Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Syed Muntazir Andrabi
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chenlong Wang
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yizhu Xiao
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shannon L Wong
- Department of Surgery-Plastic Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
5
|
Brott AS, Sychantha D, Clarke AJ. Assays for the Enzymes Catalyzing the O-Acetylation of Bacterial Cell Wall Polysaccharides. Methods Mol Biol 2019; 1954:115-136. [PMID: 30864128 DOI: 10.1007/978-1-4939-9154-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The polysaccharides that comprise bacterial cell walls are commonly O-acetylated. This modification confers resistance to hydrolases of innate immune systems and/or controls endogenous autolytic activity. Herein, we present protocols for the compositional analysis of bacterial cell wall O-acetylation, and assays for monitoring O-acetyltransferases and O-acetylesterases. The assays are amenable for the development of high-throughput screens in search of inhibitors of the respective enzymes.
Collapse
Affiliation(s)
- Ashley S Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - David Sychantha
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
6
|
Punekar AS, Samsudin F, Lloyd AJ, Dowson CG, Scott DJ, Khalid S, Roper DI. The role of the jaw subdomain of peptidoglycan glycosyltransferases for lipid II polymerization. Cell Surf 2018; 2:54-66. [PMID: 30046666 PMCID: PMC6053601 DOI: 10.1016/j.tcsw.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022] Open
Abstract
Bacterial peptidoglycan glycosyltransferases (PGT) catalyse the essential polymerization of lipid II into linear glycan chains required for peptidoglycan biosynthesis. The PGT domain is composed of a large head subdomain and a smaller jaw subdomain and can be potently inhibited by the antibiotic moenomycin A (MoeA). We present an X-ray structure of the MoeA-bound Staphylococcus aureus monofunctional PGT enzyme, revealing electron density for a second MoeA bound to the jaw subdomain as well as the PGT donor site. Isothermal titration calorimetry confirms two drug-binding sites with markedly different affinities and positive cooperativity. Hydrophobic cluster analysis suggests that the membrane-interacting surface of the jaw subdomain has structural and physicochemical properties similar to amphipathic cationic α -helical antimicrobial peptides for lipid II recognition and binding. Furthermore, molecular dynamics simulations of the drug-free and -bound forms of the enzyme demonstrate the importance of the jaw subdomain movement for lipid II selection and polymerization process and provide molecular-level insights into the mechanism of peptidoglycan biosynthesis by PGTs.
Collapse
Affiliation(s)
- Avinash S. Punekar
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Firdaus Samsudin
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Adrian J. Lloyd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - David J. Scott
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
- ISIS Neutron and Muon Spallation Source and Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, United Kingdom
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
7
|
Dailey J, Fichera M, Silbergeld E, Katz H. Impedance Spectroscopic Detection of Binding and Reactions in Acid-Labile Dielectric Polymers for Biosensor Applications. J Mater Chem B 2018; 6:2972-2981. [PMID: 30345059 PMCID: PMC6191049 DOI: 10.1039/c7tb03171h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized previously unreported copolymers with cleavable acid-labile side chains for use as electrochemical sensing layers in order to demonstrate a novel architecture for a one-step immunosensor. This one-step system is in contrast to most antigen-capture signal amplification methods that involve complicated secondary labeling techniques, or require the addition of redox probes to achieve a sensing response. A series of novel copolymers composed of various trityl-containing monomers were synthesized and characterized to determine their dielectric properties. Results indicate that the thin films of these polymers are stable in water, but some begin to degrade under acidic conditions or upon antigen binding, causing observable changes in the phase angle.
Collapse
Affiliation(s)
- Jennifer Dailey
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University
| | - Michelangelo Fichera
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University
| | - Ellen Silbergeld
- Department of Environmental Engineering, School of Public Health, Johns Hopkins University
| | - Howard Katz
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University
| |
Collapse
|
8
|
Phosphorylation-dependent activation of the cell wall synthase PBP2a in Streptococcus pneumoniae by MacP. Proc Natl Acad Sci U S A 2018; 115:2812-2817. [PMID: 29487215 DOI: 10.1073/pnas.1715218115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Most bacterial cells are surrounded by an essential cell wall composed of the net-like heteropolymer peptidoglycan (PG). Growth and division of bacteria are intimately linked to the expansion of the PG meshwork and the construction of a cell wall septum that separates the nascent daughter cells. Class A penicillin-binding proteins (aPBPs) are a major family of PG synthases that build the wall matrix. Given their central role in cell wall assembly and importance as drug targets, surprisingly little is known about how the activity of aPBPs is controlled to properly coordinate cell growth and division. Here, we report the identification of MacP (SPD_0876) as a membrane-anchored cofactor of PBP2a, an aPBP synthase of the Gram-positive pathogen Streptococcus pneumoniae We show that MacP localizes to the division site of S. pneumoniae, forms a complex with PBP2a, and is required for the in vivo activity of the synthase. Importantly, MacP was also found to be a substrate for the kinase StkP, a global cell cycle regulator. Although StkP has been implicated in controlling the balance between the elongation and septation modes of cell wall synthesis, none of its substrates are known to modulate PG synthetic activity. Here we show that a phosphoablative substitution in MacP that blocks StkP-mediated phosphorylation prevents PBP2a activity without affecting the MacP-PBP2a interaction. Our results thus reveal a direct connection between PG synthase function and the control of cell morphogenesis by the StkP regulatory network.
Collapse
|
9
|
Schaefer K, Owens TW, Kahne D, Walker S. Substrate Preferences Establish the Order of Cell Wall Assembly in Staphylococcus aureus. J Am Chem Soc 2018; 140:2442-2445. [PMID: 29402087 DOI: 10.1021/jacs.7b13551] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Gram-positive bacterial cell wall is a large supramolecular structure and its assembly requires coordination of complex biosynthetic pathways. In the step that merges the two major biosynthetic pathways in Staphylococcus aureus cell wall assembly, conserved protein ligases attach wall teichoic acids to peptidoglycan, but the order of biosynthetic events is a longstanding question. Here, we use a chemical approach to define which of the possible peptidoglycan intermediates are substrates for wall-teichoic acid ligases, thereby establishing the order of cell wall assembly. We have developed a strategy to make defined glycan chain-length polymers of either un-cross-linked or cross-linked peptidoglycan, and we find that wall teichoic acid ligases cannot transfer wall teichoic acid precursors to the cross-linked substrates. A 1.9 Å crystal structure of a LytR-CpsA-Psr (LCP) family ligase in complex with a wall teichoic acid precursor defines the location of the peptidoglycan binding site as a long, narrow groove, and suggests that the basis for selectivity is steric exclusion of cross-linked peptidoglycan. Consistent with this hypothesis, we have found that chitin oligomers are good substrates for transfer, showing that LCPs do not discriminate cross-linked from un-cross-linked peptidoglycan substrates by recognizing features of the un-cross-linked stem peptide. We conclude that wall teichoic acids are coupled to un-cross-linked peptidoglycan chains at an early stage of peptidoglycan synthesis and may create marks that define the proper spacing of subsequent cross-links.
Collapse
Affiliation(s)
- Kaitlin Schaefer
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States.,Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Tristan W Owens
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
van der Linden M, Rutschmann J, Maurer P, Hakenbeck R. PBP2a in β-Lactam-Resistant Laboratory Mutants and Clinical Isolates: Disruption Versus Reduced Penicillin Affinity. Microb Drug Resist 2017; 24:718-731. [PMID: 29195053 DOI: 10.1089/mdr.2017.0302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alterations in PBP2a have been recognized in cefotaxime-resistant laboratory mutants and β-lactam-resistant clinical isolates of Streptococcus pneumoniae. DNA sequencing revealed fundamental differences between these two settings. Internal stop codons in pbp2a occurred in all three laboratory mutants analyzed, caused by a mutation in pbp2a of mutant C604, and tandem duplications within pbp2a resulting in premature stop codons in another two mutants C403 and C406. In contrast, mosaic PBP2a genes were observed in several penicillin-resistant clinical isolates from South Africa, the Czech Republic, Hungary, and in the clone Poland23F-16, with sequence blocks diverging from sensitive strains by over 4%. Most of these pbp2a variants except pbp2a from the South African strain contained sequences related to pbp2a of Streptococcus mitis B6, confirming that this species serves as reservoir for penicillin-resistance determinants.
Collapse
Affiliation(s)
- Mark van der Linden
- 1 Department of Medical Microbiology, German National Reference Center for Streptococci , Aachen, Germany
| | | | - Patrick Maurer
- 3 School of Engineering, University of Applied Sciences , Saarbrücken, Germany
| | - Regine Hakenbeck
- 4 Department of Microbiology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
11
|
Qiao Y, Srisuknimit V, Rubino F, Schaefer K, Ruiz N, Walker S, Kahne D. Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams. Nat Chem Biol 2017; 13:793-798. [PMID: 28553948 PMCID: PMC5478438 DOI: 10.1038/nchembio.2388] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/13/2017] [Indexed: 01/07/2023]
Abstract
Peptidoglycan is an essential crosslinked polymer that surrounds bacteria and protects them from osmotic lysis. Beta-lactam antibiotics target the final stages of peptidoglycan biosynthesis by inhibiting the transpeptidases that crosslink glycan strands to complete cell wall assembly. Characterization of transpeptidases and their inhibition by beta-lactams has been hampered by lack of access to substrate. We describe a general approach to accumulate Lipid II in bacteria and to obtain large quantities of this cell wall precursor. We demonstrate utility by isolating Staphylococcus aureus Lipid II and reconstituting the synthesis of crosslinked peptidoglycan by the essential penicillin-binding protein 2, PBP2, which catalyzes both glycan polymerization and transpeptidation. We also show that we can compare the potencies of different beta-lactams by directly monitoring transpeptidase inhibition. The methods reported here will enable a better understanding of cell wall biosynthesis and facilitate studies of next-generation transpeptidase inhibitors.
Collapse
Affiliation(s)
- Yuan Qiao
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Veerasak Srisuknimit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Frederick Rubino
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Kaitlin Schaefer
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Natividad Ruiz
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Suzanne Walker
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Song J, Dailey J, Li H, Jang HJ, Zhang P, Wang JTH, Everett AD, Katz HE. Extended Solution Gate OFET-based Biosensor for Label-free Glial Fibrillary Acidic Protein Detection with Polyethylene Glycol-Containing Bioreceptor Layer. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1606506. [PMID: 29606930 PMCID: PMC5873605 DOI: 10.1002/adfm.201606506] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A novel organic field effect transistor (OFET) -based biosensor is described for label-free glial fibrillary acidic protein (GFAP) detection. We report the first use of an extended solution gate structure where the sensing area and the organic semiconductor are separated, and a reference electrode is not needed. Different molecular weight polyethylene glycols (PEGs) are mixed into the bio-receptor layer to help extend the Debye screening length. The drain current change was significantly increased with the help of higher molecular weight PEGs, as they are known to reduce the dielectric constant. We also investigated the sensing performance under different gate voltage (Vg). The sensitivity increased after we decreased Vg from -5 V to -2 V, because the lower Vg is much closer to the OFET threshold voltage and the influence of attached negatively charged proteins become more apparent. Finally, the selectivity experiments toward different interferents were performed. The stability and selectivity are promising for clinical applications.
Collapse
Affiliation(s)
- Jian Song
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jennifer Dailey
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Hui Li
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Hyun-June Jang
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Pengfei Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States; Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jeff Tza-Huei Wang
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States; Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Allen D Everett
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States; Johns Hopkins Medical Institutes, Children's Center, 1800 Orleans Street, Baltimore, Maryland 21287, United States
| | - Howard E Katz
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
13
|
Calvez P, Breukink E, Roper DI, Dib M, Contreras-Martel C, Zapun A. Substitutions in PBP2b from β-Lactam-resistant Streptococcus pneumoniae Have Different Effects on Enzymatic Activity and Drug Reactivity. J Biol Chem 2017; 292:2854-2865. [PMID: 28062575 DOI: 10.1074/jbc.m116.764696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
Pneumococcus resists β-lactams by expressing variants of its target enzymes, the penicillin-binding proteins (PBPs), with many amino acid substitutions. Up to 10% of the sequence can be modified. These altered PBPs have a much reduced reactivity with the drugs but retain their physiological activity of cross-linking the peptidoglycan, the major constituent of the bacterial cell wall. However, because β-lactams are chemical and structural mimics of the natural substrate, resistance mediated by altered PBPs raises the following paradox: how PBPs that react poorly with the drugs maintain a sufficient level of activity with the physiological substrate. This question is addressed for the first time in this study, which compares the peptidoglycan cross-linking activity of PBP2b from susceptible and resistant strains with their inhibition by different β-lactams. Unexpectedly, the enzymatic activity of the variants did not correlate with their antibiotic reactivity. This finding indicates that some of the numerous amino acid substitutions were selected to restore a viable level of enzymatic activity by a compensatory molecular mechanism.
Collapse
Affiliation(s)
- Philippe Calvez
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Eefjan Breukink
- the Department of Chemical Biology and Organic Chemistry, Institute of Biomembranes, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CH, The Netherlands, and
| | - David I Roper
- the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mélanie Dib
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Carlos Contreras-Martel
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - André Zapun
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France,
| |
Collapse
|
14
|
van't Veer IL, Leloup NOL, Egan AJF, Janssen BJC, Martin NI, Vollmer W, Breukink E. Site-Specific Immobilization of the Peptidoglycan Synthase PBP1B on a Surface Plasmon Resonance Chip Surface. Chembiochem 2016; 17:2250-2256. [PMID: 27709766 PMCID: PMC5298014 DOI: 10.1002/cbic.201600461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 12/23/2022]
Abstract
Surface plasmon resonance (SPR) is one of the most powerful label-free methods to determine the kinetic parameters of molecular interactions in real time and in a highly sensitive way. Penicillin-binding proteins (PBPs) are peptidoglycan synthesis enzymes present in most bacteria. Established protocols to analyze interactions of PBPs by SPR involve immobilization to an ampicillin-coated chip surface (a β-lactam antibiotic mimicking its substrate), thereby forming a covalent complex with the PBPs transpeptidase (TP) active site. However, PBP interactions measured with a substrate-bound TP domain potentially affect interactions near the TPase active site. Furthermore, in vivo PBPs are anchored in the inner membrane by an N-terminal transmembrane helix, and hence immobilization at the C-terminal TPase domain gives an orientation contrary to the in vivo situation. We designed a new procedure: immobilization of PBP by copper-free click chemistry at an azide incorporated in the N terminus. In a proof-of-principle study, we immobilized Escherichia coli PBP1B on an SPR chip surface and used this for the analysis of the well-characterized interaction of PBP1B with LpoB. The site-specific incorporation of the azide affords control over protein orientation, thereby resulting in a homogeneous immobilization on the chip surface. This method can be used to study topology-dependent interactions of any (membrane) protein.
Collapse
Affiliation(s)
- Inge L. van't Veer
- Department of Membrane Biochemistry and BiophysicsUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Nadia O. L. Leloup
- Crystal and Structural ChemistryUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Alexander J. F. Egan
- The Centre for Bacterial Cell BiologyNewcastle UniversityRichardson RoadNE2 4AX, Newcastle upon TyneUK
| | - Bert J. C. Janssen
- Crystal and Structural ChemistryUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Nathaniel I. Martin
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Waldemar Vollmer
- The Centre for Bacterial Cell BiologyNewcastle UniversityRichardson RoadNE2 4AX, Newcastle upon TyneUK
| | - Eefjan Breukink
- Department of Membrane Biochemistry and BiophysicsUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| |
Collapse
|
15
|
Shapiro AB. Investigation of β-lactam antibacterial drugs, β-lactamases, and penicillin-binding proteins with fluorescence polarization and anisotropy: a review. Methods Appl Fluoresc 2016; 4:024002. [DOI: 10.1088/2050-6120/4/2/024002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Egan AJF, Biboy J, van't Veer I, Breukink E, Vollmer W. Activities and regulation of peptidoglycan synthases. Philos Trans R Soc Lond B Biol Sci 2015; 370:20150031. [PMID: 26370943 PMCID: PMC4632607 DOI: 10.1098/rstb.2015.0031] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 12/22/2022] Open
Abstract
Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein-protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein-protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN.
Collapse
Affiliation(s)
- Alexander J F Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Inge van't Veer
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Padualaan 8, 3584 Utrecht, The Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Padualaan 8, 3584 Utrecht, The Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
17
|
Hesketh A, Deery MJ, Hong HJ. High-Resolution Mass Spectrometry Based Proteomic Analysis of the Response to Vancomycin-Induced Cell Wall Stress in Streptomyces coelicolor A3(2). J Proteome Res 2015; 14:2915-28. [PMID: 25965010 DOI: 10.1021/acs.jproteome.5b00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Understanding how bacteria survive periods of cell wall stress is of fundamental interest and can help generate ideas for improved antibacterial treatments. In this study we use tandem mass tagging to characterize the proteomic response of vancomycin resistant Streptomyces coelicolor to the exposure to sublethal levels of the antibiotic. A common set of 804 proteins were identified in triplicate experiments. Contrasting changes in the abundance of proteins closely associated with the cytoplasmic membrane with those taking place in the cytosol identified aspects of protein spatial localization that are associated with the response to vancomycin. Enzymes for peptidoglycan precursor, mycothiol, ectoine and menaquinone biosynthesis together with a multisubunit nitrate reductase were recruited to the membrane following vancomycin treatment. Many proteins with regulatory functions (including sensor protein kinases) also exhibited significant changes in abundance exclusively in the membrane-associated protein fraction. Several enzymes predicted to be involved in extracellular peptidoglycan crossbridge formation became significantly depleted from the membrane. A comparison with data previously acquired on the changes in gene transcription following vancomycin treatment identified a common high-confidence set of changes in gene expression. Generalized changes in protein abundance indicate roles for proteolysis, the pentose phosphate pathway and a reorganization of amino acid biosynthesis in the stress response.
Collapse
Affiliation(s)
- Andy Hesketh
- †Department of Biochemistry, University of Cambridge, Cambridge, U.K.,‡Cambridge Systems Biology Centre, University of Cambridge, Cambridge, U.K
| | - Michael J Deery
- †Department of Biochemistry, University of Cambridge, Cambridge, U.K.,‡Cambridge Systems Biology Centre, University of Cambridge, Cambridge, U.K
| | - Hee-Jeon Hong
- †Department of Biochemistry, University of Cambridge, Cambridge, U.K
| |
Collapse
|
18
|
Delorme C, Abraham AL, Renault P, Guédon E. Genomics of Streptococcus salivarius, a major human commensal. INFECTION GENETICS AND EVOLUTION 2014; 33:381-92. [PMID: 25311532 DOI: 10.1016/j.meegid.2014.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
The salivarius group of streptococci is of particular importance for humans. This group consists of three genetically similar species, Streptococcus salivarius, Streptococcus vestibularis and Streptococcus thermophilus. S. salivarius and S. vestibularis are commensal organisms that may occasionally cause opportunistic infections in humans, whereas S. thermophilus is a food bacterium widely used in dairy production. We developed Multilocus sequence typing (MLST) and comparative genomic analysis to confirm the clear separation of these three species. These analyses also identified a subgroup of four strains, with a core genome diverging by about 10%, in terms of its nucleotide sequence, from that of S. salivarius sensu stricto. S. thermophilus species displays a low level of nucleotide variability, due to its recent emergence with the development of agriculture. By contrast, nucleotide variability is high in the other two species of the salivarius group, reflecting their long-standing association with humans. The species of the salivarius group have genome sizes ranging from the smallest (∼ 1.7 Mb for S. thermophilus) to the largest (∼ 2.3 Mb for S. salivarius) among streptococci, reflecting genome reduction linked to a narrow, nutritionally rich environment for S. thermophilus, and natural, more competitive niches for the other two species. Analyses of genomic content have indicated that the core genes of S. salivarius account for about two thirds of the genome, indicating considerable variability of gene content and differences in potential adaptive features. Furthermore, we showed that the genome of this species is exceptionally rich in genes encoding surface factors, glycosyltransferases and response regulators. Evidence of widespread genetic exchanges was obtained, probably involving a natural competence system and the presence of diverse mobile elements. However, although the S. salivarius strains studied were isolated from several human body-related sites (all levels of the digestive tract, skin, breast milk, and body fluids) and included clinical strains, no genetic or genomic niche-specific features could be identified to discriminate specific group.
Collapse
Affiliation(s)
- Christine Delorme
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Anne-Laure Abraham
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Pierre Renault
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Eric Guédon
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France.
| |
Collapse
|
19
|
Chemical biology of peptidoglycan acetylation and deacetylation. Bioorg Chem 2014; 54:44-50. [DOI: 10.1016/j.bioorg.2014.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/25/2014] [Indexed: 12/16/2022]
|
20
|
Galley NF, O'Reilly AM, Roper DI. Prospects for novel inhibitors of peptidoglycan transglycosylases. Bioorg Chem 2014; 55:16-26. [PMID: 24924926 PMCID: PMC4126109 DOI: 10.1016/j.bioorg.2014.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 01/07/2023]
Abstract
We examine key aspects of transglycosylase inhibitor design. Low to high throughput assays suitable for transglycosylase drug discovery. Existing chemical start points for transglycosylase active site targeting.
The lack of novel antimicrobial drugs under development coupled with the increasing occurrence of resistance to existing antibiotics by community and hospital acquired infections is of grave concern. The targeting of biosynthesis of the peptidoglycan component of the bacterial cell wall has proven to be clinically valuable but relatively little therapeutic development has been directed towards the transglycosylase step of this process. Advances towards the isolation of new antimicrobials that target transglycosylase activity will rely on the development of the enzymological tools required to identify and characterise novel inhibitors of these enzymes. Therefore, in this article, we review the assay methods developed for transglycosylases and review recent novel chemical inhibitors discovered in relation to both the lipidic substrates and natural product inhibitors of the transglycosylase step.
Collapse
Affiliation(s)
- Nicola F Galley
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Amy M O'Reilly
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
21
|
Zapun A, Philippe J, Abrahams KA, Signor L, Roper DI, Breukink E, Vernet T. In vitro reconstitution of peptidoglycan assembly from the Gram-positive pathogen Streptococcus pneumoniae. ACS Chem Biol 2013; 8:2688-96. [PMID: 24044435 DOI: 10.1021/cb400575t] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the molecular basis of bacterial cell wall assembly is of paramount importance in addressing the threat of increasing antibiotic resistance worldwide. Streptococcus pneumoniae presents a particularly acute problem in this respect, as it is capable of rapid evolution by homologous recombination with related species. Resistant strains selected by treatment with β-lactams express variants of the target enzymes that do not recognize the drugs but retain their activity in cell wall building, despite the antibiotics being mimics of the natural substrate. Until now, the crucial transpeptidase activity that is inhibited by β-lactams was not amenable to in vitro investigation with enzymes from Gram-positive organisms, including streptococci, staphylococci, or enterococci pathogens. We report here for the first time the in vitro assembly of peptidoglycan using recombinant penicillin-binding proteins from pneumococcus and the precursor lipid II. The two required enzymatic activities, glycosyl transferase for elongating glycan chains and transpeptidase for cross-linking stem-peptides, were observed. Most importantly, the transpeptidase activity was dependent on the chemical nature of the stem-peptide. Amidation of the second residue glutamate into iso-glutamine by the recently discovered amido-transferase MurT/GatD is required for efficient cross-linking of the peptidoglycan.
Collapse
Affiliation(s)
- André Zapun
- Université
Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS, UMR
5075, 71 av. des Martyrs, Grenoble F-38027, France
- CEA, DSV, IBS, Grenoble F-38027, France
| | - Jules Philippe
- Université
Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS, UMR
5075, 71 av. des Martyrs, Grenoble F-38027, France
- CEA, DSV, IBS, Grenoble F-38027, France
| | - Katherine A. Abrahams
- Department
of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Luca Signor
- Université
Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS, UMR
5075, 71 av. des Martyrs, Grenoble F-38027, France
- CEA, DSV, IBS, Grenoble F-38027, France
| | - David I. Roper
- Department
of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Eefjan Breukink
- Department
of Chemical Biology and Organic Chemistry, Institute of Biomembranes,
Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Thierry Vernet
- Université
Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS, UMR
5075, 71 av. des Martyrs, Grenoble F-38027, France
- CEA, DSV, IBS, Grenoble F-38027, France
| |
Collapse
|
22
|
Fortifying the wall: synthesis, regulation and degradation of bacterial peptidoglycan. Curr Opin Struct Biol 2013; 23:695-703. [DOI: 10.1016/j.sbi.2013.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 12/24/2022]
|
23
|
Reconstitution of membrane protein complexes involved in pneumococcal septal cell wall assembly. PLoS One 2013; 8:e75522. [PMID: 24147156 PMCID: PMC3798694 DOI: 10.1371/journal.pone.0075522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022] Open
Abstract
The synthesis of peptidoglycan, the major component of the bacterial cell wall, is essential to cell survival, yet its mechanism remains poorly understood. In the present work, we have isolated several membrane protein complexes consisting of the late division proteins of Streptococcus pneumoniae: DivIB, DivIC, FtsL, PBP2x and FtsW, or subsets thereof. We have co-expressed membrane proteins from S. pneumoniae in Escherichia coli. By combining two successive affinity chromatography steps, we obtained membrane protein complexes with a very good purity. These complexes are functional, as indicated by the retained activity of PBP2x to bind a fluorescent derivative of penicillin and to hydrolyze the substrate analogue S2d. Moreover, we have evidenced the stabilizing role of protein-protein interactions within each complex. This work paves the way for a complete reconstitution of peptidoglycan synthesis in vitro, which will be critical to the elucidation of its intricate regulation mechanisms.
Collapse
|
24
|
Morlot C, Bayle L, Jacq M, Fleurie A, Tourcier G, Galisson F, Vernet T, Grangeasse C, Di Guilmi AM. Interaction of Penicillin-Binding Protein 2x and Ser/Thr protein kinase StkP, two key players in Streptococcus pneumoniae R6 morphogenesis. Mol Microbiol 2013; 90:88-102. [PMID: 23899042 DOI: 10.1111/mmi.12348] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2013] [Indexed: 11/30/2022]
Abstract
Bacterial cell growth and division require the co-ordinated action of peptidoglycan biosynthetic enzymes and cell morphogenesis proteins. However, the regulatory mechanisms that allow generating proper bacterial shape and thus preserving cell integrity remain largely uncharacterized, especially in ovococci. Recently, the conserved eukaryotic-like Ser/Thr protein kinase of Streptococcus pneumoniae (StkP) was demonstrated to play a major role in cell shape and division. Here, we investigate the molecular mechanisms underlying the regulatory function(s) of StkP and show that it involves one of the essential actors of septal peptidoglycan synthesis, Penicillin-Binding Protein 2x (PBP2x). We demonstrate that StkP and PBP2x interact directly and are present in the same membrane-associated complex in S. pneumoniae. We further show that they both display a late-division localization pattern at the division site and that the positioning of PBP2x depends on the presence of the extracellular PASTA domains of StkP. We demonstrate that StkP and PBP2x interaction is mediated by their extracellular regions and that the complex formation is inhibited in vitro in the presence of cell wall fragments. These data suggest that the role of StkP in cell division is modulated by an interaction with PBP2x.
Collapse
Affiliation(s)
- C Morlot
- Univ. Grenoble Alpes, IBS, F-38027, Grenoble, France; CNRS, IBS, F-38027, Grenoble, France; CEA, IBS, Institut de Biologie Structurale, Pneumococcus Group, F-38027, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Massidda O, Nováková L, Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 2013; 15:3133-57. [PMID: 23848140 DOI: 10.1111/1462-2920.12189] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae is an oval-shaped Gram-positive coccus that lives in intimate association with its human host, both as a commensal and pathogen. The seriousness of pneumococcal infections and the spread of multi-drug resistant strains call for new lines of intervention. Bacterial cell division is an attractive target to develop antimicrobial drugs. This review discusses the recent advances in understanding S. pneumoniae growth and division, in comparison with the best studied rod-shaped models, Escherichia coli and Bacillus subtilis. To maintain their shape, these bacteria propagate by peripheral and septal peptidoglycan synthesis, involving proteins that assemble into distinct complexes called the elongasome and the divisome, respectively. Many of these proteins are conserved in S. pneumoniae, supporting the notion that the ovococcal shape is also achieved by rounds of elongation and division. Importantly, S. pneumoniae and close relatives with similar morphology differ in several aspects from the model rods. Overall, the data support a model in which a single large machinery, containing both the peripheral and septal peptidoglycan synthesis complexes, assembles at midcell and governs growth and division. The mechanisms generating the ovococcal or coccal shape in lactic-acid bacteria have likely evolved by gene reduction from a rod-shaped ancestor of the same group.
Collapse
Affiliation(s)
- Orietta Massidda
- Department of Surgical Sciences, University of Cagliari, Via Porcell, 4, 09100, Cagliari, Italy
| | | | | |
Collapse
|
26
|
Derouaux A, Sauvage E, Terrak M. Peptidoglycan glycosyltransferase substrate mimics as templates for the design of new antibacterial drugs. Front Immunol 2013; 4:78. [PMID: 23543824 PMCID: PMC3608906 DOI: 10.3389/fimmu.2013.00078] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/13/2013] [Indexed: 12/02/2022] Open
Abstract
Peptidoglycan (PG) is an essential net-like macromolecule that surrounds bacteria, gives them their shape, and protects them against their own high osmotic pressure. PG synthesis inhibition leads to bacterial cell lysis, making it an important target for many antibiotics. The final two reactions in PG synthesis are performed by penicillin-binding proteins (PBPs). Their glycosyltransferase (GT) activity uses the lipid II precursor to synthesize glycan chains and their transpeptidase (TP) activity catalyzes the cross-linking of two glycan chains via the peptide side chains. Inhibition of either of these two reactions leads to bacterial cell death. β-lactam antibiotics target the transpeptidation reaction while antibiotic therapy based on inhibition of the GTs remains to be developed. Ongoing research is trying to fill this gap by studying the interactions of GTs with inhibitors and substrate mimics and utilizing the latter as templates for the design of new antibiotics. In this review we present an updated overview on the GTs and describe the structure-activity relationship of recently developed synthetic ligands.
Collapse
Affiliation(s)
- Adeline Derouaux
- Centre d'Ingénierie des Protéines, University of Liège Liège, Belgium
| | | | | |
Collapse
|
27
|
Abstract
Bacterial cell division is facilitated by the divisome, a dynamic multiprotein assembly localizing at mid-cell to synthesize the stress-bearing peptidoglycan and to constrict all cell envelope layers. Divisome assembly occurs in two steps and involves multiple interactions between more than 20 essential and accessory cell division proteins. Well before constriction and while the cell is still elongating, the tubulin-like FtsZ and early cell division proteins form a ring-like structure at mid-cell. Cell division starts once certain peptidoglycan enzymes and their activators have moved to the FtsZ-ring. Gram-negative bacteria like Escherichia coli simultaneously synthesize and cleave the septum peptidoglycan during division leading to a constriction. The outer membrane constricts together with the peptidoglycan layer with the help of the transenvelope spanning Tol-Pal system.
Collapse
Affiliation(s)
- Alexander J F Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|