1
|
Keefer-Jacques E, Valente N, Jacko AM, Matwijec G, Reese A, Tekriwal A, Loomes KM, Spinner NB, Gilbert MA. Investigation of cryptic JAG1 splice variants as a cause of Alagille syndrome and performance evaluation of splice predictor tools. HGG ADVANCES 2024; 5:100351. [PMID: 39244638 PMCID: PMC11440345 DOI: 10.1016/j.xhgg.2024.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
Haploinsufficiency of JAG1 is the primary cause of Alagille syndrome (ALGS), a rare, multisystem disorder. The identification of JAG1 intronic variants outside of the canonical splice region as well as missense variants, both of which lead to uncertain associations with disease, confuses diagnostics. Strategies to determine whether these variants affect splicing include the study of patient RNA or minigene constructs, which are not always available or can be laborious to design, as well as the utilization of computational splice prediction tools. These tools, including SpliceAI and Pangolin, use algorithms to calculate the probability that a variant results in a splice alteration, expressed as a Δ score, with higher Δ scores (>0.2 on a 0-1 scale) positively correlated with aberrant splicing. We studied the consequence of 10 putative splice variants in ALGS patient samples through RNA analysis and compared this to SpliceAI and Pangolin predictions. We identified eight variants with aberrant splicing, seven of which had not been previously validated. Combining these data with non-canonical and missense splice variants reported in the literature, we identified a predictive threshold for SpliceAI and Pangolin with high sensitivity (Δ score >0.6). Moreover, we showed reduced specificity for variants with low Δ scores (<0.2), highlighting a limitation of these tools that results in the misidentification of true splice variants. These results improve genomic diagnostics for ALGS by confirming splice effects for seven variants and suggest that the integration of splice prediction tools with RNA analysis is important to ensure accurate clinical variant classifications.
Collapse
Affiliation(s)
- Ernest Keefer-Jacques
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicolette Valente
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anastasia M Jacko
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Grace Matwijec
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Apsara Reese
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aarna Tekriwal
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kathleen M Loomes
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Dofash L, Lyengar K, Pereira N, Parmar J, Folland C, Laing N, Kang PB, Cairns A, Lynch M, Davis M, Ravenscroft G. Three novel missense variants in two families with JAG2-associated limb-girdle muscular dystrophy. Neuromuscul Disord 2024; 42:36-42. [PMID: 39121631 DOI: 10.1016/j.nmd.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
Limb-girdle muscular dystrophy recessive 27 is associated with biallelic variants in JAG2, encoding the JAG2 notch ligand. Twenty-four affected individuals from multiple families have been described in two reports. We present two Australian families with three novel JAG2 missense variants: (c.1021G>T, p.(Gly341Cys)) homozygous in two siblings of Pakistani origin, and compound heterozygous variants (c.703T>C, p.(Trp235Arg); c.2350C>T, p.(Arg784Cys)) in a proband of European ancestry. Patients presented with childhood-onset limb-girdle-like myopathy with difficulty or inability walking. MRI revealed widespread torso and limb muscle involvement. Muscle pathology showed myopathic changes with fatty infiltration. Muscle RNA sequencing revealed significant downregulation of myogenesis genes PAX7, MYF5, and MEGF10 similar to previous JAG2-related muscular dystrophy cases or Jag2-knockdown cells. In absence of functional assays to characterise JAG2 variants, clinical, MRI and transcriptomic profiling collectively may help discern JAG2-related muscular dystrophy, diagnosis of which is essential for patients and families given the severity of disease and reoccurrence risk.
Collapse
Affiliation(s)
- Lein Dofash
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Krishnan Lyengar
- Department of Anatomical Pathology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Nolette Pereira
- Department of Medical Imaging and Nuclear Medicine, Queensland Childrens Hospital, Brisbane, Queensland, Australia
| | - Jevin Parmar
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Nigel Laing
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Peter B Kang
- Greg Marzolf Jr. Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, Minneapolis, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, USA
| | - Anita Cairns
- Neurosciences Department, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Matthew Lynch
- Neurosciences Department, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Mark Davis
- Diagnostic Genomics, PathWest, Nedlands, WA, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia.
| |
Collapse
|
3
|
Gilbert MA, Keefer-Jacques E, Jadhav T, Antfolk D, Ming Q, Valente N, Shaw GTW, Sottolano CJ, Matwijec G, Luca VC, Loomes KM, Rajagopalan R, Hayeck TJ, Spinner NB. Functional characterization of 2,832 JAG1 variants supports reclassification for Alagille syndrome and improves guidance for clinical variant interpretation. Am J Hum Genet 2024; 111:1656-1672. [PMID: 39043182 PMCID: PMC11339624 DOI: 10.1016/j.ajhg.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Pathogenic variants in the JAG1 gene are a primary cause of the multi-system disorder Alagille syndrome. Although variant detection rates are high for this disease, there is uncertainty associated with the classification of missense variants that leads to reduced diagnostic yield. Consequently, up to 85% of reported JAG1 missense variants have uncertain or conflicting classifications. We generated a library of 2,832 JAG1 nucleotide variants within exons 1-7, a region with a high number of reported missense variants, and designed a high-throughput assay to measure JAG1 membrane expression, a requirement for normal function. After calibration using a set of 175 known or predicted pathogenic and benign variants included within the variant library, 486 variants were characterized as functionally abnormal (n = 277 abnormal and n = 209 likely abnormal), of which 439 (90.3%) were missense. We identified divergent membrane expression occurring at specific residues, indicating that loss of the wild-type residue itself does not drive pathogenicity, a finding supported by structural modeling data and with broad implications for clinical variant classification both for Alagille syndrome and globally across other disease genes. Of 144 uncertain variants reported in patients undergoing clinical or research testing, 27 had functionally abnormal membrane expression, and inclusion of our data resulted in the reclassification of 26 to likely pathogenic. Functional evidence augments the classification of genomic variants, reducing uncertainty and improving diagnostics. Inclusion of this repository of functional evidence during JAG1 variant reclassification will significantly affect resolution of variant pathogenicity, making a critical impact on the molecular diagnosis of Alagille syndrome.
Collapse
Affiliation(s)
- Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Ernest Keefer-Jacques
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tanaya Jadhav
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel Antfolk
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Qianqian Ming
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Nicolette Valente
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Grace Tzun-Wen Shaw
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher J Sottolano
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace Matwijec
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Vincent C Luca
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kathleen M Loomes
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tristan J Hayeck
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Halma J, Lin HC. Alagille syndrome: understanding the genotype-phenotype relationship and its potential therapeutic impact. Expert Rev Gastroenterol Hepatol 2023; 17:883-892. [PMID: 37668532 DOI: 10.1080/17474124.2023.2255518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Alagille syndrome (ALGS) is an autosomal dominant, multisystem genetic disorder with wide phenotypic variability caused by mutations in the Notch signaling pathway, specifically from mutations in either the Jagged1 (JAG1) or NOTCH2 gene. The range of clinical features in ALGS can involve various organ systems including the liver, heart, eyes, skeleton, kidney, and vasculature. Despite the genetic mutations being well-defined, there is variable expressivity and individuals with the same mutation may have different clinical phenotypes. AREAS COVERED While no clear genotype-phenotype correlation has been identified in ALGS, this review will summarize what is currently known about the genotype-phenotype relationship and how this relationship influences the treatment of the multisystemic disorder. This review includes discussion of numerous studies which have focused on describing the genotype-phenotype relationship of different organ systems in ALGS as well as relevant basic science and population studies of ALGS. A thorough literature search was completed via the PubMed and National Library of Medicine GeneReviews databases including dates from 1969, when ALGS was first identified, to February 2023. EXPERT OPINION The genetics of ALGS are well defined; however, ongoing investigation to identify genotype-phenotype relationships as well as genetic modifiers as potential therapeutic targets is needed. Clinicians and patients alike would benefit from identification of a correlation to aid in diagnostic evaluation and management.
Collapse
Affiliation(s)
- Jennifer Halma
- Division of Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Henry C Lin
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
5
|
Isa HM, Alahmed FA. Clinical, Laboratory, Radiological, and Genetic Characteristics of Pediatric Patients with Alagille Syndrome. Adv Biomed Res 2023; 12:155. [PMID: 37564457 PMCID: PMC10410416 DOI: 10.4103/abr.abr_201_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 08/12/2023] Open
Abstract
Background Alagille syndrome (ALGS) is an autosomal dominant disease caused by JAG1 or NOTCH2 mutation. It is diagnosed by the presence of three out of five features: characteristic facies, posterior embryotoxon, peripheral pulmonary stenosis, vertebral defects, and interlobular bile duct paucity. This study aimed to review the prevalence, clinical presentations, diagnosis, treatment, and outcome of patients with ALGS. Materials and Methods This is a retrospective review of patients with ALGS at the Pediatric Department, Salmaniya Medical Complex, Bahrain, between August 1994 and October 2022. The diagnosis was based on clinical, laboratory, radiological, histopathological, and genetic findings. Results Five patients were found to have ALGS. The prevalence of ALGS in Bahrain was 1.04 patients per 100,000 (0.001%). Four were Bahraini and three were females. Median birth weight was 2.3 (2.3-2.5) kg. All patients presented at the time of birth with low birth weight, cholestatic jaundice, clay-colored stool, heart murmur, and dysmorphic facial features. All had congenital heart diseases, two had butterfly vertebrae, and one had posterior embryotoxon. All had elevated liver enzymes and normal abdominal ultrasound. Three had positive hepatobiliary iminodiacetic acid scan and one had bile duct paucity in liver biopsy. Three had intraoperative cholangiogram. Four were positive for JAG1 mutation. All received ursodeoxycholic acid and fat-soluble vitamins. Two required liver transplantation. Conclusion ALGS is a rare disorder in Bahrain. Diagnosis is challenging as the disease can be associated with or misdiagnosed as biliary atresia. Patients with ALGS are at high risk of morbidity either by unnecessary intraoperative cholangiogram or unavoidable liver transplantation.
Collapse
Affiliation(s)
- Hasan M. Isa
- Pediatric Department, Salmaniya Medical Complex, Manama, Bahrain
- Pediatric Department, Arabian Gulf University, Manama, Bahrain
| | | |
Collapse
|
6
|
Kohut TJ, Gilbert MA, Loomes KM. Alagille Syndrome: A Focused Review on Clinical Features, Genetics, and Treatment. Semin Liver Dis 2021; 41:525-537. [PMID: 34215014 DOI: 10.1055/s-0041-1730951] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alagille syndrome (ALGS) is an autosomal dominant disorder caused by pathogenic variants in JAG1 or NOTCH2, which encode fundamental components of the Notch signaling pathway. Clinical features span multiple organ systems including hepatic, cardiac, vascular, renal, skeletal, craniofacial, and ocular, and occur with variable phenotypic penetrance. Genotype-phenotype correlation studies have not yet shown associations between mutation type and clinical manifestations or severity, and it has been hypothesized that modifier genes may modulate the effects of JAG1 and NOTCH2 pathogenic variants. Medical management is supportive, focusing on clinical manifestations of disease, with liver transplant indicated for severe pruritus, liver synthetic dysfunction, portal hypertension, bone fractures, and/or growth failure. New therapeutic approaches are under investigation, including ileal bile acid transporter (IBAT) inhibitors and other approaches that may involve targeted interventions to augment the Notch signaling pathway in involved tissues.
Collapse
Affiliation(s)
- Taisa J Kohut
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kathleen M Loomes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Gilbert MA, Loomes KM. Alagille syndrome and non-syndromic paucity of the intrahepatic bile ducts. Transl Gastroenterol Hepatol 2021; 6:22. [PMID: 33824926 DOI: 10.21037/tgh-2020-03] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
The observation of bile duct paucity is an important diagnostic finding in children, occurring in roughly 11% of pediatric liver biopsies. Alagille syndrome (ALGS) is a well-defined syndromic form of intrahepatic bile duct paucity that is accompanied by a number of other key features, including cardiac, facial, ocular, and vertebral abnormalities. In the absence of these additional clinical characteristics, intrahepatic bile duct paucity results in a broad differential diagnosis that requires supplementary testing and characterization. Nearly 30 years after ALGS was first described, genetic studies identified a causative gene, JAGGED1, which spearheaded over two decades of research aimed to meticulously delineate the molecular underpinnings of ALGS. These advancements have characterized ALGS as a genetic disease and led to testing strategies that offer the ability to detect a pathogenic genetic variant in almost 97% of individuals with ALGS. Having a molecular understanding of ALGS has allowed for the development of numerous in vitro and in vivo disease models, which have provided hope and promise for the future generation of gene-based and protein-based therapies. Generation of these disease models has offered scientists a mechanism to study the dynamics of bile duct development and regeneration, and in doing so, produced tools that are applicable to the understanding of other congenital and acquired liver diseases.
Collapse
Affiliation(s)
- Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathleen M Loomes
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Sullivan JM, Motley WW, Johnson JO, Aisenberg WH, Marshall KL, Barwick KE, Kong L, Huh JS, Saavedra-Rivera PC, McEntagart MM, Marion MH, Hicklin LA, Modarres H, Baple EL, Farah MH, Zuberi AR, Lutz CM, Gaudet R, Traynor BJ, Crosby AH, Sumner CJ. Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy. J Clin Invest 2020; 130:1506-1512. [PMID: 32065591 DOI: 10.1172/jci128152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/12/2019] [Indexed: 12/23/2022] Open
Abstract
Notch signaling is a highly conserved intercellular pathway with tightly regulated and pleiotropic roles in normal tissue development and homeostasis. Dysregulated Notch signaling has also been implicated in human disease, including multiple forms of cancer, and represents an emerging therapeutic target. Successful development of such therapeutics requires a detailed understanding of potential on-target toxicities. Here, we identify autosomal dominant mutations of the canonical Notch ligand Jagged1 (or JAG1) as a cause of peripheral nerve disease in 2 unrelated families with the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2 (CMT2). Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Our studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Together, our findings highlight a critical role for JAG1 in maintaining peripheral nerve integrity, particularly in the recurrent laryngeal nerve, and provide a basis for the evaluation of peripheral neuropathy as part of the clinical development of Notch pathway-modulating therapeutics.
Collapse
Affiliation(s)
- Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William W Motley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janel O Johnson
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, Maryland, USA
| | - William H Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine L Marshall
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katy Es Barwick
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer S Huh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Meriel M McEntagart
- Medical Genetics, Clinical Developmental Sciences, St. George's University of London, London, United Kingdom
| | | | - Lucy A Hicklin
- Department of Ears, Nose and Throat (ENT), St. George's Hospital, London, United Kingdom
| | | | - Emma L Baple
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Mohamed H Farah
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aamir R Zuberi
- Genetic Resource Science, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Cathleen M Lutz
- Genetic Resource Science, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, Maryland, USA.,Brain Sciences Institute, Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Rajagopalan R, Gilbert MA, McEldrew DA, Nassur JA, Loomes KM, Piccoli DA, Krantz ID, Conlin LK, Spinner NB. Genome sequencing increases diagnostic yield in clinically diagnosed Alagille syndrome patients with previously negative test results. Genet Med 2020; 23:323-330. [PMID: 33077891 PMCID: PMC7862053 DOI: 10.1038/s41436-020-00989-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
Purpose Detection of all major classes of genomic variants in a single test would decrease cost and increase the efficiency of genomic diagnostics. Genome sequencing (GS) has the potential to provide this level of comprehensive detection. We sought to demonstrate the utility of GS in the molecular diagnosis of 18 patients with clinically defined Alagille syndrome (ALGS), who had a negative or inconclusive result by standard-of-care testing. Methods We performed GS on 16 pathogenic variant-negative probands and two probands with inconclusive results (of 406 ALGS probands) and analyzed the data for sequence, copy-number, and structural variants in JAG1 and NOTCH2. Results GS identified four novel pathogenic alterations including a copy-neutral inversion, a partial deletion, and a promoter variant in JAG1, and a partial NOTCH2 deletion, for an additional diagnostic yield of 0.9%. Furthermore, GS resolved two complex rearrangements, resulting in identification of a pathogenic variant in 97.5% (n = 396/406) of patients after GS. Conclusion GS provided an increased diagnostic yield for individuals with clinically defined ALGS who had prior negative or incomplete genetic testing by other methods. Our results show that GS can detect all major classes of variants and has potential to become a single first-tier diagnostic test for Mendelian disorders.
Collapse
Affiliation(s)
- Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,School of Biomedical Engineering, Health and Sciences, Drexel University, Philadelphia, PA, USA
| | - Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah A McEldrew
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James A Nassur
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathleen M Loomes
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Piccoli
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian D Krantz
- Roberts Individualized Medical Genetics Center, Division of Human Genetics at the Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Laura K Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Gilbert MA, Bauer RC, Rajagopalan R, Grochowski CM, Chao G, McEldrew D, Nassur JA, Rand EB, Krock BL, Kamath BM, Krantz ID, Piccoli DA, Loomes KM, Spinner NB. Alagille syndrome mutation update: Comprehensive overview of JAG1 and NOTCH2 mutation frequencies and insight into missense variant classification. Hum Mutat 2019; 40:2197-2220. [PMID: 31343788 PMCID: PMC6899717 DOI: 10.1002/humu.23879] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Alagille syndrome is an autosomal dominant disease with a known molecular etiology of dysfunctional Notch signaling caused primarily by pathogenic variants in JAGGED1 (JAG1), but also by variants in NOTCH2. The majority of JAG1 variants result in loss of function, however disease has also been attributed to lesser understood missense variants. Conversely, the majority of NOTCH2 variants are missense, though fewer of these variants have been described. In addition, there is a small group of patients with a clear clinical phenotype in the absence of a pathogenic variant. Here, we catalog our single-center study, which includes 401 probands and 111 affected family members amassed over a 27-year period, to provide updated mutation frequencies in JAG1 and NOTCH2 as well as functional validation of nine missense variants. Combining our cohort of 86 novel JAG1 and three novel NOTCH2 variants with previously published data (totaling 713 variants), we present the most comprehensive pathogenic variant overview for Alagille syndrome. Using this data set, we developed new guidance to help with the classification of JAG1 missense variants. Finally, we report clinically consistent cases for which a molecular etiology has not been identified and discuss the potential for next generation sequencing methodologies in novel variant discovery.
Collapse
Affiliation(s)
- Melissa A. Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Robert C. Bauer
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Christopher M. Grochowski
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Grace Chao
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Deborah McEldrew
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - James A. Nassur
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Elizabeth B. Rand
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Bryan L. Krock
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Binita M. Kamath
- Division of Gastroenterology, Hepatology and Nutrition, Department of PediatricsHospital for Sick Children and the University of TorontoTorontoCanada
| | - Ian D. Krantz
- Division of Human Genetics, Roberts Individualized Medical Genetics CenterChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvania
- Department of PediatricsThe Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| | - David A. Piccoli
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Kathleen M. Loomes
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
11
|
Mukherjee M, Fogarty E, Janga M, Surendran K. Notch Signaling in Kidney Development, Maintenance, and Disease. Biomolecules 2019; 9:E692. [PMID: 31690016 PMCID: PMC6920979 DOI: 10.3390/biom9110692] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023] Open
Abstract
Kidney development involves formation of nephrons intricately aligned with the vasculature and connected to a branched network of collecting ducts. Notch signaling plays multiple roles during kidney development involving the formation of nephrons composed of diverse epithelial cell types arranged into tubular segments, all the while maintaining a nephron progenitor niche. Here, we review the roles of Notch signaling identified from rodent kidney development and injury studies, while discussing human kidney diseases associated with aberrant Notch signaling. We also review Notch signaling requirement in maintenance of mature kidney epithelial cell states and speculate that Notch activity regulation mediates certain renal physiologic adaptations.
Collapse
Affiliation(s)
- Malini Mukherjee
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
| | - Eric Fogarty
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| | - Madhusudhana Janga
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
| | - Kameswaran Surendran
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
12
|
Zhang E, Xu Y, Yu Y, Chen S, Yu Y, Sun K. JAG1 loss‑of‑function mutations contributed to Alagille syndrome in two Chinese families. Mol Med Rep 2018; 18:2356-2364. [PMID: 29956768 DOI: 10.3892/mmr.2018.9217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/11/2018] [Indexed: 11/05/2022] Open
Abstract
Alagille syndrome (ALGS) is primarily caused by jagged1 (JAG1) mutations, 70% of which are protein‑truncating mutations. However, no mutation hotspots have been discovered, and the pathogenic mechanism is not fully understood. The aim of the present study was to analyze two protein‑truncating JAG1 mutations detected in three Chinese ALGS patients. Mutation c.1261delT (p.Cys421Valfs) was identified in one patient with hepatic damage, xanthomas, facial abnormalities and cardiovascular defects, which was inherited from his father. The other mutation, c.1382_1383delAC (p.Asp461Glyfs), carried by a pair of monozygotic twins with hepatic damage, facial abnormalities and cardiovascular defects, was de novo. Biological experiments were performed to study the characteristics and function of these mutations. The p.Cys421Valfs and p.Asp461Glyfs mutant proteins appeared to be truncated in western blotting using anti‑Flag bound to the N‑terminus of JAG1. The RBP‑Jκ‑responsive reporter gene assay was used to investigate the ability of mutant JAG1 proteins to activate the Notch signaling pathway. The mutant proteins had a lower luciferase activity than the wild‑type, indicating impaired transcriptional activation ability. Western blotting using soluble JAG1 from the culture medium revealed that the expression levels of the mutant proteins were lower than that of the wild‑type, suggesting that less mutant JAG1 protein underwent proteolytic cleavage than the wild‑type. In conclusion, these two loss‑of‑function JAG1 mutations may be associated with ALGS manifestations in these patients.
Collapse
Affiliation(s)
- Erge Zhang
- Department of Pediatric Cardiology, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Yuejuan Xu
- Department of Pediatric Cardiology, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Sun Chen
- Department of Pediatric Cardiology, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Yu Yu
- Department of Pediatric Cardiology, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Kun Sun
- Department of Pediatric Cardiology, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| |
Collapse
|
13
|
Yao Z, Sherif ZA. The effect of epigenetic silencing and TP53 mutation on the expression of DLL4 in human cancer stem disorder. Oncotarget 2018; 7:62976-62988. [PMID: 27542210 PMCID: PMC5325341 DOI: 10.18632/oncotarget.11316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 01/30/2023] Open
Abstract
The Li-Fraumeni Syndrome (LFS), a genetically rare heterogeneous cancer syndrome, is characterized primarily by a germline p53 (TP53) gene mutation. We recently discovered a balanced reciprocal chromosomal translocation t(11;15)(q23;q15) in the non-cancerous skin fibroblasts of a bilateral breast cancer patient in LFS family. This prompted us to investigate the breakpoint region of the translocation, which uncovered a gene that encodes a Notch ligand, DLL4, (locus at 15q15.1), a key target in tumor vasculature. We analyzed DLL4 gene expression and protein level in LFS non-cancerous skin fibroblast cell lines and non-LFS cancer cell lines. DLL4 is abrogated in all the LFS cells and drastically down-regulated in breast (MCF7) and brain (IMR32) cancer cells and tumor tissue samples. However, DNA methylation studies revealed that DLL4 promoter is silenced only in MCF7 but not in LFS cells. We further investigated the regulation of DLL4 gene expression by ChIP assays, which demonstrated that p53 binds to DLL4 promoter through its association with CTCF, a chromosomal networking protein CCCTC binding factor. This implies a possible karyotype-phenotype correlation with respect to DLL4 in LFS and breast cancer initiation and progression. The drastic reduction or absence in the expression of DLL4 in LFS as well as breast and brain cancer cells is significant and supports the concept that this ligand may also play a role in cancer immune-surveillance; and its resuscitation in the tumor microenvironment may stimulate T-cell immunity and suppress tumor growth. Therefore, DLL4 may provide a strong platform as an immuno-therapeutic target in LFS and cancer patients.
Collapse
Affiliation(s)
- Zhixing Yao
- Department of Biochemistry & Molecular Biology, College of Medicine, Howard University, Washington DC, USA
| | - Zaki A Sherif
- Department of Biochemistry & Molecular Biology, College of Medicine, Howard University, Washington DC, USA
| |
Collapse
|
14
|
Hauser NS, Solomon BD, Vilboux T, Khromykh A, Baveja R, Bodian DL. Experience with genomic sequencing in pediatric patients with congenital cardiac defects in a large community hospital. Mol Genet Genomic Med 2018; 6:200-212. [PMID: 29368431 PMCID: PMC5902396 DOI: 10.1002/mgg3.357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Congenital cardiac defects, whether isolated or as part of a larger syndrome, are the most common type of human birth defect occurring on average in about 1% of live births depending on the malformation. As there is an expanding understanding of the underlying molecular mechanisms by which a cardiac defect may occur, there is a need to assess the current rates of diagnosis of cardiac defects by molecular sequencing in a clinical setting. METHODS AND RESULTS In this report, we evaluated 34 neonatal and pediatric patients born with a cardiac defect and their parents using exomized preexisting whole genome sequencing (WGS) data to model clinically available exon-based tests. Overall, we identified candidate variants in previously reported cardiac-related genes in 35% (12/34) of the probands. These include clearly pathogenic variants in two of 34 patients (6%) and variants of uncertain significance in relevant genes in 10 patients (26%), of these latter 10, 2 segregated with clinically apparent findings in the family trios. CONCLUSIONS These findings suggest that with current knowledge of the proteins underlying CHD, genomic sequencing can identify the underlying genetic etiology in certain patients; however, this technology currently does not have a high enough yield to be of routine clinical use in the screening of pediatric congenital cardiac defects.
Collapse
Affiliation(s)
- Natalie S. Hauser
- Inova Translational Medicine InstituteFalls ChurchVAUSA
- Inova Children's HospitalInova Health SystemFalls ChurchVAUSA
| | - Benjamin D. Solomon
- Inova Translational Medicine InstituteFalls ChurchVAUSA
- Present address:
GeneDxGaithersburgMDUSA
| | | | | | - Rajiv Baveja
- Inova Children's HospitalInova Health SystemFalls ChurchVAUSA
| | | |
Collapse
|
15
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
16
|
Alfred V, Vaccari T. Mechanisms of Non-canonical Signaling in Health and Disease: Diversity to Take Therapy up a Notch? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:187-204. [PMID: 30030827 DOI: 10.1007/978-3-319-89512-3_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Non-canonical Notch signaling encompasses a wide range of cellular processes, diverging considerably from the established paradigm. It can dispense of ligand, proteolytic or nuclear activity. Non-canonical Notch signaling events have been studied mostly in the fruit fly Drosophila melanogaster, the organism in which Notch was identified first and a powerful model for understanding signaling outcomes. However, non-canonical events are ill-defined and their involvement in human physiology is not clear, hampering our understanding of diseases arising from Notch signaling alterations. At a time in which therapies based on specific targeting of Notch signaling are still an unfulfilled promise, detailed understanding of non-canonical Notch events might be key to devising more specific and less toxic pharmacologic options. Based on the blueprint of non-canonical signaling in Drosophila, here, we review and rationalize current evidence about non-canonical Notch signaling. Our effort might inform Notch biologists developing new research avenues and clinicians seeking future treatment of Notch-dependent diseases.
Collapse
Affiliation(s)
- Victor Alfred
- IFOM, Istituto FIRC di Oncologia Molecolare at IFOM-IEO Campus, Milan, Italy
| | - Thomas Vaccari
- IFOM, Istituto FIRC di Oncologia Molecolare at IFOM-IEO Campus, Milan, Italy.
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
17
|
Alagille syndrome: Genetics and Functional Models. CURRENT PATHOBIOLOGY REPORTS 2017; 5:233-241. [PMID: 29270332 DOI: 10.1007/s40139-017-0144-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purpose of review We review the genetics of the autosomal dominant, multi-system disorder, Alagille syndrome and provide a summary on how current functional models and emerging biotechnologies are equipped to guide scientists towards novel therapies. The importance of haploinsufficiency as a disease mechanism will be underscored throughout this discussion. Recent findings Alagille syndrome, a human disorder affecting the liver, heart, vasculature, kidney, and other systems, is caused by mutations in the Notch signaling pathway ligand, Jagged1 (JAG1) or the receptor, NOTCH2. Current advances in animal modeling, in vitro cell culture, and human induced pluripotent stem cells, provide new opportunities in which to study disease mechanisms and manifestations. Summary We anticipate that the availability of innovative functional models will allow scientists to test new gene therapies or small molecule treatments in physiologically-relevant systems. With these advances, we look forward to the development of new methods to help Alagille syndrome patients.
Collapse
|