1
|
Wong JPH, Chillier N, Fischer-Stettler M, Zeeman SC, Battin TJ, Persat A. Bacteroides thetaiotaomicron metabolic activity decreases with polysaccharide molecular weight. mBio 2024; 15:e0259923. [PMID: 38376161 PMCID: PMC10936149 DOI: 10.1128/mbio.02599-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
The human colon hosts hundreds of commensal bacterial species, many of which ferment complex dietary carbohydrates. To transform these fibers into metabolically accessible compounds, microbes often express a series of dedicated enzymes homologous to the starch utilization system (Sus) encoded in polysaccharide utilization loci (PULs). The genome of Bacteroides thetaiotaomicron (Bt), a common member of the human gut microbiota, encodes nearly 100 PULs, conferring a strong metabolic versatility. While the structures and functions of individual enzymes within the PULs have been investigated, little is known about how polysaccharide complexity impacts the function of Sus-like systems. We here show that the activity of Sus-like systems depends on polysaccharide size, ultimately impacting bacterial growth. We demonstrate the effect of size-dependent metabolism in the context of dextran metabolism driven by the specific utilization system PUL48. We find that as the molecular weight of dextran increases, Bt growth rate decreases and lag time increases. At the enzymatic level, the dextranase BT3087, a glycoside hydrolase (GH) belonging to the GH family 66, is the main GH for dextran utilization, and BT3087 and BT3088 contribute to Bt dextran metabolism in a size-dependent manner. Finally, we show that the polysaccharide size-dependent metabolism of Bt impacts its metabolic output in a way that modulates the composition of a producer-consumer community it forms with Bacteroides fragilis. Altogether, our results expose an overlooked aspect of Bt metabolism that can impact the composition and diversity of microbiota. IMPORTANCE Polysaccharides are complex molecules that are commonly found in our diet. While humans lack the ability to degrade many polysaccharides, their intestinal microbiota contain bacterial commensals that are versatile polysaccharide utilizers. The gut commensal Bacteroides thetaiotaomicron dedicates roughly 20% of their genomes to the expression of polysaccharide utilization loci for the broad range utilization of polysaccharides. Although it is known that different polysaccharide utilization loci are dedicated to the degradation of specific polysaccharides with unique glycosidic linkages and monosaccharide compositions, it is often overlooked that specific polysaccharides may also exist in various molecular weights. These different physical attributes may impact their processability by starch utilization system-like systems, leading to differing growth rates and nutrient-sharing properties at the community level. Therefore, understanding how molecular weight impacts utilization by gut microbe may lead to the potential design of novel precision prebiotics.
Collapse
Affiliation(s)
- Jeremy P. H. Wong
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Noémie Chillier
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | - Tom J. Battin
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Motouchi S, Kobayashi K, Nakai H, Nakajima M. Identification of enzymatic functions of osmo-regulated periplasmic glucan biosynthesis proteins from Escherichia coli reveals a novel glycoside hydrolase family. Commun Biol 2023; 6:961. [PMID: 37735577 PMCID: PMC10514313 DOI: 10.1038/s42003-023-05336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Most Gram-negative bacteria synthesize osmo-regulated periplasmic glucans (OPG) in the periplasm or extracellular space. Pathogenicity of many pathogens is lost by knocking out opgG, an OPG-related gene indispensable for OPG synthesis. However, the biochemical functions of OpgG and OpgD, a paralog of OpgG, have not been elucidated. In this study, structural and functional analyses of OpgG and OpgD from Escherichia coli revealed that these proteins are β-1,2-glucanases with remarkably different activity from each other, establishing a new glycoside hydrolase family, GH186. Furthermore, a reaction mechanism with an unprecedentedly long proton transfer pathway among glycoside hydrolase families is proposed for OpgD. The conformation of the region that forms the reaction pathway differs noticeably between OpgG and OpgD, which explains the observed low activity of OpgG. The findings enhance our understanding of OPG biosynthesis and provide insights into functional diversity for this novel enzyme family.
Collapse
Affiliation(s)
- Sei Motouchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda Chiba, 278-8510, Japan
| | - Kaito Kobayashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda Chiba, 278-8510, Japan.
| |
Collapse
|
3
|
Mir B, Yang J, Li Z, Wang L, Ali V, Hu X, Zhang H. Review on recent advances in the properties, production and applications of microbial dextranases. World J Microbiol Biotechnol 2023; 39:242. [PMID: 37400664 DOI: 10.1007/s11274-023-03691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Dextranase is a type of hydrolase that is responsible for catalyzing the breakdown of high-molecular-weight dextran into low-molecular-weight polysaccharides. This process is called dextranolysis. A select group of bacteria and fungi, including yeasts and likely certain complex eukaryotes, produce dextranase enzymes as extracellular enzymes that are released into the environment. These enzymes join dextran's α-1,6 glycosidic bonds to make glucose, exodextranases, or isomalto-oligosaccharides (endodextranases). Dextranase is an enzyme that has a wide variety of applications, some of which include the sugar business, the production of human plasma replacements, the treatment of dental plaque and its protection, and the creation of human plasma replacements. Because of this, the quantity of studies carried out on worldwide has steadily increased over the course of the past couple of decades. The major focus of this study is on the most current advancements in the production, administration, and properties of microbial dextranases. This will be done throughout the entirety of the review.
Collapse
Affiliation(s)
- Baiza Mir
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jingwen Yang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Zhiwei Li
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lei Wang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Vilayat Ali
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xueqin Hu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hongbin Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
4
|
Glycoside hydrolases active on microbial exopolysaccharide α-glucans: structures and function. Essays Biochem 2023; 67:505-520. [PMID: 36876882 DOI: 10.1042/ebc20220219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
Glucose is the most abundant monosaccharide in nature and is an important energy source for living organisms. Glucose exists primarily as oligomers or polymers and organisms break it down and consume it. Starch is an important plant-derived α-glucan in the human diet. The enzymes that degrade this α-glucan have been well studied as they are ubiquitous throughout nature. Some bacteria and fungi produce α-glucans with different glucosidic linkages compared with that of starch, and their structures are quite complex and not fully understood. Compared with enzymes that degrade the α-(1→4) and α-(1→6) linkages in starch, biochemical and structural studies of the enzymes that catabolize α-glucans from these microorganisms are limited. This review focuses on glycoside hydrolases that act on microbial exopolysaccharide α-glucans containing α-(1→6), α-(1→3), and α-(1→2) linkages. Recently acquired information regarding microbial genomes has contributed to the discovery of enzymes with new substrate specificities compared with that of previously studied enzymes. The discovery of new microbial α-glucan-hydrolyzing enzymes suggests previously unknown carbohydrate utilization pathways and reveals strategies for microorganisms to obtain energy from external sources. In addition, structural analysis of α-glucan degrading enzymes has revealed their substrate recognition mechanisms and expanded their potential use as tools for understanding complex carbohydrate structures. In this review, the author summarizes the recent progress in the structural biology of microbial α-glucan degrading enzymes, touching on previous studies of microbial α-glucan degrading enzymes.
Collapse
|
5
|
Muribaculaceae Genomes Assembled from Metagenomes Suggest Genetic Drivers of Differential Response to Acarbose Treatment in Mice. mSphere 2021; 6:e0085121. [PMID: 34851167 PMCID: PMC8636109 DOI: 10.1128/msphere.00851-21] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The drug acarbose is used to treat diabetes and, by inhibiting α-amylase in the small intestine, increases the amount of starch entering the lower digestive tract. This results in changes to the composition of the microbiota and their fermentation products. Acarbose also increases longevity in mice, an effect that has been correlated with increased production of the short-chain fatty acids propionate and butyrate. In experiments replicated across three study sites, two distantly related species in the bacterial family Muribaculaceae were dramatically more abundant in acarbose-treated mice, distinguishing these responders from other members of the family. Bacteria in the family Muribaculaceae are predicted to produce propionate as a fermentation end product and are abundant and diverse in the guts of mice, although few isolates are available. We reconstructed genomes from metagenomes (MAGs) for nine populations of Muribaculaceae to examine factors that distinguish species that respond positively to acarbose. We found two closely related MAGs (B1A and B1B) from one responsive species that both contain a polysaccharide utilization locus with a predicted extracellular α-amylase. These genomes also shared a periplasmic neopullulanase with another, distantly related MAG (B2) representative of the only other responsive species. This gene differentiated these three MAGs from MAGs representative of nonresponding species. Differential gene content in B1A and B1B may be associated with the inconsistent response of this species to acarbose across study sites. This work demonstrates the utility of culture-free genomics for inferring the ecological roles of gut bacteria, including their response to pharmaceutical perturbations. IMPORTANCE The drug acarbose is used to treat diabetes by preventing the breakdown of starch in the small intestine, resulting in dramatic changes in the abundance of some members of the gut microbiome and its fermentation products. In mice, several of the bacteria that respond most positively are classified in the family Muribaculaceae, members of which produce propionate as a primary fermentation product. Propionate has been associated with gut health and increased longevity in mice. We found that genomes of the most responsive Muribaculaceae showed signs of specialization for starch fermentation, presumably providing them a competitive advantage in the large intestine of animals consuming acarbose. Comparisons among genomes enhance existing models for the ecological niches occupied by members of this family. In addition, genes encoding one type of enzyme known to participate in starch breakdown were found in all three genomes from responding species but none of the other genomes.
Collapse
|
6
|
Pittrof SL, Kaufhold L, Fischer A, Wefers D. Products Released from Structurally Different Dextrans by Bacterial and Fungal Dextranases. Foods 2021; 10:foods10020244. [PMID: 33530339 PMCID: PMC7911647 DOI: 10.3390/foods10020244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
Dextran hydrolysis by dextranases is applied in the sugar industry and the medical sector, but it also has a high potential for use in structural analysis of dextrans. However, dextranases are produced by several organisms and thus differ in their properties. The aim of this study was to comparatively investigate the product patterns obtained from the incubation of linear as well as O3- and O4-branched dextrans with different dextranases. For this purpose, genes encoding for dextranases from Bacteroides thetaiotaomicron and Streptococcus salivarius were cloned and heterologously expressed in Escherichia coli. The two recombinant enzymes as well as two commercial dextranases from Chaetomium sp. and Penicillium sp. were subsequently used to hydrolyze structurally different dextrans. The hydrolysis products were investigated in detail by HPAEC-PAD. For dextranases from Chaetomium sp., Penicillium sp., and Bacteroides thetaiotaomicron, isomaltose was the end product of the hydrolysis from linear dextrans, whereas Penicillium sp. dextranase led to isomaltose and isomaltotetraose. In addition, the latter enzyme also catalyzed a disproportionation reaction when incubated with isomaltotriose. For O3- and O4-branched dextrans, the fungal dextranases yielded significantly different oligosaccharide patterns than the bacterial enzymes. Overall, the product patterns can be adjusted by choosing the correct enzyme as well as a defined enzyme activity.
Collapse
Affiliation(s)
- Silke L. Pittrof
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (S.L.P.); (L.K.); (A.F.)
| | - Larissa Kaufhold
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (S.L.P.); (L.K.); (A.F.)
| | - Anja Fischer
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (S.L.P.); (L.K.); (A.F.)
| | - Daniel Wefers
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (S.L.P.); (L.K.); (A.F.)
- Food Chemistry–Functional Food, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence:
| |
Collapse
|
7
|
Dong D, Wang X, Deng T, Ning Z, Tian X, Zu H, Ding Y, Wang C, Wang S, Lyu M. A novel dextranase gene from the marine bacterium Bacillus aquimaris S5 and its expression and characteristics. FEMS Microbiol Lett 2021; 368:6105217. [PMID: 33476380 DOI: 10.1093/femsle/fnab007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 01/18/2023] Open
Abstract
Dextranase specifically hydrolyzes dextran and is used to produce functional isomalto-saccharide prebiotics. Moreover, dextranase is used as an additive in mouthwash to remove dental plaque. We cloned and expressed the dextranase gene of the marine bacterium Bacillus aquimaris S5. The length of the BaDex gene was 1788 bp, encoding 573 amino acids. Using bioinformatics to predict and analyze the amino acid sequence of BaDex, we found the isoelectric point and instability coefficient to be 4.55 and 29.22, respectively. The average hydrophilicity (GRAVY) was -0.662. The secondary structure of BaDex consisted of 145 alpha helices, accounting for 25.31% of the protein; 126 extended strands, accounting for 21.99%; and 282 random coils, accounting for 49.21%. The 3D structure of the BaDex protein was predicted and simulated using SWISS-MODEL, and BaDex was classified as a Glycoside Hydrolase Family 66 protein. The optimal temperature and pH for BaDex activity were 40°C and 6.0, respectively. The hydrolysates had excellent antioxidant activity, and 8 U/mL of BaDex could remove 80% of dental plaque in MBRC experiment. This recombinant protein thus has great promise for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Dongxue Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Xuelian Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Tian Deng
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Zhe Ning
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Xiaopeng Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Hangtian Zu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Yanshuai Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Cang Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, 111 Jiulong Road, Hefei 230039, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, 111 Jiulong Road, Hefei 230039, China
| |
Collapse
|
8
|
Cultivable, Host-Specific Bacteroidetes Symbionts Exhibit Diverse Polysaccharolytic Strategies. Appl Environ Microbiol 2020; 86:AEM.00091-20. [PMID: 32060023 DOI: 10.1128/aem.00091-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Beneficial gut microbes can facilitate insect growth on diverse diets. The omnivorous American cockroach, Periplaneta americana (Insecta: Blattodea), thrives on a diet rich in plant polysaccharides and harbors a species-rich gut microbiota responsive to host diet. Bacteroidetes are among the most abundant taxa in P. americana and other cockroaches, based on cultivation-independent gut community profiling, and these potentially polysaccharolytic bacteria may contribute to host diet processing. Eleven Bacteroidetes isolates were cultivated from P. americana digestive tracts, and phylogenomic analyses suggest that they were new Bacteroides, Dysgonomonas, Paludibacter, and Parabacteroides species distinct from those previously isolated from other insects, humans, and environmental sources. In addition, complete genomes were generated for each isolate, and polysaccharide utilization loci (PULs) and several non-PUL-associated carbohydrate-active enzyme (CAZyme)-coding genes that putatively target starch, pectin, and/or cellulose were annotated in each of the isolate genomes. Type IX secretion system (T9SS)- and CAZyme-coding genes tagged with the corresponding T9SS recognition and export C-terminal domain were observed in some isolates, suggesting that these CAZymes were deployed via non-PUL outer membrane translocons. Additionally, single-substrate growth and enzymatic assays confirmed genomic predictions that a subset of the Bacteroides and Dysgonomonas isolates could degrade starch, pectin, and/or cellulose and grow in the presence of these substrates as a single sugar source. Plant polysaccharides enrich P. americana diets, and many of these gut isolates are well equipped to exploit host dietary inputs and potentially contribute to gut community and host nutrient accessibility.IMPORTANCE Gut microbes are increasingly being recognized as critical contributors to nutrient accessibility in animals. The globally distributed omnivorous American cockroach (Periplaneta americana) harbors many bacterial phyla (e.g., Bacteroidetes) that are abundant in vertebrates. P. americana thrives on a highly diverse plant-enriched diet, making this insect a rich potential source of uncharacterized polysaccharolytic bacteria. We have cultivated, completely sequenced, and functionally characterized several novel Bacteroidetes species that are endemic to the P. americana gut, and many of these isolates can degrade simple and complex polysaccharides. Cultivation and genomic characterization of these Bacteroidetes isolates further enable deeper insight into how these taxa participate in polysaccharide metabolism and, more broadly, how they affect animal health and development.
Collapse
|
9
|
Suzuki N, Kishine N, Fujimoto Z, Sakurai M, Momma M, Ko JA, Nam SH, Kimura A, Kim YM. Crystal structure of thermophilic dextranase from Thermoanaerobacter pseudethanolicus. J Biochem 2015; 159:331-9. [PMID: 26494689 DOI: 10.1093/jb/mvv104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/12/2015] [Indexed: 11/12/2022] Open
Abstract
The crystal structures of the wild type and catalytic mutant Asp-312→Gly in complex with isomaltohexaose of endo-1,6-dextranase from the thermophilic bacterium Thermoanaerobacter pseudethanolicus (TpDex), belonging to the glycoside hydrolase family 66, were determined. TpDex consists of three structural domains, a catalytic domain comprising an (β/α)8-barrel and two β-domains located at both N- and C-terminal ends. The isomaltohexaose-complex structure demonstrated that the isomaltohexaose molecule was bound across the catalytic site, showing that TpDex had six subsites (-4 to +2) in the catalytic cleft. Marked movement of the Trp-376 side-chain along with loop 6, which was the side wall component of the cleft at subsite +1, was observed to occupy subsite +1, indicating that it might expel the cleaved aglycone subsite after the hydrolysis reaction. Structural comparison with other mesophilic enzymes indicated that several structural features of TpDex, loop deletion, salt bridge and surface-exposed charged residue, may contribute to thermostability.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan;
| | - Naomi Kishine
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan;
| | - Zui Fujimoto
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan;
| | - Mutsumi Sakurai
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Mitsuru Momma
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Jin-A Ko
- Eco-Friendly Bio-material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185, Korea
| | - Seung-Hee Nam
- Department of Food Science and Technology and Functional Food Research Center, Chonnam National University, Gwangju 500-757, Korea
| | - Atsuo Kimura
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nisi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Young-Min Kim
- Department of Food Science and Technology and Functional Food Research Center, Chonnam National University, Gwangju 500-757, Korea; Bioenergy Research Center, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
10
|
Molecular engineering of cycloisomaltooligosaccharide glucanotransferase from Bacillus circulans T-3040: structural determinants for the reaction product size and reactivity. Biochem J 2015; 467:259-70. [PMID: 25649478 DOI: 10.1042/bj20140860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cycloisomaltooligosaccharide glucanotransferase (CITase) is a member of glycoside hydrolase family 66 and it produces cycloisomaltooligosaccharides (CIs). Small CIs (CI-7-9) and large CIs (CI-≥10) are designated as oligosaccharide-type CIs (oligo-CIs) and megalosaccharide-type CIs (megalo-CIs) respectively. CITase from Bacillus circulans T-3040 (BcCITase) produces mainly CI-8 with little megalo-CIs. It has two family 35 carbohydrate-binding modules (BcCBM35-1 and BcCBM35-2). BcCBM35-1 is inserted in a catalytic domain of BcCITase and BcCBM35-2 is located at the C-terminal region. Our previous studies suggested that BcCBM35-1 has two substrate-binding sites (B-1 and B-2) [Suzuki et al. (2014) J. Biol. Chem. 289, 12040-12051]. We implemented site-directed mutagenesis of BcCITase to explore the preference for product size on the basis of the 3D structure of BcCITase. Mutational studies provided evidence that B-1 and B-2 contribute to recruiting substrate and maintaining product size respectively. A mutant (mutant-R) with four mutations (F268V, D469Y, A513V and Y515S) produced three times as much megalo-CIs (CI-10-12) and 1.5 times as much total CIs (CI-7-12) as compared with the wild-type (WT) BcCITase. The 3D structure of the substrate-enzyme complex of mutant-R suggested that the modified product size specificity was attributable to the construction of novel substrate-binding sites in the B-2 site of BcCBM35-1 and reactivity was improved by mutation on subsite -3 on the catalytic domain.
Collapse
|
11
|
Kim JK, Shin SY, Moon JS, Li L, Cho SK, Kim TJ, Han NS. Isolation of dextran-hydrolyzing intestinal bacteria and characterization of their dextranolytic activities. Biopolymers 2015; 103:321-7. [DOI: 10.1002/bip.22615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/08/2015] [Accepted: 01/21/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Jin Kyoung Kim
- Division of Animal, Horticultural, and Food Sciences; Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University; Cheongju 361-763 Republic of Korea
| | - So-Yeon Shin
- Division of Animal, Horticultural, and Food Sciences; Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University; Cheongju 361-763 Republic of Korea
| | - Jin Seok Moon
- Division of Animal, Horticultural, and Food Sciences; Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University; Cheongju 361-763 Republic of Korea
| | - Ling Li
- Division of Animal, Horticultural, and Food Sciences; Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University; Cheongju 361-763 Republic of Korea
| | - Seung Kee Cho
- Division of Animal, Horticultural, and Food Sciences; Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University; Cheongju 361-763 Republic of Korea
| | - Tae-Jip Kim
- Division of Animal, Horticultural, and Food Sciences; Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University; Cheongju 361-763 Republic of Korea
| | - Nam Soo Han
- Division of Animal, Horticultural, and Food Sciences; Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University; Cheongju 361-763 Republic of Korea
| |
Collapse
|
12
|
Suzuki N, Fujimoto Z, Kim YM, Momma M, Kishine N, Suzuki R, Suzuki S, Kitamura S, Kobayashi M, Kimura A, Funane K. Structural elucidation of the cyclization mechanism of α-1,6-glucan by Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase. J Biol Chem 2014; 289:12040-12051. [PMID: 24616103 DOI: 10.1074/jbc.m114.547992] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase belongs to the glycoside hydrolase family 66 and catalyzes an intramolecular transglucosylation reaction that produces cycloisomaltooligosaccharides from dextran. The crystal structure of the core fragment from Ser-39 to Met-738 of B. circulans T-3040 cycloisomaltooligosaccharide glucanotransferase, devoid of its N-terminal signal peptide and C-terminal nonconserved regions, was determined. The structural model contained one catalytic (β/α)8-barrel domain and three β-domains. Domain N with an immunoglobulin-like β-sandwich fold was attached to the N terminus; domain C with a Greek key β-sandwich fold was located at the C terminus, and a carbohydrate-binding module family 35 (CBM35) β-jellyroll domain B was inserted between the 7th β-strand and the 7th α-helix of the catalytic domain A. The structures of the inactive catalytic nucleophile mutant enzyme complexed with isomaltohexaose, isomaltoheptaose, isomaltooctaose, and cycloisomaltooctaose revealed that the ligands bound in the catalytic cleft and the sugar-binding site of CBM35. Of these, isomaltooctaose bound in the catalytic site extended to the second sugar-binding site of CBM35, which acted as subsite -8, representing the enzyme·substrate complex when the enzyme produces cycloisomaltooctaose. The isomaltoheptaose and cycloisomaltooctaose bound in the catalytic cleft with a circular structure around Met-310, representing the enzyme·product complex. These structures collectively indicated that CBM35 functions in determining the size of the product, causing the predominant production of cycloisomaltooctaose by the enzyme. The canonical sugar-binding site of CBM35 bound the mid-part of isomaltooligosaccharides, indicating that the original function involved substrate binding required for efficient catalysis.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602
| | - Zui Fujimoto
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602.
| | - Young-Min Kim
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602; Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589
| | - Mitsuru Momma
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602
| | - Naomi Kishine
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602
| | - Ryuichiro Suzuki
- Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642
| | - Shiho Suzuki
- College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai 599-8531
| | - Shinichi Kitamura
- College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai 599-8531
| | - Mikihiko Kobayashi
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602; Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642; Department of Food and Health Science, Jissen Women's University, Hino 191-8510, Japan
| | - Atsuo Kimura
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589
| | - Kazumi Funane
- Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642.
| |
Collapse
|
13
|
Abou Hachem M, Andersen JM, Barrangou R, Møller MS, Fredslund F, Majumder A, Ejby M, Lahtinen SJ, Jacobsen S, Lo Leggio L, Goh YJ, Klaenhammer TR, Svensson B. Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria. BIOCATAL BIOTRANSFOR 2013. [DOI: 10.3109/10242422.2013.828048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Suzuki N, Kim YM, Momma M, Fujimoto Z, Kobayashi M, Kimura A, Funane K. Crystallization and preliminary X-ray crystallographic analysis of cycloisomaltooligosaccharide glucanotransferase from Bacillus circulans T-3040. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:946-9. [PMID: 23908050 PMCID: PMC3729181 DOI: 10.1107/s174430911301991x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/18/2013] [Indexed: 11/10/2022]
Abstract
Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase (BcCITase) catalyses an intramolecular transglucosylation reaction and produces cycloisomaltooligosaccharides from dextran. BcCITase was overexpressed in Escherichia coli in two different forms and crystallized by the sitting-drop vapour-diffusion method. The crystal of BcCITase bearing an N-terminal His₆ tag diffracted to a resolution of 2.3 Å and belonged to space group P3₁21, containing a single molecule in the asymmetric unit. The crystal of BcCITase bearing a C-terminal His6 tag diffracted to a resolution of 1.9 Å and belonged to space group P2₁2₁2₁, containing two molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Young-Min Kim
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nisi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Mitsuru Momma
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Zui Fujimoto
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Mikihiko Kobayashi
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Japan
- Department of Food and Health Science, Jissen Women’s University, 4-1-1 Osakaue, Hino 191-8510, Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nisi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Kazumi Funane
- Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| |
Collapse
|
15
|
Larsbrink J, Izumi A, Hemsworth GR, Davies GJ, Brumer H. Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31. J Biol Chem 2012; 287:43288-99. [PMID: 23132856 PMCID: PMC3527916 DOI: 10.1074/jbc.m112.416511] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/05/2012] [Indexed: 01/06/2023] Open
Abstract
The metabolism of the storage polysaccharides glycogen and starch is of vital importance to organisms from all domains of life. In bacteria, utilization of these α-glucans requires the concerted action of a variety of enzymes, including glycoside hydrolases, glycoside phosphorylases, and transglycosylases. In particular, transglycosylases from glycoside hydrolase family 13 (GH13) and GH77 play well established roles in α-glucan side chain (de)branching, regulation of oligo- and polysaccharide chain length, and formation of cyclic dextrans. Here, we present the biochemical and tertiary structural characterization of a new type of bacterial 1,4-α-glucan 4-α-glucosyltransferase from GH31. Distinct from 1,4-α-glucan 6-α-glucosyltransferases (EC 2.4.1.24) and 4-α-glucanotransferases (EC 2.4.1.25), this enzyme strictly transferred one glucosyl residue from α(1→4)-glucans in disproportionation reactions. Substrate hydrolysis was undetectable for a series of malto-oligosaccharides except maltose for which transglycosylation nonetheless dominated across a range of substrate concentrations. Crystallographic analysis of the enzyme in free, acarbose-complexed, and trapped 5-fluoro-β-glucosyl-enzyme intermediate forms revealed extended substrate interactions across one negative and up to three positive subsites, thus providing structural rationalization for the unique, single monosaccharide transferase activity of the enzyme.
Collapse
Affiliation(s)
- Johan Larsbrink
- From the Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Atsushi Izumi
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Glyn R. Hemsworth
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Harry Brumer
- From the Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|