1
|
Brown A. The use of PICO ™ single-use negative pressure wound therapy in the community settings. Br J Community Nurs 2024; 29:S8-S26. [PMID: 39240814 DOI: 10.12968/bjcn.2024.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
The prevalence and incidence of wounds is predicted to rise due to an ageing population, that is also likely to have an increasing number of comorbidities (Dowsett et al, 2017). This trend will invariably result in increased costs to the NHS. The estimated annual cost of wound management in 2017/2018 was £8.3 billion. The cost of managing 70% of wounds which healed was £2.7 billion while it cost £5.6 billion managing only 30% of unhealed wounds (Guest et al, 2020). In view of these figures, it is important that health professionals (HPs) recognise wounds that are not progressing to healing at an early stage and implement all available treatment modalities to ensure that the wound does not become non-healing or stalled. Therefore, this article defines non-healing wounds, how to identify wounds at risk of becoming non-healing and the timely implementation of advanced treatment modalities, such as single use negative pressure wound therapy (sNPWT).
Collapse
|
2
|
Zhang S, Meng N, Liu S, Ruan J, Li H, Xu X, Ruan Q, Xie W. Targeting senescent HDF with the USP7 inhibitor P5091 to enhance DFU wound healing through the p53 pathway. Biochem Biophys Res Commun 2024; 722:150149. [PMID: 38788355 DOI: 10.1016/j.bbrc.2024.150149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE The objective of this study was to examine the potential of USP7 as a target for senolytic therapy and to investigate the molecular mechanism by which its inhibitor selectively induced apoptosis in senescent HDF and enhanced DFU wound healing. METHODS Clinical samples of DFU were collected to detect the expression of USP7 and aging-related proteins using immunohistochemistry and Western blot. In addition, β-galactosidase staining, qPCR, flow cytometry, ROS and MMP kits, and Western blot were used to analyze the biological functions of P5091 on senescence, cycle, and apoptosis. RNAseq was employed to further analyze the molecular mechanism of P5091. Finally, the DFU rat model was established to evaluate the effect of P5091 on wound healing. RESULTS The expression of USP7 and p21 were increased in DFU clinical samples. After treatment with d-glucose (30 mM, 7 days), β-galactosidase staining was deepened, proliferation rate decreased. USP7 inhibitors (P5091) could reduce the release of SASP factors, activate the production of ROS, and reduce MMP. In addition, it induced apoptosis and selectively clears senescent cells through the p53 signaling pathway. Finally, P5091 can improve diabetic wound healing in rats. CONCLUSION This study clarified the molecular mechanism of USP7 inhibitor (P5091) selectively inducing apoptosis of high glucose senescent HDF cells. This provides a new senolytics target and experimental basis for promoting DFU wound healing.
Collapse
Affiliation(s)
- Siyu Zhang
- Institute of Burns, Wuhan Third Hospital (Tongren Hospital of WuHan University), Wuhan 430060, China.
| | - Na Meng
- School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Shuhua Liu
- Institute of Burns, Wuhan Third Hospital (Tongren Hospital of WuHan University), Wuhan 430060, China.
| | - Jingjing Ruan
- Institute of Burns, Wuhan Third Hospital (Tongren Hospital of WuHan University), Wuhan 430060, China.
| | - Hongju Li
- Marine Biomedical Research Institute of Qingdao, Key Laboratory of Marine Drugs Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Ximing Xu
- Marine Biomedical Research Institute of Qingdao, Key Laboratory of Marine Drugs Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Qiongfang Ruan
- Institute of Burns, Wuhan Third Hospital (Tongren Hospital of WuHan University), Wuhan 430060, China.
| | - Weiguo Xie
- Institute of Burns, Wuhan Third Hospital (Tongren Hospital of WuHan University), Wuhan 430060, China.
| |
Collapse
|
3
|
Liu M, Wei X, Zheng Z, Xie E, Yu Q, Gao Y, Ma J, Yang L. AMPK activation eliminates senescent cells in diabetic wound by inducing NCOA4 mediated ferritinophagy. Mol Med 2024; 30:63. [PMID: 38760678 PMCID: PMC11100200 DOI: 10.1186/s10020-024-00825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Diabetic wounds are one of the long-term complications of diabetes, with a disordered microenvironment, diabetic wounds can easily develop into chronic non-healing wounds, which can impose a significant burden on healthcare. In diabetic condition, senescent cells accumulate in the wound area and suppress the wound healing process. AMPK, as a molecule related to metabolism, has a close relationship with aging and diabetes. The purpose of this study was to investigate the effects of AMPK activation on wound healing and explore the underlying mechanisms. METHODS AMPK activator A769662 was topically applied in wound models of diabetic mice. Alterations in the wound site were observed and analyzed by immunohistochemistry. The markers related to autophagy and ferritinophagy were analyzed by western blotting and immunofluorescence staining. The role of AMPK activation and ferritinophagy were also analyzed by western blotting. RESULTS Our results show that AMPK activation improved diabetic wound healing and reduced the accumulation of senescent cells. Intriguingly, we found that AMPK activation-induced ferroptosis is autophagy-dependent. We detected that the level of ferritin had deceased and NCOA4 was markedly increased after AMPK activation treatment. We further investigated that NCOA4-mediated ferritinophagy was involved in ferroptosis triggered by AMPK activation. Most importantly, AMPK activation can reverse the ferroptosis-insensitive of senescent fibroblast cells in diabetic mice wound area and promote wound healing. CONCLUSIONS These results suggest that activating AMPK can promote diabetic wound healing by reversing the ferroptosis-insensitive of senescent fibroblast cells. AMPK may serve as a regulatory factor in senescent cells in the diabetic wound area, therefore AMPK activation can become a promising therapeutic method for diabetic non-healing wounds.
Collapse
Affiliation(s)
- Mengqian Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Erlian Xie
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Qiuyi Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
4
|
Woo SH, Mo YJ, Lee YI, Park JH, Hwang D, Park TJ, Kang HY, Park SC, Lee YS. ANT2 Accelerates Cutaneous Wound Healing in Aged Skin by Regulating Energy Homeostasis and Inflammation. J Invest Dermatol 2023; 143:2295-2310.e17. [PMID: 37211200 DOI: 10.1016/j.jid.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
An effective healing response is critical to healthy aging. In particular, energy homeostasis has become increasingly recognized as a factor in effective skin regeneration. ANT2 is a mediator of adenosine triphosphate import into mitochondria for energy homeostasis. Although energy homeostasis and mitochondrial integrity are critical for wound healing, the role played by ANT2 in the repair process had not been elucidated to date. In our study, we found that ANT2 expression decreased in aged skin and cellular senescence. Interestingly, overexpression of ANT2 in aged mouse skin accelerated the healing of full-thickness cutaneous wounds. In addition, upregulation of ANT2 in replicative senescent human diploid dermal fibroblasts induced their proliferation and migration, which are critical processes in wound healing. Regarding energy homeostasis, ANT2 overexpression increased the adenosine triphosphate production rate by activating glycolysis and induced mitophagy. Notably, ANT2-mediated upregulation of HSPA6 in aged human diploid dermal fibroblasts downregulated proinflammatory genes that mediate cellular senescence and mitochondrial damage. This study shows a previously uncharacterized physiological role of ANT2 in skin wound healing by regulating cell proliferation, energy homeostasis, and inflammation. Thus, our study links energy metabolism to skin homeostasis and reports, to the best of our knowledge, a previously unreported genetic factor that enhances wound healing in an aging model.
Collapse
Affiliation(s)
- Seung-Hwa Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yun Jeong Mo
- Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Ji Hwan Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea; Institution of Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hee Young Kang
- Institution of Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Dermatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea; Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
5
|
Pastar I, Balukoff NC, Marjanovic J, Chen VY, Stone RC, Tomic-Canic M. Molecular Pathophysiology of Chronic Wounds: Current State and Future Directions. Cold Spring Harb Perspect Biol 2023; 15:a041243. [PMID: 36123031 PMCID: PMC10024648 DOI: 10.1101/cshperspect.a041243] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Venous leg ulcers, diabetic foot ulcers, and pressure ulcers are complex chronic wounds with multifactorial etiologies that are associated with high patient morbidity and mortality. Despite considerable progress in deciphering the pathologies of chronic wounds using "omics" approaches, considerable gaps in knowledge remain, and current therapies are often not efficacious. We provide a comprehensive overview of current understanding of the molecular mechanisms that impair healing and current knowledge on cell-specific dysregulation including keratinocytes, fibroblasts, immune cells, endothelial cells and their contributions to impaired reepithelialization, inflammation, angiogenesis, and tissue remodeling that characterize chronic wounds. We also provide a rationale for further elucidation of ulcer-specific pathologic processes that can be therapeutically targeted to shift chronic nonhealing to acute healing wounds.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Nathan C Balukoff
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Jelena Marjanovic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Vivien Y Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| |
Collapse
|
6
|
Tan MLL, Chin JS, Madden L, Becker DL. Challenges faced in developing an ideal chronic wound model. Expert Opin Drug Discov 2023; 18:99-114. [PMID: 36573018 DOI: 10.1080/17460441.2023.2158809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Chronic wounds are a major drain on healthcare resources and can lead to substantial reductions in quality of life for those affected. Moreover, they often precede serious events such as limb amputations and premature death. In the long run, this burden is likely to escalate with an ageing population and lifestyle diseases such as obesity. Thus far, the identification of beneficial therapeutics against chronic wounds have been hindered by the lack of an ideal chronic wound animal model. Although animal models of delayed healing have been developed, none of these models fully recapitulate the complexity of the human chronic wound condition. Furthermore, most animals do not develop chronic wounds. Only the thoroughbred racehorse develops chronic ulcers. AREAS COVERED In this review, the different characteristics of chronic wounds that highlight its complexity are described. In addition, currently available models reflecting different aspects of chronic wound pathology and their relevance to human chronic wounds are discussed. This article concludes by listing relevant features representative of an ideal chronic wound model. Additionally, alternative approaches for the development of chronic wound models are discussed. EXPERT OPINION Delayed models of healing, including the streptozotocin diabetic model, skin flap model and magnet-induced IR models have emerged. While these models have been widely adopted for preclinical therapeutic testing, their relevance towards human chronic wounds remains debatable. In particular, current delayed healing models often fail to fully incorporate the key characteristics of chronic ulcers. Ultimately, more representative models are required to expedite the advancement of novel therapeutics to the clinic.
Collapse
Affiliation(s)
- Mandy Li Ling Tan
- Nanyang Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Jiah Shin Chin
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Leigh Madden
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore.,Skin Research Institute Singapore, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore.,National Skin Centre, Mandalay Road, Singapore
| |
Collapse
|
7
|
Lee CH, Huang SC, Hung KC, Cho CJ, Liu SJ. Enhanced Diabetic Wound Healing Using Electrospun Biocompatible PLGA-Based Saxagliptin Fibrous Membranes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3740. [PMID: 36364516 PMCID: PMC9659155 DOI: 10.3390/nano12213740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 05/26/2023]
Abstract
Delayed diabetic wound healing is an adverse event that frequently leads to limb disability or loss. A novel and promising vehicle for the treatment of diabetic wounds is required for clinical purposes. The biocompatible and resorbable poly (lactic-co-glycolic acid) (PLGA)-based fibrous membranes prepared by electrospinning that provide a sustained discharge of saxagliptin for diabetic wound healing were fabricated. The concentration of released saxagliptin in Dulbecco’s phosphate-buffered saline was analyzed for 30 days using high-performance liquid chromatography. The effectiveness of the eluted saxagliptin was identified using an endothelial progenitor cell migration assay in vitro and a diabetic wound healing in vivo. Greater hydrophilicity and water storage were shown in the saxagliptin-incorporated PLGA membranes than in the pristine PLGA membranes (both p < 0.001). For diabetic wound healing, the saxagliptin membranes accelerated the wound closure rate, the dermal thickness, and the heme oxygenase-1 level over the follicle areas compared to those in the pristine PLGA group at two weeks post-treatment. The saxagliptin group also had remarkably higher expressions of insulin-like growth factor I expression and transforming growth factor-β1 than the control group (p = 0.009 and p < 0.001, respectively) in diabetic wounds after treatment. The electrospun PLGA-based saxagliptin membranes exhibited excellent biomechanical and biological features that enhanced diabetic wound closure and increased the antioxidant activity, cellular granulation, and functionality.
Collapse
Affiliation(s)
- Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Shu-Chun Huang
- Department of Physical Medicine and Rehabilitation, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Kuo-Chun Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Chia-Jung Cho
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
8
|
Kizhakkekalam VK, Chakraborty K, Krishnan S. Antibacterial and wound healing potential of topical formulation of marine symbiotic Bacillus. Arch Microbiol 2022; 204:648. [PMID: 36166149 DOI: 10.1007/s00203-022-03246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
The inevitability to develop novel antimicrobial agents has considerably increased because of mounting alarms concerning multidrug-resistant microbial strains. The present study evaluated an antibacterial and wound healing topical formulation prepared with the ethyl acetate extract of marine symbiotic Bacillus amyloliquefaciens MTCC 12716 as the basic ingredient and the grafted macroalgal polysaccharide as the gel base with an appropriate proportion of natural stabilizing agents. The formulation exhibited potent antibacterial activities against clinical isolates of Staphylococcus aureus (18 mm inhibition zone) and Pseudomonas aeruginosa (19 mm) causing infection when compared with commercially available antimicrobial cream clindamycin. The in-vitro results indicated that the organic extract of B. amyloliquefaciens MTCC 12716 at its MIC and the formulation sealed the wound by 78 and 94%, respectively, at 48 h in the scratch-induced L929 cells, compared to 84% exhibited by clindamycin. The topical formulation of marine symbiotic Bacillus induced greater than 80% viability of the normal fibroblasts compared to 78% exhibited by clindamycin, when administered at a dose of 25 μg mL-1. The studied antibacterial formulation could accelerate the wound healing by prompting the migration of fibroblasts towards the artificially created wound resulting in rapid wound closure, and at an even higher concentration of formulation, it displayed no cytotoxicity on L929 cells. The stability studies showed that the formulation maintained its physicochemical characteristics and minimal growth (<10 cfu g-1) of bacteria on the plates throughout the time period of 18 months at 30 °C and 65% relative humidity. This study has established the antibacterial and wound healing potential of a topical formulation of marine symbiotic B. amyloliquefaciens.
Collapse
Affiliation(s)
- Vinaya Kizhakkepatt Kizhakkekalam
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, 682018, India.,Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Kajal Chakraborty
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, 682018, India.
| | - Soumya Krishnan
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, 682018, India
| |
Collapse
|
9
|
Enhanced In Vivo Wound Healing Efficacy of a Novel Hydrogel Loaded with Copper (II) Schiff Base Quinoline Complex (CuSQ) Solid Lipid Nanoparticles. Pharmaceuticals (Basel) 2022; 15:ph15080978. [PMID: 36015126 PMCID: PMC9416780 DOI: 10.3390/ph15080978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022] Open
Abstract
Wound dressings created using nanotechnology are known as suitable substrates to speed up the healing of both acute and chronic wounds. Therapeutic substances can be delivered using these materials. In this study, a hydrogel loaded with Cu (II) Schiff base 8-hydroxy quinoline complex (CuSQ) solid lipid nanoparticles (SLN) was formulated to investigate its wound healing potential in an excision wound healing model in rats. The CuSQ SLN were spherical shaped with sizes ranging from 111 to 202 nm and a polydispersity index (PDI) ranging from 0.43 to 0.76, encapsulation efficiency (EE) % between 85 and 88, and zeta potential (ZP) of −11.8 to −40 mV. The formulated hydrogel showed good homogeneity, good stability, and a pH of 6.4 which indicates no skin irritation and had no cytotoxicity on the human skin fibroblast (HSF) cell line. In the in vivo study, animals were placed in five groups: control, standard, plain hydrogel, low dose, and high dose of CuSQ hydrogel. Both doses of CuSQ showed significantly faster healing rates compared to standard and control rats. In addition, the histopathology study showed more collagen, improved angiogenesis, and intact re-epithelization with less inflammation. A significant increase in transforming growth factor-beta1 (TGF-β1) level and increased immune expression of vascular endothelial growth factor (VEGF) by CuSQ treatment validates its role in collagen synthesis, proliferation of fibroblasts and enhancement of angiogenesis. Matrix metalloproteinase-9 (MMP-9) was found to be significantly reduced after CuSQ treatment. Immunohistochemistry of tumor necrosis factor alpha (TNF-α) revealed a marked decrease in inflammation. Thus, we concluded that CuSQ would be a beneficial drug for cutaneous wound healing since it effectively accelerated wound healing through regulation of various cytokines and growth factors.
Collapse
|
10
|
Horn G, Schäfers C, Thiermann H, Völkl S, Schmidt A, Rothmiller S. Sulfur mustard single-dose exposure triggers senescence in primary human dermal fibroblasts. Arch Toxicol 2022; 96:3053-3066. [PMID: 35906424 PMCID: PMC9525386 DOI: 10.1007/s00204-022-03346-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Chronic wounds, skin blisters, and ulcers are the result of skin exposure to the alkylating agent sulfur mustard (SM). One potential pathomechanism is senescence, which causes permanent growth arrest with a pro-inflammatory environment and may be associated with a chronic wound healing disorder. SM is known to induce chronic senescence in human mesenchymal stem cells which are subsequently unable to fulfill their regenerative function in the wound healing process. As dermal fibroblasts are crucial for cutaneous wound healing by being responsible for granulation tissue formation and synthesis of the extracellular matrix, SM exposure might also impair their function in a similar way. This study, therefore, investigated the SM sensitivity of primary human dermal fibroblasts (HDF) by determining the dose-response curve. Non-lethal concentrations LC1 (3 µM) to LC25 (65 µM) were used to examine the induction of senescence. HDF were exposed once to 3 µM, 13 µM, 24 µM, 40 µM or 65 μM SM, and were then cultured for 31 days. Changes in morphology as well as at the genetic and protein level were investigated. For the first time, HDF were shown to undergo senescence in a time- and concentration-dependent manner after SM exposure. They developed a characteristic senescence phenotype and expressed various senescence markers. Proinflammatory cytokines and chemokines were significantly altered in SM-exposed HDF as part of a senescence-associated secretory phenotype. The senescent fibroblasts can thus be considered a contributor to the SM-induced chronic wound healing disorder and might serve as a new therapeutic target in the future.
Collapse
Affiliation(s)
- Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Catherine Schäfers
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Sandra Völkl
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.,Institute of Sport Science, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
| |
Collapse
|
11
|
Zhao M, Qi Q, Liu S, Huang R, Shen J, Zhu Y, Chai J, Zheng H, Wu H, Liu H. MicroRNA-34a: A Novel Therapeutic Target in Fibrosis. Front Physiol 2022; 13:895242. [PMID: 35795649 PMCID: PMC9250967 DOI: 10.3389/fphys.2022.895242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022] Open
Abstract
Fibrosis can occur in many organs, and severe cases leading to organ failure and death. No specific treatment for fibrosis so far. In recent years, microRNA-34a (miR-34a) has been found to play a role in fibrotic diseases. MiR-34a is involved in the apoptosis, autophagy and cellular senescence, also regulates TGF-β1/Smad signal pathway, and negatively regulates the expression of multiple target genes to affect the deposition of extracellular matrix and regulate the process of fibrosis. Some studies have explored the efficacy of miR-34a-targeted therapies for fibrotic diseases. Therefore, miR-34a has specific potential for the treatment of fibrosis. This article reviews the important roles of miR-34a in fibrosis and provides the possibility for miR-34a as a novel therapeutic target in fibrosis.
Collapse
Affiliation(s)
- Min Zhao
- Department of Acupuncture-Moxibustion, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Shimin Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Rong Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Shen
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Zhu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Jing Chai
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Handan Zheng
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Huangan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| | - Huirong Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| |
Collapse
|
12
|
Kita A, Saito Y, Miura N, Miyajima M, Yamamoto S, Sato T, Yotsuyanagi T, Fujimiya M, Chikenji TS. Altered regulation of mesenchymal cell senescence in adipose tissue promotes pathological changes associated with diabetic wound healing. Commun Biol 2022; 5:310. [PMID: 35383267 PMCID: PMC8983691 DOI: 10.1038/s42003-022-03266-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/14/2022] [Indexed: 01/13/2023] Open
Abstract
Pathologic diabetic wound healing is caused by sequential and progressive deterioration of hemostasis, inflammation, proliferation, and resolution/remodeling. Cellular senescence promotes wound healing; however, diabetic wounds exhibit low levels of senescent factors and accumulate senescent cells, which impair the healing process. Here we show that the number of p15INK4B + PDGFRα + senescent mesenchymal cells in adipose tissue increases transiently during early phases of wound healing in both non-diabetic mice and humans. Transplantation of adipose tissue from diabetic mice into non-diabetic mice results in impaired wound healing and an altered cellular senescence–associated secretory phenotype (SASP), suggesting that insufficient induction of adipose tissue senescence after injury is a pathological mechanism of diabetic wound healing. These results provide insight into how regulation of senescence in adipose tissue contributes to wound healing and could constitute a basis for developing therapeutic treatment for wound healing impairment in diabetes. Type-2 diabetic adipose tissue impairs transient senescence during wound healing with expression of different components of the senescence-associated secretory phenotype (SASP), and this is associated with deteriorated wound healing.
Collapse
Affiliation(s)
- Arisa Kita
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Norihiro Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Maki Miyajima
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takatoshi Yotsuyanagi
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University, Sapporo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako S Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan. .,Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
13
|
Xue M, Zhao R, March L, Jackson C. Dermal Fibroblast Heterogeneity and Its Contribution to the Skin Repair and Regeneration. Adv Wound Care (New Rochelle) 2022; 11:87-107. [PMID: 33607934 DOI: 10.1089/wound.2020.1287] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Dermal fibroblasts are the major cell type in the skin's dermal layer. These cells originate from distinct locations of the embryo and reside in unique niches in the dermis. Different dermal fibroblasts exhibit distinct roles in skin development, homeostasis, and wound healing. Therefore, these cells are becoming attractive candidates for cell-based therapies in wound healing. Recent Advances: Human skin dermis comprises multiple fibroblast subtypes, including papillary, reticular, and hair follicle-associated fibroblasts, and myofibroblasts after wounding. Recent studies reveal that these cells play distinct roles in wound healing and contribute to diverse healing outcomes, including nonhealing chronic wound or excessive scar formation, such as hypertrophic scars (HTS) and keloids, with papillary fibroblasts having antiscarring and reticular fibroblast scar-forming properties. Critical Issues: The identities and functions of dermal fibroblast subpopulations in many respects remain unknown. In this review, we summarize the current understanding of dermal fibroblast heterogeneity, including their defined cell markers and dermal niches, dynamic changes, and contributions to skin wound healing, with the emphasis on scarless healing, healing with excessive scars (HTS and keloids), chronic wounds, and the potential application of this heterogeneity for developing cell-based therapies that allow wounds to heal faster with less scarring. Future Directions: Heterogeneous dermal fibroblast populations and their functions are poorly characterized. Refining and advancing our understanding of dermal fibroblast heterogeneity and their participation in skin homeostasis and wound healing may create potential therapeutic applications for nonhealing chronic wounds or wounds that heal with excessive scarring.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ruilong Zhao
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
14
|
Extracellular matrix and cellular senescence in venous leg ulcers. Sci Rep 2021; 11:20168. [PMID: 34635751 PMCID: PMC8505655 DOI: 10.1038/s41598-021-99643-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
High prevalence of non-healing chronic wounds contributes to a huge healthcare burden across the world. Early treatment interventions for non-healing wounds are vital. It was previously shown that accumulation of 15% or more of senescent cells in a chronic wound edge is an indicator that the wound is unlikely to heal. However, determining the presence of senescent cells would require invasive procedures such as tissue biopsies to be taken. In this study, we found a strong correlation between decreased collagen area and presence of senescent cells in human chronic wounds i.e. venous leg ulcer (VLU), diabetic foot ulcer (DFU) and pressure ulcer (PRU). We also report that the lowest collagen levels were found in VLU patients less than 60 years of age, with a persistent wound of > 24 months. Elevated levels of senescent cells were also found in VLU of males. Second harmonic imaging of collagen at the edge of chronic wounds with a handheld multiphoton device could be used to predict the number of senescent cells, indicating if the wound is on a healing trajectory or not. Our data support the use of collagen imaging in cutaneous wound assessment for a faster and non-invasive method to predict cellular senescence and determining wound trajectory of healing.
Collapse
|
15
|
Lyu W, Ma Y, Chen S, Li H, Wang P, Chen Y, Feng X. Flexible Ultrasonic Patch for Accelerating Chronic Wound Healing. Adv Healthc Mater 2021; 10:e2100785. [PMID: 34212532 DOI: 10.1002/adhm.202100785] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Indexed: 12/20/2022]
Abstract
Ultrasound treatment is an effective method for accelerating chronic wound healing. However, it is not widely used because traditional ultrasonic probes cannot be conformal to the wound surface, which leads to limitations of use and unstable treatment effects. In addition, the use of liquid coupling agent increases the chance of wound infection. A strategy is proposed to design and fabricate a flexible ultrasonic patch for treating chronic wounds effectively. The piezoelectric ceramic in the patch is discretized into several linearly arranged units, which are integrated on a flexible circuit substrate. A thin hydrogel patch is used as both encapsulation and coupling layer to avoid wound infection and ensure the penetration of ultrasound. The ultrasonic patch is soft, light, and can completely conform to the treatment area. Bending of the patch focuses the sound beams on the center of the bending circle, which achieves control of the target treatment area. Ultrasound treatment experiments are carried out on some type-II diabetic rats. Immunohistochemical (IHC) results indicate that ultrasound accelerates wound healing by activating Rac1 in both dermal and epidermal layers. Treatment results show that wound treated with the ultrasound heals faster than wounds without. The healing time is shortened by ≈40%.
Collapse
Affiliation(s)
- Wenhan Lyu
- AML Department of Engineering Mechanics Tsinghua University Beijing 100084 China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 China
| | - Yinji Ma
- AML Department of Engineering Mechanics Tsinghua University Beijing 100084 China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 China
| | - Siyu Chen
- AML Department of Engineering Mechanics Tsinghua University Beijing 100084 China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 China
| | - Haibo Li
- AML Department of Engineering Mechanics Tsinghua University Beijing 100084 China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 China
| | - Peng Wang
- AML Department of Engineering Mechanics Tsinghua University Beijing 100084 China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 China
| | - Ying Chen
- Institute of Flexible Electronics Technology THU Jiaxing 314000 China
- Qiantang Science and Technology Innovation Center Hangzhou 310016 China
| | - Xue Feng
- AML Department of Engineering Mechanics Tsinghua University Beijing 100084 China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 China
| |
Collapse
|
16
|
Madden L, Low SH, Phillips ARJ, Kline KA, Becker DL. The effects of Staphylococcus aureus biofilm conditioned media on 3T3 fibroblasts. FEMS MICROBES 2021; 2:xtab010. [PMID: 37334228 PMCID: PMC10117754 DOI: 10.1093/femsmc/xtab010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/13/2021] [Indexed: 07/20/2023] Open
Abstract
Staphylococcus aureus (SA) is the most common bacterial species in chronic wounds. However, there is a lack of understanding of how SA secretions affect the cell biology during the healing process. We studied the effects of biofilm-secretions from SA strain SA29213 on 3T3 fibroblasts. SA29213 is a chronic wound isolate and widely used as a reference strain. We used a series of concentrations of biofilm-conditioned media (BCM) and found 100% BCM is lethal within 10 h. Cells survived in ≤75% BCM but the rate of closure in scratch wound assays was reduced. Treatment with 75% and 50% BCM caused fibroblasts to change shape and develop dendrite like processes. Prolonged treatment with 75% and 50% BCM reduced cell proliferation and increased the 4n deoxyribonucleic acid cell population with cell cycle arrest. There was also an elevation in the senescence marker beta galactosidase and the number of multinucleated cells. Shorter treatments with 75% and 50% SA BCM caused an increase in cell-cell adhesion and a redistribution of β-catenin from the cell membrane to the cytoplasm along with a change in the appearance and decrease in size of ZO-1, vinculin and paxillin structures. Fibroblasts in the edge of chronic wounds exposed to the secretions of SA may suffer similar effects such as induction of senescence, reduced proliferation and migration, which may contribute to the delayed healing of these chronic infected wounds.
Collapse
Affiliation(s)
- Leigh Madden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11, Mandalay Road, Singapore, 308232
- Skin Research Institute Singapore, Level 17, Clinical Sciences Building, 11, Mandalay Road, Singapore, 308232
| | - Shyan Huey Low
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11, Mandalay Road, Singapore, 308232
| | - Anthony R J Phillips
- Department of Surgery, School of Biological Sciences, Auckland University, Symonds street, Auckland Central, New Zealand, 1010
| | - Kimberly A Kline
- School of Biological Sciences and Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - David L Becker
- Corresponding author: Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building,11, Mandalay Road, Singapore, 308232. Tel: 65 -65923955; E-mail:
| |
Collapse
|
17
|
Bull RH, Staines KL, Collarte AJ, Bain DS, Ivins NM, Harding KG. Measuring progress to healing: A challenge and an opportunity. Int Wound J 2021; 19:734-740. [PMID: 34374499 PMCID: PMC9013582 DOI: 10.1111/iwj.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/28/2022] Open
Abstract
Complete healing is problematic as an endpoint for evaluating interventions for wound healing. The great heterogeneity of wounds makes it difficult to match groups, and this is only possible with multivariate stratification and/or very large numbers of subjects. The substantial time taken for wounds to heal necessitates a very lengthy study. Consequently, high quality randomised controlled trials demonstrating an effect of an intervention to a satisfactory level of statistical significance and with a satisfactory level of generalisability are extremely rare. This study determines that the healing of venous leg ulcers receiving multi‐component compression bandaging follows a linear trajectory over a 4‐week period, as measured by gross area healed, percentage area healed, and advance of the wound margin. The linear trajectories of these surrogates make it possible to identify an acceleration in healing resulting from an intervention, and allows self‐controlled or crossover designs with attendant advantages of statistical power and speed. Of the metrics investigated, wound margin advance was the most linear, and was also independent of initial ulcer size.
Collapse
Affiliation(s)
| | - Karen Louise Staines
- Education and Research/Clinical Lead Wound Care, Accelerate CIC, Centenary Wing, St Joseph's Hospice, London, UK
| | - Agnes Juguilon Collarte
- North West Division (Central London, Hammersmith & Fulham and West London), St Charles Centre for Health & Wellbeing, London, UK
| | | | | | - Keith Gordon Harding
- Wound Healing Research, WWII Ltd (Welsh Wound Innovation Initiative), Welsh Wound Innovation Centre, Pontyclun, UK
| |
Collapse
|
18
|
Zou ML, Teng YY, Wu JJ, Liu SY, Tang XY, Jia Y, Chen ZH, Zhang KW, Sun ZL, Li X, Ye JX, Xu RS, Yuan FL. Fibroblasts: Heterogeneous Cells With Potential in Regenerative Therapy for Scarless Wound Healing. Front Cell Dev Biol 2021; 9:713605. [PMID: 34354997 PMCID: PMC8329665 DOI: 10.3389/fcell.2021.713605] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/28/2021] [Indexed: 12/04/2022] Open
Abstract
In recent years, research on wound healing has become increasingly in-depth, but therapeutic effects are still not satisfactory. Occasionally, pathological tissue repair occurs. Influencing factors have been proposed, but finding the turning point between normal and pathological tissue repair is difficult. Therefore, we focused our attention on the most basic level of tissue repair: fibroblasts. Fibroblasts were once considered terminally differentiated cells that represent a single cell type, and their heterogeneity was not studied until recently. We believe that subpopulations of fibroblasts play different roles in tissue repair, resulting in different repair results, such as the formation of normal scars in physiological tissue repair and fibrosis or ulcers in pathological tissue repair. It is also proposed that scarless healing can be achieved by regulating fibroblast subpopulations.
Collapse
Affiliation(s)
- Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Ying-Ying Teng
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Si-Yu Liu
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Xiao-Yu Tang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Zhong-Hua Chen
- Institute of Integrated Traditional Chinese and Western Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Zi-Li Sun
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Xia Li
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jun-Xing Ye
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Rui-Sheng Xu
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Shoham Y, Shapira E, Haik J, Harats M, Egozi D, Robinson D, Kogan L, Elkhatib R, Telek G, Shalom A. Bromelain-based enzymatic debridement of chronic wounds: Results of a multicentre randomized controlled trial. Wound Repair Regen 2021; 29:899-907. [PMID: 34231281 DOI: 10.1111/wrr.12958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023]
Abstract
Chronic wounds are estimated to affect over 6 million people annually in the United States with an estimated annual cost of $25 billion. Debridement represents a key step in their management and is considered a basic necessity to induce the functional process of tissue repair. However, there is an unmet need for an efficient rapid acting non-surgical debridement agent. Bromelain-based enzymatic debridement has been proven to provide an effective, selective and safe non-surgical debridement in deep burns. EscharEx (MediWound Ltd, Yavne, Israel), is a bromelain-based enzymatic debridement agent currently in development for chronic wounds. The aim of this study was to assess its safety and efficacy in chronic wounds. Seventy-three patients suffering from a lower extremity ulcer of diabetic/venous insufficiency/post-surgical/traumatic aetiology were enrolled in a multicentre, assessor blinded, randomized controlled trial. Patients were randomized to topical treatment by either EscharEx or its gel vehicle for up to 10 daily 4 hour applications, and then continued follow-up for up to 6 months. The EscharEx arm achieved a significantly higher incidence of complete debridement compared to the gel vehicle arm; 55 versus 29% (p = .047), thus meeting the primary endpoint of this study. The EscharEx and gel vehicle arms achieved similar reductions in wound area, non-viable tissue area and wound healing scores during the debridement period. There were no significant differences between the arms in the incidence of complete wound closure (41% in the EsxcharEx arm vs. 53% in the gel vehicle arm) and in the mean time to complete wound closure (70.0 ± 32.8 days in the EsxcharEx arm vs. 65.7 ± 38.4 days in gel vehicle arm). There were no significant safety issues and EscharEx demonstrated a favourable benefit to risk profile.
Collapse
Affiliation(s)
- Yaron Shoham
- Plastic and Reconstructive Surgery Department and Burn Unit, Soroka University Medical Center, Beer Sheba, Israel.,Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheba, Israel
| | - Eyal Shapira
- Plastic and Reconstructive Surgery Department, Shamir Medical Center, Zerifin, Israel
| | - Josef Haik
- Plastic and Reconstructive Surgery Department and Burn Center, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moti Harats
- Plastic and Reconstructive Surgery Department and Burn Center, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Talpiot Leadership Program, Shamir Medical Center, Tel Hashomer, Israel.,Institute for Health Research, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Dana Egozi
- Plastic and Reconstructive Surgery Department, Kaplan Medical Center, Rehovot, Israel.,Hebrew University Medical School, Jerusalem, Israel
| | - Dror Robinson
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Orthopedic Surgery Department, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Leonid Kogan
- Plastic Surgery and Burns Department, Galilee Medical Center, Naharia, Israel
| | - Rania Elkhatib
- Plastic and Reconstructive Surgery Department, Rambam Health Care Campus, Haifa, Israel
| | - Geza Telek
- Surgery Department, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, and 1st. Department of Surgery and Interventional Gastroenterology (DPC Surgical Department Group), Faculty of Medicine, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Avshalom Shalom
- Plastic and Reconstructive Surgery Department, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
20
|
Merkt W, Zhou Y, Han H, Lagares D. Myofibroblast fate plasticity in tissue repair and fibrosis: Deactivation, apoptosis, senescence and reprogramming. Wound Repair Regen 2021; 29:678-691. [PMID: 34117675 DOI: 10.1111/wrr.12952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
In response to tissue injury, fibroblasts differentiate into professional repair cells called myofibroblasts, which orchestrate many aspects of the normal tissue repair programme including synthesis, deposition and contraction of extracellular matrix proteins, leading to wound closure. Successful tissue repair responses involve termination of myofibroblast activities in order to prevent pathologic fibrotic scarring. Here, we discuss the cellular and molecular mechanisms limiting myofibroblast activities during physiological tissue repair, including myofibroblast deactivation, apoptosis, reprogramming and immune clearance of senescent myofibroblasts. In addition, we summarize pathological mechanisms leading to myofibroblast persistence and survival, a hallmark of fibrotic diseases. Finally, we discuss emerging anti-fibrotic therapies aimed at targeting myofibroblast fate such as senolytics, gene therapy, cellular immunotherapy and CAR-T cells.
Collapse
Affiliation(s)
- Wolfgang Merkt
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - Yan Zhou
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Physiology, Xiangya Medical School, Central South University, Changsha, China
| | - Hongwei Han
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Lagares
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Monika P, Waiker PV, Chandraprabha MN, Rangarajan A, Murthy KNC. Myofibroblast progeny in wound biology and wound healing studies. Wound Repair Regen 2021; 29:531-547. [PMID: 34009713 DOI: 10.1111/wrr.12937] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Fibroblasts and myofibroblasts play a myriad of important roles in human tissue function, especially in wound repair and healing. Among all cells, fibroblasts are group of cells that decide the status of wound as they maintain tissue homeostasis. Currently, the increase in the deleterious effects of chronic wound and their morbidity rate has necessitated the need to understand the influence of fibroblasts and myofibroblasts, which chiefly originate locally from tissue-resident fibroblasts to address the same. Wound pathophysiology is complex, herein, we have discussed fibroblast and myofibroblast heterogeneity in skin and different organs by understanding the phenotypical and functional properties of each of its sub-populations in the process of wound healing. Recent advancements in fibroblast activation, differentiation to myofibroblasts, proliferation and migration are discussed in detail. Fibroblasts and myofibroblasts are key players in wound healing and wound remodelling, respectively, and their significance in wound repair is discussed. An increased understanding of their biology during wound healing also gives an opportunity to explore more of fibroblast and myofibroblast focused therapies to treat chronic wounds which are clinical challenges. In this regard, in the current review, we have described the different methods for isolation of primary fibroblasts and myofibroblasts from both animal models and humans, and their characterization. Additionally, we have also provided details on possible molecular targets for better understanding of prognosis, diagnosis and treatment of chronic wounds. Information will help both researchers and clinicians in providing molecular insight that enable them for effective chronic wound management. The knowledge of intimate dialogue between the fibroblast, sub-populations like, myofibroblast and their microenvironment, will serve useful in determining novel, efficient and specific therapeutic targets to treat pathological wound conditions.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bangalore, India
| | | | | | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
22
|
Antioxidant Properties of Plant-Derived Phenolic Compounds and Their Effect on Skin Fibroblast Cells. Antioxidants (Basel) 2021; 10:antiox10050726. [PMID: 34063059 PMCID: PMC8147979 DOI: 10.3390/antiox10050726] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Plants are rich sources of a diverse range of chemicals, many of which have significant metabolic activity. One large group of secondary compounds are the phenolics, which act as inter alia potent reactive oxygen scavengers in cells, including fibroblasts. These common dermis residue cells play a crucial role in the production of extracellular matrix components, such as collagen, and maintaining the integrity of connective tissue. Chronic wounds or skin exposure to UV-irradiation disrupt fibroblast function by the generation of reactive oxygen species, which may damage cell components and modify various signaling pathways. The resulting imbalance may be reversed by the antioxidant activity of plant-derived phenolic compounds. This paper reviews the current state of knowledge on the impact of phenolics on fibroblast functionality under oxidative stress conditions. It examines a range of compounds in extracts from various species, as well as single specific plant-derived compounds. Phenolics are a good candidate for eliminating the causes of skin damage including wounds and aging and acting as skin care agents.
Collapse
|
23
|
Restoration of the healing microenvironment in diabetic wounds with matrix-binding IL-1 receptor antagonist. Commun Biol 2021; 4:422. [PMID: 33772102 PMCID: PMC7998035 DOI: 10.1038/s42003-021-01913-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic wounds are a major clinical problem where wound closure is prevented by pathologic factors, including immune dysregulation. To design efficient immunotherapies, an understanding of the key molecular pathways by which immunity impairs wound healing is needed. Interleukin-1 (IL-1) plays a central role in regulating the immune response to tissue injury through IL-1 receptor (IL-1R1). Generating a knockout mouse model, we demonstrate that the IL-1-IL-1R1 axis delays wound closure in diabetic conditions. We used a protein engineering approach to deliver IL-1 receptor antagonist (IL-1Ra) in a localised and sustained manner through binding extracellular matrix components. We demonstrate that matrix-binding IL-1Ra improves wound healing in diabetic mice by re-establishing a pro-healing microenvironment characterised by lower levels of pro-inflammatory cells, cytokines and senescent fibroblasts, and higher levels of anti-inflammatory cytokines and growth factors. Engineered IL-1Ra has translational potential for chronic wounds and other inflammatory conditions where IL-1R1 signalling should be dampened.
Collapse
|
24
|
Ling XW, Wang HS, Wan L, Guo HL, Liu ZJ, Lin C, Zhang XX. Severity of albuminuria as an early indicator for wound healing in type 2 diabetic foot ulcers. Wound Repair Regen 2020; 29:97-105. [PMID: 33169879 DOI: 10.1111/wrr.12876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/01/2020] [Accepted: 11/03/2020] [Indexed: 01/13/2023]
Abstract
This study aimed to investigate the relationship between the severity of albuminuria and wound healing in type 2 diabetic foot ulcers. A total of 121 patients with diabetic foot ulcers were recruited from January 2015 to June 2017 and divided into nonproliferation and proliferation groups according to their healing status. Univariate and multivariate logistic regression were performed to assess the risk factors of wound proliferation. Skin biopsies were also taken from normal tissue near the wound in 54 participants. The microvessel density as well as the relationships among the microvessel density, albuminuria and wound proliferation were evaluated. Results showed that in a multiple linear regression model, factors including body-mass index, microalbuminuria, and macroalbuminuria showed independently significant association with wound healing in patients. The receiver operating characteristic curve analysis indicated albuminuria as a predicator for wound healing with a cutoff value of 32 mg/g. Meanwhile, normoalbuminuric patients showed significantly higher level of skin microvessels density than microalbuminuria and macroalbuminuria patients, while microalbuminuria patients also had statistically more microvessels that macroalbuminuria patients. The microvessel density were statistically significantly higher in the proliferation group than that in the nonproliferation group. In summary, this study suggested that albuminuria can be used as an independent indicator for the healing of type 2 diabetic foot ulcers.
Collapse
Affiliation(s)
- Xiang-Wei Ling
- Departments of Burn and Wound Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hai-Shuang Wang
- Departments of Burn and Wound Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Wan
- Departments of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hai-Lei Guo
- Departments of Burn and Wound Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheng-Jun Liu
- Departments of Burn and Wound Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cai Lin
- Departments of Burn and Wound Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing-Xing Zhang
- Departments of Endocrine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Resnik SR, Egger A, Abdo Abujamra B, Jozic I. Clinical Implications of Cellular Senescence on Wound Healing. CURRENT DERMATOLOGY REPORTS 2020. [DOI: 10.1007/s13671-020-00320-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Effects of wound dressings containing silver on skin and immune cells. Sci Rep 2020; 10:15216. [PMID: 32939010 PMCID: PMC7494852 DOI: 10.1038/s41598-020-72249-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/15/2020] [Indexed: 01/18/2023] Open
Abstract
Wound dressings with silver have been shown to be cytotoxic in vitro. However, the extrapolation of this cytotoxicity to clinical settings is unclear. We applied dressings with various forms of silver on porcine skin ex vivo and investigated silver penetration and DNA damage. We assessed antimicrobial efficacy, cytotoxicity to skin cells, and immune response induced by the dressings. All dressings elevated the DNA damage marker γ-H2AX and the expression of stress-related genes in explanted skin relative to control. This corresponded with the amount of silver in the skin. The dressings reduced viability, induced oxidative stress and DNA damage in skin cells, and induced the production of pro-inflammatory IL-6 by monocytes. The oxidative burst and viability of activated neutrophils decreased. The amount of silver released into the culture medium varied among the dressings and correlated with in vitro toxicity. However, antimicrobial efficiencies did not correlate strongly with the amount of silver released from the dressings. Antimicrobial efficiency and toxicity are driven by the form of silver and the construction of dressings and not only by the silver concentration. The damaging effects of silver dressings in ex vivo skin highlight the importance of thorough in vivo investigation of silver dressing toxicity.
Collapse
|
27
|
Shanthi Kumari K, Shivakrishna P, Ganduri VR. Wound healing Activities of the bioactive compounds from Micrococcus sp. OUS9 isolated from marine water. Saudi J Biol Sci 2020; 27:2398-2402. [PMID: 32884422 PMCID: PMC7451693 DOI: 10.1016/j.sjbs.2020.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/24/2022] Open
Abstract
Marine species are increasingly important as a source of specific biological active metabolites. Marine species comprise almost half of global biodiversity. Oceans and sea are thus the biggest source of positive natural compounds that could be utilized in the pharmaceutical industry as functional constituents. In the present study was to find out the wound healing property of the bioactive compounds from Micrococcus sp. OUS9 isolated from marine source. The in vivo wound healing activity was studied using excision wound model. The KLUF 10 and KLUF13 ointment was prepared and used to determine wound healing activity in albino rats. Topical application of the ointment enhanced the contraction of wound in contrast with rat control group. KLUF13 had shown strong healing ability in wounds and had a positive influence on the various phases of wound repair.
Collapse
Affiliation(s)
- K. Shanthi Kumari
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, A.P., India
- Department of Microbiology, Osmania University, Hyderabad 500 007, Telangana, India
| | | | - V.S. Ramakrishna Ganduri
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, A.P., India
| |
Collapse
|
28
|
Nikoloudaki G, Creber K, Hamilton DW. Wound healing and fibrosis: a contrasting role for periostin in skin and the oral mucosa. Am J Physiol Cell Physiol 2020; 318:C1065-C1077. [PMID: 32267719 PMCID: PMC7311745 DOI: 10.1152/ajpcell.00035.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
Both skin and oral mucosa are characterized by the presence of keratinized epithelium in direct apposition to an underlying collagen-dense connective tissue. Despite significant overlap in structure and physiological function, skin and the oral mucosa exhibit significantly different healing profiles in response to injury. The oral mucosa has a propensity for rapid restoration of barrier function with minimal underlying fibrosis, but in contrast, skin is associated with slower healing and scar formation. Modulators of cell function, matricellular proteins have been shown to play significant roles in cutaneous healing, but their role in restoration of the oral mucosa is poorly defined. As will be discussed in this review, over the last 12 years our research group has been actively investigating the role of the profibrotic matricellular protein periostin in tissue homeostasis and fibrosis, as well as healing, in both skin and gingiva. In the skin, periostin is highly expressed in fibrotic scars and is upregulated during cutaneous wound repair, where it facilitates myofibroblast differentiation. In contrast, in gingival healing, periostin regulates extracellular matrix synthesis but does not appear to be associated with the transition of mesenchymal cells to a contractile phenotype. The significance of these findings will be discussed, with a focus on periostin as a potential therapeutic to augment healing of soft tissues or suppress fibrosis.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Kendal Creber
- School of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
- School of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
- Division of Oral Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
29
|
Casado-Díaz A, Quesada-Gómez JM, Dorado G. Extracellular Vesicles Derived From Mesenchymal Stem Cells (MSC) in Regenerative Medicine: Applications in Skin Wound Healing. Front Bioeng Biotechnol 2020; 8:146. [PMID: 32195233 PMCID: PMC7062641 DOI: 10.3389/fbioe.2020.00146] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
The cells secrete extracellular vesicles (EV) that may have an endosomal origin, or from evaginations of the plasma membrane. The former are usually called exosomes, with sizes ranging from 50 to 100 nm. These EV contain a lipid bilayer associated to membrane proteins. Molecules such as nucleic acids (DNA, mRNA, miRNA, lncRNA, etc.) and proteins may be stored inside. The EV composition depends on the producer cell type and its physiological conditions. Through them, the cells modify their microenvironment and the behavior of neighboring cells. That is accomplished by transferring factors that modulate different metabolic and signaling pathways. Due to their properties, EV can be applied as a diagnostic and therapeutic tool in medicine. The mesenchymal stromal cells (MSC) have immunomodulatory properties and a high regenerative capacity. These features are linked to their paracrine activity and EV secretion. Therefore, research on exosomes produced by MSC has been intensified for use in cell-free regenerative medicine. In this area, the use of EV for the treatment of chronic skin ulcers (CSU) has been proposed. Such sores occur when normal healing does not resolve properly. That is usually due to excessive prolongation of the inflammatory phase. These ulcers are associated with aging and diseases, such as diabetes, so their prevalence is increasing with the one of such latter disease, mainly in developed countries. This has very important socio-economic repercussions. In this review, we show that the application of MSC-derived EV for the treatment of CSU has positive effects, including accelerating healing and decreasing scar formation. This is because the EV have immunosuppressive and immunomodulatory properties. Likewise, they have the ability to activate the angiogenesis, proliferation, migration, and differentiation of the main cell types involved in skin regeneration. They include endothelial cells, fibroblasts, and keratinocytes. Most of the studies carried out so far are preclinical. Therefore, there is a need to advance more in the knowledge about the conditions of production, isolation, and action mechanisms of EV. Interestingly, their potential application in the treatment of CSU opens the door for the design of new highly effective therapeutic strategies.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Gabriel Dorado
- Dep. de Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba, Spain
| |
Collapse
|
30
|
Surrounding skin management in venous leg ulcers: A systematic review. J Tissue Viability 2020; 29:169-175. [PMID: 32151489 DOI: 10.1016/j.jtv.2020.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Accepted: 02/08/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Chronic venous insufficiency may lead to the development of venous leg ulcers, the most common form of chronic wounds in the lower extremity. Key to venous leg ulcer care is the maintenance of healthy skin surrounding the ulcer, as failure to maintain skin integrity may influence the healing outcome. We thus reviewed the scientific literature looking for assessment and management instruments regarding this common but often neglected issue. METHOD The search included all studies published between 2000 and May 2019. Keywords used were: "peri-wound skin care", "surrounding skin venous ulcers", "surrounding skin management leg ulcers", and "peri-lesional skin management". RESULTS Management of moisture-balance with the selection of appropriate dressings is the most important target in surrounding-wound skin care. Moreover, contact dermatitis related to products and the dressings themselves is a neglected problem in patients with chronic leg ulcers which clinicians increasingly have to manage. The literature search revealed that there is an increasing interest in the use of noninvasive assessment tools in the field of wound care, and focusing on the surrounding-wound skin plays a role in assessing the potential of wound healing. Transepidermal water loss measurement (TEWL) and ultrasonography are two of the measurement techniques available. CONCLUSION The integrity of the surrounding skin is necessary for wound healing, and appropriate management is needed to address this aspect which is part of an overall approach to treating wounds.
Collapse
|
31
|
Wilkinson HN, Hardman MJ. Wound senescence: A functional link between diabetes and ageing? Exp Dermatol 2020; 30:68-73. [PMID: 32009254 DOI: 10.1111/exd.14082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Arguably, the two most important causes of pathological healing in the skin are diabetes and ageing. While these factors have historically been considered independent modifiers of the healing process, recent studies suggest that they may be mechanistically linked. The primary contributor to diabetic pathology is hyperglycaemia, which accelerates the production of advanced glycation end products, a characteristic of ageing tissue. Indeed, advanced age also leads to mild hyperglycaemia. Here, we discuss emerging literature that reveals a hitherto unappreciated link between cellular senescence, diabetes and wound repair. Senescent cells cause widespread destruction of normal tissue architecture in ageing and have been shown to be increased in chronic wounds. However, the role of senescence remains controversial, with several studies reporting beneficial effects for transiently induced senescence in wound healing. We recently highlighted a direct role for senescence in diabetic healing pathology, mediated by the senescence receptor, CXCR2. These findings suggest that targeting local tissue senescence may provide a therapeutic strategy applicable to a broad range of chronic wound types.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull, UK
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull, UK
| |
Collapse
|
32
|
Waters DW, Blokland KEC, Pathinayake PS, Wei L, Schuliga M, Jaffar J, Westall GP, Hansbro PM, Prele CM, Mutsaers SE, Bartlett NW, Burgess JK, Grainge CL, Knight DA. STAT3 Regulates the Onset of Oxidant-induced Senescence in Lung Fibroblasts. Am J Respir Cell Mol Biol 2020; 61:61-73. [PMID: 30608861 DOI: 10.1165/rcmb.2018-0328oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of unknown cause with a median survival of only 3 years. Other investigators and we have shown that fibroblasts derived from IPF lungs display characteristics of senescent cells, and that dysregulated activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) correlates with IPF progression. The question of whether STAT3 activation is involved in fibroblast senescence remains unanswered. We hypothesized that inhibiting STAT3 activation after oxidant-induced senescence would attenuate characteristics of the senescent phenotype. We aimed to characterize a model of oxidant-induced senescence in human lung fibroblasts and to determine the effect of inhibiting STAT3 activity on the development of senescence. Exposing human lung fibroblasts to 150 μM hydrogen peroxide (H2O2) resulted in increased senescence-associated β-galactosidase content and expression of p21 and IL-6, all of which are features of senescence. The shift into senescence was accompanied by an increase of STAT3 translocation to the nucleus and mitochondria. Additionally, Seahorse analysis provided evidence of increased mitochondrial respiration characterized by increased basal respiration, proton leak, and an associated increase in superoxide (O2-) production in senescent fibroblasts. Targeting STAT3 activity using the small-molecule inhibitor STA-21 attenuated IL-6 production, reduced p21 levels, decreased senescence-associated β-galactosidase accumulation, and restored normal mitochondrial function. The results of this study illustrate that stress-induced senescence in lung fibroblasts involves the activation of STAT3, which can be pharmacologically modulated.
Collapse
Affiliation(s)
- David W Waters
- 1 School of Biomedical Sciences and Pharmacy and.,2 National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, Australia
| | - Kaj E C Blokland
- 1 School of Biomedical Sciences and Pharmacy and.,2 National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, Australia.,3 Department of Pathology and Medical Biology, and.,4 Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Lan Wei
- 1 School of Biomedical Sciences and Pharmacy and
| | | | - Jade Jaffar
- 6 Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Australia; and
| | - Glen P Westall
- 5 School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | | | - Cecilia M Prele
- 7 Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, and.,8 Institute for Respiratory Health, University of Western Australia, Nedlands, Australia
| | - Steven E Mutsaers
- 7 Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, and.,8 Institute for Respiratory Health, University of Western Australia, Nedlands, Australia
| | | | | | - Christopher L Grainge
- 5 School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Darryl A Knight
- 1 School of Biomedical Sciences and Pharmacy and.,2 National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, Australia
| |
Collapse
|
33
|
Chin JS, Madden L, Chew SY, Becker DL. Drug therapies and delivery mechanisms to treat perturbed skin wound healing. Adv Drug Deliv Rev 2019; 149-150:2-18. [PMID: 30959068 DOI: 10.1016/j.addr.2019.03.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022]
Abstract
Acute wound healing is an orderly process of four overlapping events: haemostasis, inflammation, proliferation and remodelling. A drug delivery system with a temporal control of release could promote each of these events sequentially. However, acute wound healing normally proceeds very well in healthy individuals and there is little need to promote it. In the elderly and diabetics however, healing is often slow and wounds can become chronic and we need to promote their healing. Targeting the events of acute wound healing would not be appropriate for a chronic wound, which have stalled in the proinflammatory phase. They also have many additional problems such as poor circulation, low oxygen, high levels of leukocytes, high reactive oxygen species, high levels of proteolytic enzymes, high levels of proinflammatory cytokines, bacterial infection and high pH. The future challenge will be to tackle each of these negative factors to create a wound environment conducive to healing.
Collapse
|
34
|
Atkin L, Bućko Z, Montero EC, Cutting K, Moffatt C, Probst A, Romanelli M, Schultz GS, Tettelbach W. Implementing TIMERS: the race against hard-to-heal wounds. J Wound Care 2019; 23:S1-S50. [DOI: 10.12968/jowc.2019.28.sup3a.s1] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Leanne Atkin
- Vascular Nurse Consultant. Mid Yorkshire NHS Trust/University of Huddersfield, England
| | - Zofia Bućko
- Head of Non-Healing Wounds Department, Centrum Medycznym HCP, Poznań, Poland
| | - Elena Conde Montero
- Specialist in Dermatology. Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Keith Cutting
- Clinical Research Consultant, Hertfordshire, Honorary, Tissue Viability Specialist, First Community Health and Care, Surrey, England
| | - Christine Moffatt
- Professor of Clinical Nursing Research, University of Nottingham, and Nurse Consultant, Derby Hospitals NHS Foundation Trust Lymphoedema Service, England
| | - Astrid Probst
- Advanced Nurse Practitioner Wound Care, Klinikum am Steinenberg/Ermstalklinik, Reutlingen, Germany
| | - Marco Romanelli
- President WUWHS, Associate Professor of Dermatology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gregory S Schultz
- Researcher, Professor of Obstetrics and Gynaecology, University of Florida, Gainesville, Florida, US
| | - William Tettelbach
- Associate Chief Medical Officer, MiMedx, Georgia. Adjunct Assistant Professor, Duke University School of Medicine, Durham, North Carolina. Medical Director of Wound Care and Infection Prevention, Landmark Hospital, Salt Lake City, Utah, US
| |
Collapse
|
35
|
Elliott CG, Wang J, Walker JT, Michelsons S, Dunmore-Buyze J, Drangova M, Leask A, Hamilton DW. Periostin and CCN2 Scaffolds Promote the Wound Healing Response in the Skin of Diabetic Mice. Tissue Eng Part A 2019; 25:1326-1339. [PMID: 30572781 DOI: 10.1089/ten.tea.2018.0268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IMPACT STATEMENT Nonhealing skin wounds remain a significant burden on health care systems, with diabetic patients 20 times as likely to undergo a lower extremity amputation due to impaired healing. Novel treatments that suppress the proinflammatory signature and induce the proliferative and remodeling phases are needed clinically. We demonstrate that the addition of periostin and CCN2 in a scaffold form increases closure rates of full-thickness skin wounds in diabetic mice, concomitant with enhanced angiogenesis. Our results demonstrate the efficacy of periostin- and CCN2-containing biomaterials to stimulate wound closure, which could represent a novel method for the treatment of diabetic skin wounds.
Collapse
Affiliation(s)
- Christopher G Elliott
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Jiarong Wang
- Division of Vascular Surgery, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,Department of Vascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - John T Walker
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Sarah Michelsons
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Joy Dunmore-Buyze
- Imaging Research Laboratories, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Maria Drangova
- Imaging Research Laboratories, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Andrew Leask
- Division of Oral Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,Division of Oral Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| |
Collapse
|
36
|
Elevated Local Senescence in Diabetic Wound Healing Is Linked to Pathological Repair via CXCR2. J Invest Dermatol 2019; 139:1171-1181.e6. [PMID: 30684552 DOI: 10.1016/j.jid.2019.01.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 01/02/2023]
Abstract
Cellular senescence can be broadly defined as a stable, but essentially irreversible, loss of proliferative capacity. Historically, senescence has been described as a negative outcome of advanced cellular age. It is now clear, however, that senescence represents a dynamic autonomous stress response, integral to long-term tumor suppression. Transient induction of a senescent phenotype has actually been suggested to promote regeneration in both liver and skin. Here, we explored the role of senescence in pathological aged and diabetic murine wound healing. Aged and diabetic wounds had greater numbers of senescent cells, and diabetic macrophages maintained altered retention of polarization and produced a CXCR2-enriched senescence-associated secretory phenotype (i.e., SASP). Of translational relevance, targeted expression of CXCR2 in primary human dermal fibroblasts led to paracrine induction of nuclear p21. Furthermore, a selective agonist to CXCR2 was able to reverse delayed healing in diabetic mice and accelerate ex vivo human skin wound healing. Collectively, these data suggest a hitherto unappreciated role for CXCR2 in mediating cellular senescence in pathological wound repair.
Collapse
|
37
|
Waters DW, Blokland KEC, Pathinayake PS, Burgess JK, Mutsaers SE, Prele CM, Schuliga M, Grainge CL, Knight DA. Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2018; 315:L162-L172. [PMID: 29696986 DOI: 10.1152/ajplung.00037.2018] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia of unknown cause with a median survival of only three years. Little is known about the mechanisms that precede the excessive collagen deposition seen in IPF, but cellular senescence has been strongly implicated in disease pathology. Senescence is a state of irreversible cell-cycle arrest accompanied by an abnormal secretory profile and is thought to play a critical role in both development and wound repair. Normally, once a senescent cell has contributed to wound repair, it is promptly removed from the environment via infiltrating immune cells. However, if immune clearance fails, the persistence of senescent cells is thought to drive disease pathology through their altered secretory profile. One of the major cell types involved in wound healing is fibroblasts, and senescent fibroblasts have been identified in the lungs of patients with IPF and in fibroblast cultures from IPF lungs. The question of what is driving abnormally high numbers of fibroblasts into senescence remains unanswered. The transcription factor signal transducer and activator of transcription 3 (STAT3) plays a role in a myriad of processes, including cell-cycle progression, gene transcription, as well as mitochondrial respiration, all of which are dysregulated during senescence. Activation of STAT3 has previously been shown to correlate with IPF progression and therefore is a potential molecular target to modify early-stage senescence and restore normal fibroblast function. This review summarizes what is presently known about fibroblast senescence in IPF and how STAT3 may contribute to this phenotype.
Collapse
Affiliation(s)
- David W Waters
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Kaj E C Blokland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD , Groningen , The Netherlands.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Prabuddha S Pathinayake
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales , Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD , Groningen , The Netherlands
| | - Steven E Mutsaers
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia , Nedlands, Western Australia , Australia.,Institute for Respiratory Health, University of Western Australia , Nedlands, Western Australia , Australia
| | - Cecilia M Prele
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia , Nedlands, Western Australia , Australia.,Institute for Respiratory Health, University of Western Australia , Nedlands, Western Australia , Australia
| | - Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia
| | - Christopher L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| |
Collapse
|
38
|
Hirose S, Narita K, Asano K, Nakane A. Salmon cartilage proteoglycan promotes the healing process of Staphylococcus aureus-infected wound. Heliyon 2018; 4:e00587. [PMID: 29862350 PMCID: PMC5968139 DOI: 10.1016/j.heliyon.2018.e00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 11/28/2022] Open
Abstract
Wound healing is the critical event for maintaining skin function and barrier. Inflammatory state in which a variety of cells are activated and accumulated is important for wound healing. Bacterial infection in cutaneous wound is a common problem and causes delay of wound healing. Our previous study demonstrated that the salmon nasal cartilage proteoglycan (PG) has an immunomodulatory effect in various mouse models of inflammatory disease. In this study, we investigated the effect of PG on healing process of Staphylococcus aureus-infected wound. PG accelerated wound closure in the initial phase of both infected and non-infected wound healing. In addition, the bacterial number in wounds of the PG-treated mice was significantly lower than that in the vehicle group. Neutrophil and macrophage infiltration was intensively observed in the PG-treated mice on day 2 after S. aureus inoculation, whereas neutrophil and macrophage influx was highly detected on day 6 in the vehicle control. Moreover, the production of TGF-β and IL-6 in the wound tissue was significantly promoted compared to the vehicle control on day 1. In contrast, the production of IL-1β and TNF-α in PG-treated mice was significantly decreased compared to the vehicle control on day 5. These data suggested that PG modulates the inflammatory state in infected wounds leading to promote wound healing.
Collapse
Affiliation(s)
- Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
39
|
Yuniarti WM, Primarizky H, Lukiswanto BS. The activity of pomegranate extract standardized 40% ellagic acid during the healing process of incision wounds in albino rats ( Rattus norvegicus). Vet World 2018; 11:321-326. [PMID: 29657424 PMCID: PMC5891847 DOI: 10.14202/vetworld.2018.321-326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/06/2018] [Indexed: 02/04/2023] Open
Abstract
Aim: This research aimed to evaluate the effects of pomegranate extract standardized to 40% ellagic acid on the incised wound in albino rats. Materials and Methods: Fifty albino rats were divided into 10 treatment groups. The five groups were sacrificed on the 8th day, while the others were sacrificed on the 15th day. Two groups of albino rats with incised wound were not treated at all (P0), the other two groups of albino rats with incised wound were treated with Betadine® (P1) ointment, and the rest of the groups were treated with pomegranate extract standardized to 40% ellagic acid with a concentration of 2.5% (P2), 5% (P3), and 7.5% (P4). The treatments were carried out twice a day with an interval of 12 h for 7 and 14 days. At the end of the research, the skin tissue of those albino rats had been taken for histopathologic preparations before H and E staining was performed. Results: Collagen deposition, polymorphonuclear neutrophils (PMN) infiltration, angiogenesis, and fibrosis degree in Group P4 treated with 7.5% pomegranate extract standardized to 40% ellagic acid for 14 days were significantly different from those in Groups P0, P1, P2, and P3, especially in the case of PMN inflammation (p<0.05). Conclusion: The administration of 7.5% pomegranate extract standardized to 40% ellagic acid for 14 days on incised wounds of those albino rats can accelerate the wound healing process characterized by collagen deposition improvement, PMN infiltration in the wound area, angiogenesis, and fibrosis degree.
Collapse
Affiliation(s)
- Wiwik Misaco Yuniarti
- Department of Veterinary Clinical Science, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo, Campus C Unair, Surabaya, 60115, Indonesia
| | - Hardany Primarizky
- Department of Veterinary Clinical Science, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo, Campus C Unair, Surabaya, 60115, Indonesia
| | - Bambang Sektiari Lukiswanto
- Department of Veterinary Clinical Science, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo, Campus C Unair, Surabaya, 60115, Indonesia
| |
Collapse
|
40
|
Lugo R, Gabasa M, Andriani F, Puig M, Facchinetti F, Ramírez J, Gómez-Caro A, Pastorino U, Fuster G, Almendros I, Gascón P, Davalos A, Reguart N, Roz L, Alcaraz J. Heterotypic paracrine signaling drives fibroblast senescence and tumor progression of large cell carcinoma of the lung. Oncotarget 2018; 7:82324-82337. [PMID: 27384989 PMCID: PMC5347694 DOI: 10.18632/oncotarget.10327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/12/2016] [Indexed: 11/25/2022] Open
Abstract
Senescence in cancer cells acts as a tumor suppressor, whereas in fibroblasts enhances tumor growth. Senescence has been reported in tumor associated fibroblasts (TAFs) from a growing list of cancer subtypes. However, the presence of senescent TAFs in lung cancer remains undefined. We examined senescence in TAFs from primary lung cancer and paired control fibroblasts from unaffected tissue in three major histologic subtypes: adenocarcinoma (ADC), squamous cell carcinoma (SCC) and large cell carcinoma (LCC). Three independent senescence markers (senescence-associated beta-galactosidase, permanent growth arrest and spreading) were consistently observed in cultured LCC-TAFs only, revealing a selective premature senescence. Intriguingly, SCC-TAFs exhibited a poor growth response in the absence of senescence markers, indicating a dysfunctional phenotype rather than senescence. Co-culturing normal fibroblasts with LCC (but not ADC or SCC) cancer cells was sufficient to render fibroblasts senescent through oxidative stress, indicating that senescence in LCC-TAFs is driven by heterotypic signaling. In addition, senescent fibroblasts provided selective growth and invasive advantages to LCC cells in culture compared to normal fibroblasts. Likewise, senescent fibroblasts enhanced tumor growth and lung dissemination of tumor cells when co-injected with LCC cells in nude mice beyond the effects induced by control fibroblasts. These results define the subtype-specific aberrant phenotypes of lung TAFs, thereby challenging the common assumption that lung TAFs are a heterogeneous myofibroblast-like cell population regardless of their subtype. Importantly, because LCC often distinguishes itself in the clinic by its aggressive nature, we argue that senescent TAFs may contribute to the selective aggressive behavior of LCC tumors.
Collapse
Affiliation(s)
- Roberto Lugo
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Francesca Andriani
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori INT, Milano, Italy
| | - Marta Puig
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain.,Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Federica Facchinetti
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori INT, Milano, Italy
| | - Josep Ramírez
- Anatomopathology Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Abel Gómez-Caro
- Thoracic Surgery Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ugo Pastorino
- Thoracic Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Gemma Fuster
- Thoracic Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Isaac Almendros
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Pere Gascón
- Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Noemí Reguart
- Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Luca Roz
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori INT, Milano, Italy
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
41
|
Tarusha L, Paoletti S, Travan A, Marsich E. Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:22. [PMID: 29396683 DOI: 10.1007/s10856-018-6027-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Chronic non-healing wounds are a clinically important problem in terms of number of patients and costs. Wound dressings such as hydrogels, hydrocolloids, polyurethane films and foams are commonly used to manage these wounds since they tend to maintain a moist environment which is shown to accelerate re-epithelialization. The use of antibacterial compounds is important in the management of wound infections. A novel wound-dressing material based on a blended matrix of the polysaccharides alginate, hyaluronic acid and Chitlac-silver nanoparticles is here proposed and its application for wound healing is examined. The manufacturing approach to obtain membranes is based on gelling, foaming and freeze-casting of alginate, hyaluronic acid and Chitlac-silver nanoparticles mixtures using calcium ions as the cross-linking agent. Comprehensive evaluations of the morphology, swelling kinetics, permeability, mechanical characteristics, cytotoxicity, capability to inhibit metalloproteinases and of antibacterial property were conducted. Biological in vitro studies demonstrated that hyaluronic acid released by the membrane is able to stimulate the wound healing meanwhile the metal silver exploits an efficient antibacterial activity against both planktonic bacteria and biofilms. Overall, the experimental data evidence that the studied material could be used as antibacterial wound dressing for wound healing promotion.
Collapse
Affiliation(s)
- Lorena Tarusha
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127, Trieste, Italy
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127, Trieste, Italy
| | - Andrea Travan
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127, Trieste, Italy
| | - Eleonora Marsich
- Department of Medical, Surgical and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129, Trieste, Italy.
| |
Collapse
|
42
|
Ravishankar K, Kiranmayi GVN, Prasad YR, Devi L. Wound healing activity in rabbits and antimicrobial activity of Hibiscus hirtus ethanolic extract. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000417075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
The JAK/STAT signaling pathway and photobiomodulation in chronic wound healing. Cytokine Growth Factor Rev 2017; 38:73-79. [DOI: 10.1016/j.cytogfr.2017.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/26/2022]
|
44
|
MicroRNA-132 promotes fibroblast migration via regulating RAS p21 protein activator 1 in skin wound healing. Sci Rep 2017; 7:7797. [PMID: 28798331 PMCID: PMC5552762 DOI: 10.1038/s41598-017-07513-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/26/2017] [Indexed: 01/22/2023] Open
Abstract
MicroRNA (miR)-132 has been identified as a top up-regulated miRNA during skin wound healing and its inhibition impairs wound repair. In a human in vivo surgical wound model, we showed that miR-132 was induced in epidermal as well as in dermal wound-edge compartments during healing. Moreover, in a panel of cells isolated from human skin wounds, miR-132 was found highly expressed in human dermal fibroblasts (HDFs). In HDFs, miR-132 expression was upregulated by TGF-β1. By overexpression or inhibition of miR-132, we showed that miR-132 promoted HDF migration. Mechanistically, global transcriptome analysis revealed that RAS signaling pathway was regulated by miR-132 in HDFs. We found that RAS p21 protein activator 1 (RASA1), a known target of miR-132, was downregulated in HDFs upon miR-132 overexpression. Silencing of RASA1 phenocopied the pro-migratory effect of miR-132. Collectively, our study reveals an important role for miR-132 in HDFs during wound healing and indicates a therapeutic potential of miR-132 in hard-to-heal skin wounds.
Collapse
|
45
|
Sutcliffe JES, Thrasivoulou C, Serena TE, Madden L, Richards T, Phillips ARJ, Becker DL. Changes in the extracellular matrix surrounding human chronic wounds revealed by 2-photon imaging. Int Wound J 2017; 14:1225-1236. [PMID: 28730726 DOI: 10.1111/iwj.12789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/07/2017] [Indexed: 01/08/2023] Open
Abstract
Chronic wounds are a growing problem worldwide with no effective therapeutic treatments available. Our objective was to understand the composition of the dermal tissue surrounding venous leg ulcers and diabetic foot ulcers (DFU). We used novel 2-photon imaging techniques alongside classical histology to examine biopsies from the edges of two common types of chronic wound, venous leg ulcers and DFU. Compared to normal intact skin, we found that collagen levels are significantly reduced throughout the dermis of venous leg ulcer biopsies and DFU, with a reduction in both fibril thickness and abundance. Both wound types showed a significant reduction in elastin in the upper dermis, but in DFU, the loss was throughout the dermis. Loss of extracellular matrix correlated with high levels of CD68- and CD18-positive leukocytes. 2-photon imaging of the extracellular matrix in the intact tissue surrounding a chronic wound with a hand-held device may provide a useful clinical indicator on the healing progression or deterioration of these wounds.
Collapse
Affiliation(s)
| | | | - Thomas E Serena
- SerenaGroup, Wound and Hyperbaric Centers, Cambridge, MA, USA
| | - Leigh Madden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Toby Richards
- Department of Surgery, University College London, London, UK
| | | | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Institute of Medical Biology, A*Star, Immunos, Singapore
| |
Collapse
|
46
|
Harries RL, Bosanquet DC, Harding KG. Wound bed preparation: TIME for an update. Int Wound J 2017; 13 Suppl 3:8-14. [PMID: 27547958 DOI: 10.1111/iwj.12662] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/16/2016] [Indexed: 12/11/2022] Open
Abstract
While the overwhelming majority of wounds heal rapidly, a significant proportion fail to progress through the wound-healing process. These resultant chronic wounds cause considerable morbidity and are costly to treat. Wound bed preparation, summarised by the TIME (Tissue, Inflammation/infection, Moisture imbalance, Epithelial edge advancement) concept, is a systematic approach for assessing chronic wounds. Each of these components needs to be addressed and optimised to improve the chances of successful wound closure. We present an up-to-date literature review of the most important recent aspects of wound bed preparation. While there are many novel therapies that are available to the treating clinician, often, there are limited data on which to assess their clinical value, and a lack of appreciation for adequate wound bed preparation needed before expensive therapy is used to heal a wound.
Collapse
Affiliation(s)
- Rhiannon L Harries
- Royal College of Surgeons/Welsh Wound Initiative Research Fellow, Wound Healing Research Unit, School of Medicine, Cardiff University, Cardiff, UK
| | - David C Bosanquet
- South East Wales Vascular Network, University Hospital of Medicine, Cardiff, UK
| | - Keith G Harding
- Welsh Wound Innovation Initiative, Cardiff University, Cardiff, UK
| |
Collapse
|
47
|
Vella L, Formosa C. Characteristics Predicting the Outcome in Individuals with Diabetic Foot Ulcerations. J Am Podiatr Med Assoc 2017. [PMID: 28650752 DOI: 10.7547/15-070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND We sought to determine patient and ulcer characteristics that predict wound healing in patients living with diabetes. METHODS A prospective observational study was conducted on 99 patients presenting with diabetic foot ulceration. Patient and ulcer characteristics were recorded. Patients were followed up for a maximum of 1 year. RESULTS After 1 year of follow-up, ulcer characteristics were more predictive of ulcer healing than were patient characteristics. Seventy-seven percent of ulcers had healed and 23% had not healed. Independent predictors of nonhealing were ulcer stage (P = .003), presence of biofilm (P = .020), and ulcer depth (P = .028). Although this study demonstrated that the baseline hemoglobin A1c reading at the start of the study was not a significant predictor of foot ulcer outcome (P = .603, resolved versus amputated), on further statistical analyses, when hemoglobin A1c was compared with the time taken for complete ulcer healing (n = 77), it proved to be significant (P = .009). CONCLUSIONS The factors influencing healing are ulcer stage, presence of biofilm, and ulcer depth. These findings have important implications for clinical practice, especially in an outpatient setting. Prediction of outcome may be helpful for health-care professionals in individualizing and optimizing clinical assessment and management of patients. Identification of determinants of outcome could result in improved health outcomes, improved quality of life, and fewer diabetes-related foot complications.
Collapse
Affiliation(s)
| | - Cynthia Formosa
- Faculty of Health Sciences, University of Malta, Msida, Malta
| |
Collapse
|
48
|
McQuilling JP, Vines JB, Mowry KC. In vitro assessment of a novel, hypothermically stored amniotic membrane for use in a chronic wound environment. Int Wound J 2017; 14:993-1005. [PMID: 28370981 PMCID: PMC7949938 DOI: 10.1111/iwj.12748] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/18/2022] Open
Abstract
Chronic wounds require extensive healing time and place patients at risk of infection and amputation. Recently, a fresh hypothermically stored amniotic membrane (HSAM) was developed and has subsequently shown promise in its ability to effectively heal chronic wounds. The purpose of this study is to investigate the mechanisms of action that contribute to wound-healing responses observed with HSAM. A proteomic analysis was conducted on HSAM, measuring 25 growth factors specific to wound healing within the grafts. The rate of release of these cytokines from HSAMs was also measured. To model the effect of these cytokines and their role in wound healing, proliferation and migration assays with human fibroblasts and keratinocytes were conducted, along with tube formation assays measuring angiogenesis using media conditioned from HSAM. Additionally, the cell-matrix interactions between fibroblasts and HSAM were investigated. Conditioned media from HSAM significantly increased both fibroblast and keratinocyte proliferation and migration and induced more robust tube formation in angiogenesis assays. Fibroblasts cultured on HSAMs were found to migrate into and deposit matrix molecules within the HSAM graft. These collective results suggest that HSAM positively affects various critical pathways in chronic wound healing, lending further support to promising qualitative results seen clinically and providing further validation for ongoing clinical trials.
Collapse
Affiliation(s)
| | - Jeremy B Vines
- Research and Development, NuTech Medical, Birmingham, AL, USA
| | - Katie C Mowry
- Research and Development, NuTech Medical, Birmingham, AL, USA
| |
Collapse
|
49
|
Kucinska-Lipka J, Janik H, Gubanska I. Ascorbic Acid in Polyurethane Systems for Tissue Engineering. CHEMISTRY & CHEMICAL TECHNOLOGY 2016. [DOI: 10.23939/chcht10.04si.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The introduction of the paper was devoted to the main items of tissue engineering (TE) and the way of porous structure obtaining as scaffolds. Furthermore, the significant role of the scaffold design in TE was described. It was shown, that properly designed polyurethanes (PURs) find application in TE due to the proper physicochemical, mechanical and biological properties. Then the use of L-ascorbic acid (L-AA) in PUR systems for TE was described. L-AA has been applied in this area due to its suitable biological characteristics and antioxidative properties. Moreover, L-AA influences tissue regeneration due to improving collagen synthesis, which is a primary component of the extracellular matrix (ECM). Modification of PUR with L-AA leads to the materials with higher biocompatibility and such system is promising for TE applications.
Collapse
|
50
|
Wirohadidjojo YW, Budiyanto A, Soebono H. Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts. Yonsei Med J 2016; 57:1282-5. [PMID: 27401663 PMCID: PMC4960398 DOI: 10.3349/ymj.2016.57.5.1282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 11/27/2022] Open
Abstract
To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm⁻²) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined.
Collapse
Affiliation(s)
- Yohanes Widodo Wirohadidjojo
- Department of Dermato-Venereology, Faculty of Medicine, Gadjah Mada University, Sardjito Hospital, Yogyakarta, Indonesia.
| | - Arief Budiyanto
- Department of Dermato-Venereology, Faculty of Medicine, Gadjah Mada University, Sardjito Hospital, Yogyakarta, Indonesia
| | - Hardyanto Soebono
- Department of Dermato-Venereology, Faculty of Medicine, Gadjah Mada University, Sardjito Hospital, Yogyakarta, Indonesia
| |
Collapse
|