1
|
Kosugi C, Koda K, Shimizu H, Yamazaki M, Shuto K, Mori M, Usui A, Nojima H, Endo S, Yanagibashi H, Arimitsu H, Tochigi T, Sazuka T, Hirota M, Kuboki H. A Randomized Trial of Ionic Silver Dressing to Reduce Surgical Site Infection After Gastrointestinal Surgery. ANNALS OF SURGERY OPEN 2024; 5:e402. [PMID: 38883952 PMCID: PMC11175960 DOI: 10.1097/as9.0000000000000402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/19/2024] [Indexed: 06/18/2024] Open
Abstract
Objective To determine whether Aquacel Ag Hydrofiber dressings containing ionic silver are superior to film dressings for preventing superficial surgical site infections (SSI) in patients undergoing elective gastrointestinal surgery. Background Multiple clinical trials have assessed the effectiveness of silver-containing wound dressings; however, systematic reviews failed to find any advantages of these dressings and concluded that there was insufficient evidence to indicate that they prevented wound infections. This study aimed to evaluate the efficacy of Aquacel Ag Hydrofiber dressings for preventing superficial SSIs in patients undergoing gastrointestinal surgery. Methods Patients undergoing elective gastrointestinal surgery were randomly assigned to receive either Aquacel Ag Hydrofiber (study group) or film dressings (control group). The primary end point was superficial SSI within 30 days after surgery (UMIN Clinical Trials Registry ID: 000043081). Results A total of 865 patients (427 study group, 438 control group) were qualified for primary end-point analysis. The overall rate of superficial SSIs was significantly lower in the study group than in the control group (6.8% vs 11.4%, P = 0.019). There was no significant difference in superficial SSI rates between the groups in patients undergoing upper gastrointestinal surgery; however, the rate was significantly lower in the study group in patients undergoing lower gastrointestinal surgery (P = 0.042). Multivariate analysis identified Aquacel Ag Hydrofiber dressings as an independent factor for reducing superficial SSIs (odds ratio, 0.602; 95% confidence interval, 0.367-0.986; P = 0.044). Conclusions Aquacel Ag Hydrofiber dressings can reduce superficial SSIs compared to film dressings in patients undergoing elective gastrointestinal surgery, especially lower gastrointestinal surgery.
Collapse
Affiliation(s)
- Chihiro Kosugi
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Keiji Koda
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Hiroaki Shimizu
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Masato Yamazaki
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Kiyohiko Shuto
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Mikito Mori
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Akihiro Usui
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Hiroyuki Nojima
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Satoshi Endo
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Hiroo Yanagibashi
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Hidehito Arimitsu
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Toru Tochigi
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Tetsutaro Sazuka
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Mihono Hirota
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| | - Hideyuki Kuboki
- From the Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
| |
Collapse
|
2
|
Martínez-García K, Zertuche-Arias T, Bernáldez-Sarabia J, Iñiguez E, Kretzchmar T, Camacho-Villegas TA, Lugo-Fabres PH, Licea Navarro AF, Bravo-Madrigal J, Castro-Ceseña AB. Radical Scavenging, Hemocompatibility, and Antibacterial Activity against MDR Acinetobacter baumannii in Alginate-Based Aerogels Containing Lipoic Acid-Capped Silver Nanoparticles. ACS OMEGA 2024; 9:2350-2361. [PMID: 38250422 PMCID: PMC10795026 DOI: 10.1021/acsomega.3c06114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Retaining the hemocompatibility, supporting cell growth, and exhibiting anti-inflammatory and antioxidant properties, while having antimicrobial activity, particularly against multidrug-resistant bacteria (MDR), remain a challenge when designing aerogels for biomedical applications. Here, we report that our synthesized alginate-based aerogels containing either 7.5 or 11.25 μg of lipoic acid-capped silver nanoparticles (AgNPs) showed improved hemocompatibility properties while retaining their antimicrobial effect against MDR Acinetobacter baumannii and the reference strain Escherichia coli, relative to a commercial dressing and polymyxin B, used as a reference. The differences in terms of the microstructure and nature of the silver, used as the bioactive agent, between our synthesized aerogels and the commercial dressing used as a reference allowed us to improve several biological properties in our aerogels with respect to the reference commercial material. Our aerogels showed significantly higher antioxidant capacity, in terms of nmol of Trolox equivalent antioxidant capacity per mg of aerogel, than the commercial dressing. All our synthesized aerogels showed anti-inflammatory activity, expressed as nmol of indomethacin equivalent anti-inflammatory activity per mg of aerogel, while this property was not found in the commercial dressing material. Finally, our aerogels were highly hemocompatible (less than 1% hemolysis ratio); however, the commercial material showed a 20% hemolysis rate. Therefore, our alginate-based aerogels with lipoic acid-capped AgNPs hold promise for biomedical applications.
Collapse
Affiliation(s)
- Kevin
D. Martínez-García
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Tonatzin Zertuche-Arias
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Johanna Bernáldez-Sarabia
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Enrique Iñiguez
- Ciencias
de la Tierra, Centro de Investigación
Científica y de Educación Superior de Ensenada, Baja
California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
- CONAHCYT—Ciencias
de la Tierra, Centro de Investigación
Científica y de Educación Superior de Ensenada, Baja
California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Thomas Kretzchmar
- Ciencias
de la Tierra, Centro de Investigación
Científica y de Educación Superior de Ensenada, Baja
California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Tanya Amanda Camacho-Villegas
- Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño de Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
- CONAHCYT-Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Pavel H. Lugo-Fabres
- Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño de Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
- CONAHCYT-Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Alexei F. Licea Navarro
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Jorge Bravo-Madrigal
- Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño de Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Ana B. Castro-Ceseña
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
- CONAHCYT-Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| |
Collapse
|
3
|
Pei TT, Luo H, Wang Y, Li H, Wang XY, Zhang YQ, An Y, Wu LL, Ma J, Liang X, Yan A, Yang L, Chen C, Dong T. Filamentous prophage Pf4 promotes genetic exchange in Pseudomonas aeruginosa. THE ISME JOURNAL 2024; 18:wrad025. [PMID: 38365255 PMCID: PMC10837833 DOI: 10.1093/ismejo/wrad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
Filamentous prophages are widespread among bacteria and play crucial functions in virulence, antibiotic resistance, and biofilm structures. The filamentous Pf4 particles, extruded by an important pathogen Pseudomonas aeruginosa, can protect producing cells from adverse conditions. Contrary to the conventional belief that the Pf4-encoding cells resist reinfection, we herein report that the Pf4 prophage is reciprocally and commonly exchanged within P. aeruginosa colonies, which can repair defective Pf4 within the community. By labeling the Pf4 locus with antibiotic resistance and fluorescence markers, we demonstrate that the Pf4 locus is frequently exchanged within colony biofilms, in artificial sputum media, and in infected mouse lungs. We further show that Pf4 trafficking is a rapid process and capable of rescuing Pf4-defective mutants. The Pf4 phage is highly adaptable and can package additional DNA doubling its genome size. We also report that two clinical P. aeruginosa isolates are susceptible to the Pf4-mediated exchange, and the Pf5 prophage can be exchanged between cells as well. These findings suggest that the genetic exchanging interactions by filamentous prophages may facilitate defect rescue and the sharing of prophage-dependent benefits and costs within the P. aeruginosa community.
Collapse
Affiliation(s)
- Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Wang
- Unit of Pathogenic Fungal Infection and Host Immunity, Key Laboratory of Molecular Virology and Immunology, Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing-Yu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi-Qiu Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying An
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Li Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junhua Ma
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoye Liang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changbin Chen
- Unit of Pathogenic Fungal Infection and Host Immunity, Key Laboratory of Molecular Virology and Immunology, Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Nasra S, Patel M, Shukla H, Bhatt M, Kumar A. Functional hydrogel-based wound dressings: A review on biocompatibility and therapeutic efficacy. Life Sci 2023; 334:122232. [PMID: 37918626 DOI: 10.1016/j.lfs.2023.122232] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Chronic wounds, burns, and surgical incisions represent critical healthcare challenges that significantly impact patient quality of life and strain healthcare resources. In response to these pressing needs, the field of wound healing has witnessed a radical advancement with the emergence of functional hydrogel-based dressings. This review article underscores the severity and importance of this transformative study in the domain of wound healing. The hydrogel matrix offers a moist and supportive environment that facilitates cellular migration, proliferation, and tissue regeneration, vital for efficient wound closure. Their conformable nature ensures patient comfort, reducing pain and uneasiness during dressing changes, particularly in chronic wounds where frequent interventions are required. Beyond their structural merits, functional hydrogel dressings possess the capability of incorporating bioactive molecules such as growth factors and antimicrobial agents. This facilitates targeted and sustained delivery of therapeutics directly to the wound site, addressing the multifactorial nature of chronic wounds and enhancing the healing trajectory. The integration of advanced nanotechnology has propelled the design of hydrogel dressings with enhanced mechanical strength and controlled drug release profiles, amplifying their therapeutic potential. In conclusion, the significance of this study lies in its ability to revolutionize wound healing practices and positively impact the lives of countless individuals suffering from chronic wounds and burns. As this transformative technology gains momentum, it holds the promise of addressing a major healthcare burden worldwide, thus heralding a new era in wound care management.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Milonee Patel
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Haly Shukla
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Mahek Bhatt
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
5
|
Xianchao D, Yi L, Chang L, Zhixin Y. Comparison of Biatain Ag and Biatain Alginate Ag dressings on skin graft donor sites: a prospective clinical trial. J Wound Care 2023; 32:cxcv-cc. [PMID: 37703218 DOI: 10.12968/jowc.2023.32.sup9a.cxcv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
OBJECTIVE The aim of this study was to compare Biatain Ag and Biatain Alginate Ag (both Coloplast, Denmark) as skin graft donor site dressings. METHOD A single-centre, prospective, randomised clinical study was conducted. In patients who had undergone a skin graft operation, adjacent split-thickness skin graft donor sites were dressed with Biatain Ag and Biatain Alginate Ag, respectively. The primary outcomes were time to re-epithelialisation and pain score after the operation. The secondary outcomes were scar scores of the donor site after the operation, haematoma rates, infection rates, and exudation rates before wound healing. Results were compared using the Wilcoxon test and the Chi-squared test. RESULTS A total of 16 paired wounds in 16 patients were studied. The donor sites dressed with Biatain Ag needed more time for >90% re-epithelialisation than those dressed with Biatain Alginate Ag. On day 3 postoperatively, the pain scores with Biatain Ag were significantly less severe than those with Biatain Alginate Ag. On days 6, 9 and 12, the pain scores of both dressings did not differ significantly. The scar scores of the donor site dressed with Biatain Ag were significantly worse than those dressed with Biatain Alginate Ag at 6 months. With respect to infection rates, no significant differences were detected between these two groups. However, the exudation rates of the donor site dressed with Biatain Ag were significantly lower than those dressed with Biatain Alginate Ag. CONCLUSION As skin graft donor site dressings, both Biatain Ag and Biatain Alginate Ag have advantages.
Collapse
Affiliation(s)
- Ding Xianchao
- Department of Burn and Plastic Surgery, Affiliated hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PRC
| | - Luo Yi
- Department of Burn and Plastic Surgery, Affiliated hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PRC
| | - Liu Chang
- Department of Burn and Plastic Surgery, Affiliated hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PRC
| | - Yan Zhixin
- Department of Burn and Plastic Surgery, Affiliated hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PRC
| |
Collapse
|
6
|
Alves PJ, Gryson L, Hajjar J, Lepelletier D, Reners M, Rodríguez Salazar J, Simon A. Role of antiseptics in the prevention and treatment of infections in nursing homes. J Hosp Infect 2023; 131:58-69. [PMID: 36216172 DOI: 10.1016/j.jhin.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Inadequate infection control, wound care, and oral hygiene protocols in nursing homes pose challenges to residents' quality of life. Based on the outcomes from a focus group meeting and a literature search, this narrative review evaluates the current and potential roles of antiseptics within nursing home infection management procedures. We examine contemporary strategies and concerns within the management of meticillin-resistant Staphylococcus aureus (MRSA; including decolonization regimes), chronic wound care, and oral hygiene, and review the available data for the use of antiseptics, with a focus on povidone-iodine. Compared with chlorhexidine, polyhexanide, and silver, povidone-iodine has a broader spectrum of antimicrobial activity, with rapid and potent activity against MRSA and other microbes found in chronic wounds, including biofilms. As no reports of bacterial resistance or cross-resistance following exposure to povidone-iodine exist, it may be preferable for MRSA decolonization compared with mupirocin and chlorhexidine, which can lead to resistant MRSA strains. Povidone-iodine oral products have greater efficacy against oral pathogens compared with other antiseptics such as chlorhexidine mouthwash, highlighting the clinical benefit of povidone-iodine in oral care. Additionally, povidone-iodine-based products, including mouthwash, have demonstrated rapid in-vitro virucidal activity against SARS-CoV-2 and may help reduce its transmission if incorporated into nursing home coronavirus 2019 control protocols. Importantly, povidone-iodine activity is not adversely affected by organic material, such as that found in chronic wounds and the oral cavity. Povidone-iodine is a promising antiseptic agent for the management of infections in the nursing home setting, including MRSA decolonization procedures, chronic wound management, and oral care.
Collapse
Affiliation(s)
- P J Alves
- Wounds Research Laboratory, Centre for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, Portugal.
| | - L Gryson
- Belgian Defence Medical Component, Brussels, Belgium
| | - J Hajjar
- Infection Control Practitioner, Consultant, Pau, France
| | - D Lepelletier
- Hospital Hygiene Department, Nantes University Hospital, Nantes, France
| | - M Reners
- Private Dental Practice, Liège, Belgium
| | | | - A Simon
- Infection Control Team, Groupe Hospitalier Jolimont, Haine Saint-Paul, Belgium
| |
Collapse
|
7
|
Hamidi S, Monajjemzadeh F, Siahi‐Shadbad M, Khatibi SA, Farjami A. Antibacterial activity of natural polymer gels and potential applications without synthetic antibiotics. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Samin Hamidi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Farnaz Monajjemzadeh
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical and Food Control Department, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammadreza Siahi‐Shadbad
- Pharmaceutical and Food Control Department, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Seyed Amin Khatibi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
8
|
Jacquart S, Girod-Fullana S, Brouillet F, Pigasse C, Siadous R, Fatnassi M, Grimoud J, Rey C, Roques C, Combes C. Injectable bone cement containing carboxymethyl cellulose microparticles as a silver delivery system able to reduce implant-associated infection risk. Acta Biomater 2022; 145:342-357. [PMID: 35429671 DOI: 10.1016/j.actbio.2022.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
In the challenging quest for a solution to reduce the risk of implant-associated infections in bone substitution surgery, the use of silver ions is promising regarding its broad spectrum on planktonic, sessile as well as multiresistant bacteria. In view of controlling its delivery in situ at the desired dose, we investigated its encapsulation in carboxymethyl cellulose (CMC) microparticles by spray-drying and included the latter in the formulation of a self-setting calcium phosphate bone cement. We implemented an original step-by-step methodology starting from the in vitro study of the antibacterial properties and cytotoxicity of two silver salts of different solubility in aqueous medium and then in the cement to determine the range of silver loading able to confer anti-biofilm and non-cytotoxic properties to the biomaterial. A dose-dependent efficiency of silver was demonstrated on the main species involved in bone-implant infection (S. aureus and S. epidermidis). Loading silver in microspheres instead of loading it directly inside the cement permitted to avoid undesired silver-cement interactions during setting and led to a faster release of silver, i.e. to a higher dose released within the first days combining anti-biofilm activity and preserved cytocompatibility. In addition, a combined interest of the introduction of about 10% (w/w) silver-loaded CMC microspheres in the cement formulation was demonstrated leading to a fully injectable and highly porous (77%) cement, showing a compressive strength analogous to cancellous bone. This injectable silver-loaded biomimetic composite cement formulation constitutes a versatile bone substitute material with tunable drug delivery properties, able to fight against bone implant associated infection. STATEMENT OF SIGNIFICANCE: This study is based on two innovative scientific aspects regarding the literature: i) Choice of silver ions as antibacterial agent combined with their way of incorporation: Carboxymethylcellulose has never been tested into bone cement to control its drug loading and release properties. ii) Methodology to formulate an antibacterial and injectable bone cement: original and multidisciplinary step-by-step methodology to first define, through (micro)biological tests on two silver salts with different solubilities, the targeted range of silver dose to include in carboxymethylcellulose microspheres and, then optimization of silver-loaded microparticles processing to fulfill requirements (encapsulation efficiency and size). The obtained fully injectable composite controls the early delivery of active dose of silver (from 3 h and over 2 weeks) able to fight against bone implant-associated infections.
Collapse
Affiliation(s)
- Sylvaine Jacquart
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | - Sophie Girod-Fullana
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Fabien Brouillet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Christel Pigasse
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Robin Siadous
- Université de Bordeaux, Inserm U1026 Bioingénierie Tissulaire (BioTis), Bordeaux, France
| | - Mohamed Fatnassi
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | - Julien Grimoud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Christian Rey
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, Université Toulouse 3 - Paul Sabatier, Toulouse, France; CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France.
| |
Collapse
|
9
|
Carpa R, Remizovschi A, Culda CA, Butiuc-Keul AL. Inherent and Composite Hydrogels as Promising Materials to Limit Antimicrobial Resistance. Gels 2022; 8:70. [PMID: 35200452 PMCID: PMC8870943 DOI: 10.3390/gels8020070] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 01/25/2023] Open
Abstract
Antibiotic resistance has increased significantly in the recent years, and has become a global problem for human health and the environment. As a result, several technologies for the controlling of health-care associated infections have been developed over the years. Thus, the most recent findings in hydrogel fabrication, particularly antimicrobial hydrogels, could offer valuable solutions for these biomedical challenges. In this review, we discuss the most promising strategies in the development of antimicrobial hydrogels and the application of hydrogels in the treatment of microbial infections. The latest advances in the development of inherently and composite antimicrobial hydrogels will be discussed, as well as hydrogels as carriers of antimicrobials, with a focus on antibiotics, metal nanoparticles, antimicrobial peptides, and biological extracts. The emergence of CRISR-Cas9 technology for removing the antimicrobial resistance has led the necessity of new and performant carriers for delivery of the CRISPR-Cas9 system. Different delivery systems, such as composite hydrogels and many types of nanoparticles, attracted a great deal of attention and will be also discussed in this review.
Collapse
Affiliation(s)
- Rahela Carpa
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Alexei Remizovschi
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Carla Andreea Culda
- Parasitology and Parasitic Diseases Department, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania;
| | - Anca Livia Butiuc-Keul
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Guo J, Zhou Y, Zhu D, Li Y, Yang R. Conjugated Polyelectrolyte/Silver Bromide Nanocomposites: Highly Durable and Robust Antibacterial Materials. ACS APPLIED BIO MATERIALS 2022; 5:183-189. [PMID: 35014819 DOI: 10.1021/acsabm.1c01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the in situ synthesis of silver bromide nanoparticles (AgBr NPs) in a cationic conjugated polyelectrolyte (CPE) matrix. It is interesting that the obtained CPE/AgBr nanocomposite materials exhibit robust and long-term antimicrobial activity against both Gram-negative bacteria and Gram-positive bacteria by producing a large amount of biologically active Ag+. Meanwhile, it is demonstrated that the antimicrobial activity of CPE/AgBr nanocomposites is also related to the size of the AgBr NPs. Smaller particles show a faster AgBr release rate and hence higher antimicrobial activity than big particles. However, the relatively large-sized nanocomposites are beneficial to obtain long-term antimicrobial activity by substantially producing bioactive Ag+. Consequently, the antimicrobial property of the CPE/AgBr nanocomposites can be manipulated by controlling the dimensions of embedded AgBr NPs. The CPE/AgBr nanocomposites can cause a rapid initial drop of bacterial counts in solution, which makes it a potential candidate for antimicrobial therapy in emergency cases. In addition, the sustained release of Ag+ from large-sized nanocomposites makes them suitable for long-term use.
Collapse
Affiliation(s)
- Jing Guo
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yuanhang Zhou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Dangqiang Zhu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yonghai Li
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Renqiang Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| |
Collapse
|
11
|
Huang C, Tao S, Yuan J, Li X. Effect of sodium hypochlorite on biofilm of Klebsiella pneumoniae with different drug resistance. Am J Infect Control 2022; 50:922-928. [PMID: 34986390 DOI: 10.1016/j.ajic.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Biofilm formation is a major factor in the resistance mechanism of Klebsiella pneumoniae. This study aimed to evaluate the effects of sodium hypochlorite on the biofilm of K. pneumoniae with different drug resistance. METHODS We collected 3 different types of K. pneumoniae respectively. The growth trend of biofilms of different drug-resistant K. pneumoniae was quantified by measuring the OD590 for 7 consecutive days using crystal violet staining. Scanning confocal fluorescence microscopy was used to observe biofilm morphology. RESULTS After adding sodium hypochlorite, there were significant differences between the OD590 value of the 200, 500, and 1,000 µg/mL groups and the positive control group (all P < .05) on the fifth day. Concentrations of 2,000 and 5,000 µg/mL sodium hypochlorite were added after the biofilm had matured. In the 5,000 µg/mL sodium hypochlorite group, the OD590 of K. pneumoniae biofilm in the 3 groups decreased significantly compared with the blank control group (all P < .05). CONCLUSIONS Sodium hypochlorite inhibited and cleared the biofilm of K. pneumoniae with different drug resistance, and the effect was enhanced with the increase of concentration in the range of bacteriostatic and bactericidal concentration.
Collapse
Affiliation(s)
- Chenlei Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Shaoneng Tao
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Jinlong Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xiaoning Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.
| |
Collapse
|
12
|
Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci 2021; 16:280-306. [PMID: 34276819 PMCID: PMC8261255 DOI: 10.1016/j.ajps.2020.10.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp. and Pseudomonas sp. Owing to alginate gel forming capability, it is widely used in food, textile and paper industries; and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration. This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays. However, alginate also has limitation. When in contact with physiological environment, alginate could gelate into softer structure, consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts. To cater this problem, wide range of materials have been added to alginate structure, producing sturdy composite materials. For instance, the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material, which not only possesses better mechanical properties compared to native alginate, but also grants additional healing capability and promote better tissue regeneration. In addition, drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent. In this review, preparation of alginate and alginate composite in various forms (fibre, bead, hydrogel, and 3D-printed matrices) used for biomedical application is described first, followed by the discussion of latest trend related to alginate composite utilization in wound dressing, drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Raha Ahmad Raus
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Wan Mohd Fazli Wan Nawawi
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Ricca Rahman Nasaruddin
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| |
Collapse
|
13
|
Tan SH, Ngo ZH, Leavesley D, Liang K. Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:160-181. [PMID: 33446047 DOI: 10.1089/ten.teb.2020.0339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three-dimensional (3D) printed scaffolds have recently emerged as an innovative treatment option for patients with critical-sized skin wounds. Current approaches to managing life-threatening wounds include skin grafting and application of commercially sourced skin substitutes. However, these approaches are not without several challenges. Limited donor tissue and donor site morbidity remain a concern for tissue grafting, while engineered skin substitutes fail to fully recapitulate the complex native environment required for wound healing. The implementation of 3D printed dermal scaffolds offers a potential solution for these shortcomings. Spatial control over scaffold structure, the ability to incorporate multiple materials and bioactive ingredients, enables the creation of conditions specifically optimized for wound healing. Three-dimensional bioprinting, a subset of 3D printing, allows for the replacement of lost cell populations and secreted active compounds that contribute to tissue repair and recovery. The replacement of damaged and lost cells delivers beneficial effects directly, or synergistically, supporting injured tissue to recover its native state. Despite encouraging results, the promise of 3D printed scaffolds has yet to be realized. Further improvements to current material formulations and scaffold designs are required to achieve the goal of clinical adoption. Herein, we provide an overview of 3D printing techniques and discuss several strategies for healing of full-thickness wounds by using 3D printed acellular scaffolds or bioprinted cellular scaffolds, aimed at translating this technology to the clinical management of skin lesions. We identify the challenges associated with designing and optimizing printed tissue replacements, and discuss the future perspectives of this emerging option for managing patients who present with critical-sized life-threatening cutaneous wounds.
Collapse
Affiliation(s)
- Shi Hua Tan
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zong Heng Ngo
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David Leavesley
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kun Liang
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
14
|
Abstract
OBJECTIVE To review the diagnosis of chronic wound biofilms and discuss current treatment approaches. DATA SOURCES Articles included in this review were obtained from the following databases: Wanfang, China National Knowledge Infrastructure, PubMed, and the Web of Science. We focused on research published before August 2019 with keywords including chronic wound, biofilm, bacterial biofilms, and chronic wound infection. STUDY SELECTION Relevant articles were selected by carefully reading the titles and abstracts. Further, different diagnosis and clinical treatment methods for chronic wound biofilm were compared and summarized from the selected published articles. RESULTS Recent guidelines on medical biofilms stated that approaches such as the use of scanning electron microscopy and confocal laser scanning microscopy are the most reliable types of diagnostic techniques. Further, therapeutic strategies include debridement, negative pressure wound therapy, ultrasound, antibiotic, silver-containing dressing, hyperbaric oxygen therapy, and others. CONCLUSION This review provides the identification and management of biofilms, and it can be used as a tool by clinicians for a better understanding of biofilms and translating research to develop best clinical practices.
Collapse
|
15
|
Dissemond J, Steinmann J, Münter KC, Brill H, Böttrich JG, Braunwarth H, Schümmelfeder F, Wilken P. Risk and clinical impact of bacterial resistance/susceptibility to silver-based wound dressings: a systematic review. J Wound Care 2020; 29:221-234. [PMID: 32281507 DOI: 10.12968/jowc.2020.29.4.221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Objective: To perform a systematic review of the literature on bacterial resistance, tolerance and susceptibility of silver within the context of wound therapy using silver-based dressings. Methods: A literature search was carried out using PubMed, Embase and Cochrane Library databases, the focus was whether results from microbiological experimental in vitro tests with reference strains and clinical wound isolates are reflected in clinical practice with regards to their ‘resistance’ profiles, comparable with those observed for antibiotics. The search results were allocated to six categories: resistance and resistance mechanism, in vitro tests with standard strains and wound isolates, prevalence and incidence, impact on clinical practice and impact on antibiotic therapy as well as reviews, expert opinions and consensus. Results: Based on all findings of the literature, it cannot be confirmed that a related clinical resistance to silver-ions in silver-based dressings has clinical impact, although endogenous and exogenous genetic resistance patterns have been described and intensively investigated. A translation of these genetic resistance-expression structures to phenotypic appearances, similar to those known for antibiotics, has not been demonstrated for silver in the literature. Conclusion: It can be concluded that there is no definitive evidence available and further studies should be conducted.
Collapse
Affiliation(s)
- Joachim Dissemond
- Department of Dermatology, Venerology and Allergology, University of Essen, Essen, Germany
| | - Jörg Steinmann
- Institute for Clinical Hygiene, Medical Microbiology and Clinical Infectiology, Paracelsus Medical Private University, Nuremberg Hospital, Nuremberg (Nürnberg), Germany
| | | | - Holger Brill
- Institute of Hygiene and Microbiology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
16
|
Blanchette V, Belosinschi D, Lai TT, Cloutier L, Barnabé S. New Antibacterial Paper Made of Silver Phosphate Cellulose Fibers: A Preliminary Study on the Elimination of Staphylococcus aureus Involved in Diabetic Foot Ulceration. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1304016. [PMID: 31998775 PMCID: PMC6973200 DOI: 10.1155/2020/1304016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/25/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
Abstract
AIM To evaluate in vitro the antibacterial effect of a paper made of silver phosphate cellulose fibers (SPCF) on Staphylococcus aureus, the most common diabetic foot ulceration (DFU) pathogen when compared with other common commercial products. METHODS The antibacterial activity of SPCF samples was evaluated through time with cell counting on agar plates. SPCF samples were then compared with commercial wound care products currently in use in DFU treatments (Silvercel™, Acticoat 7, and Aquacel Ag ExtraTM) through time on agar plates (growth inhibition zones). RESULTS After 6 hours, there was no viable bacterial cell detected on either plate (p < 0.05). There was a net growth inhibition zone for SPCF samples but no significant difference between the two silver concentrations. Compared with common commercial products, SPCF paper provides results equal to Acticoat 7 (p < 0.05). There was a net growth inhibition zone for SPCF samples but no significant difference between the two silver concentrations. Compared with common commercial products, SPCF paper provides results equal to Acticoat 7 (p < 0.05). There was a net growth inhibition zone for SPCF samples but no significant difference between the two silver concentrations. Compared with common commercial products, SPCF paper provides results equal to Acticoat 7 (. CONCLUSIONS These results have shown the efficiency of SPCF paper to eliminate Staphylococcus aureus in these conditions. SPCF papers are effective when compared with other common commercial products and could have an industrial potential in wound care. Infected DFU could benefit from the antibacterial effectiveness of SPCF, but more relevant experimentations related to foot ulcers are needed.Staphylococcus aureus, the most common diabetic foot ulceration (DFU) pathogen when compared with other common commercial products.
Collapse
Affiliation(s)
- Virginie Blanchette
- Université du Québec à Trois-Rivières, Podiatric Medicine Program, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Dan Belosinschi
- Innofibre, Cégep de Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, Québec G9A 5E6, Canada
| | - Thanh Tung Lai
- Université du Québec à Trois-Rivières, Lignocellulosic Material Research Center, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Lyne Cloutier
- Université du Québec à Trois-Rivières, Nursing Department, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Simon Barnabé
- Université du Québec à Trois-Rivières, Lignocellulosic Material Research Center, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
- Université du Québec à Trois-Rivières, Department of Biochemistry, Chemistry and Physics, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
| |
Collapse
|
17
|
Vuković JS, Perić-Grujić AA, Mitić-Ćulafić DS, Božić Nedeljković BD, Tomić SL. Antibacterial Activity of pH-Sensitive Silver(I)/Poly(2-hydroxyethyl acrylate/itaconic acid) Hydrogels. Macromol Res 2019. [DOI: 10.1007/s13233-020-8050-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Chronic wound biofilms. Chin Med J (Engl) 2019. [DOI: 10.1097/cm9.0000000000000523 and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
|
19
|
Gutierrez E, Burdiles PA, Quero F, Palma P, Olate-Moya F, Palza H. 3D Printing of Antimicrobial Alginate/Bacterial-Cellulose Composite Hydrogels by Incorporating Copper Nanostructures. ACS Biomater Sci Eng 2019; 5:6290-6299. [DOI: 10.1021/acsbiomaterials.9b01048] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | - Patricia Palma
- Laboratorio de Microbiología Oral, Área Péptidos y Compuestos Antimicrobianos, Facultad de Odontología, Universidad de Chile, Olivos 943, 8380544 Independencia, Chile
| | | | | |
Collapse
|
20
|
Abstract
Biofilms are responsible for stimulating and maintaining wound inflammation, increasing infection risk and delaying wound closure. Appropriate biofilm management is required to fight against local and systemic infection and to restore balance to the wound environment. The most effective way to remove biofilms involves the use of mechanical techniques, with the wound dressing representing an important component of this strategy. Wound dressing fibres, such as polyacrylate fibres, have been shown to be effective in affecting biofilm architecture by disrupting the biofilm matrix. This helps enhance the efficacy of antimicrobials, such as silver. Focusing an antibiofilm strategy on active agents alone does not constitute a sustainable approach to biofilm management. Furthermore, adding too many active chemicals into a wound can be highly detrimental to the wound bed, and potentially may have both short- and long-term biological concerns. Particular attention on the characteristics and key features of wound dressings is discussed in this paper. The aim of the paper is to review the ideal characteristics of wound dressings, in conjunction with antimicrobials, that are considered a fundamental part of an antibiofilm strategy and growing requirement for enhanced wound healing.
Collapse
Affiliation(s)
- Steven L Percival
- 5D Health Protection Group Ltd, Liverpool Bio-innovation Hub, Liverpool, UK
| |
Collapse
|
21
|
Innovative natural polymer metal nanocomposites and their antimicrobial activity. Int J Biol Macromol 2019; 136:586-596. [DOI: 10.1016/j.ijbiomac.2019.06.114] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 02/06/2023]
|
22
|
Polymeric Composites with Silver (I) Cyanoximates Inhibit Biofilm Formation of Gram-Positive and Gram-Negative Bacteria. Polymers (Basel) 2019; 11:polym11061018. [PMID: 31181853 PMCID: PMC6631325 DOI: 10.3390/polym11061018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
Biofilms are surface-associated microbial communities known for their increased resistance to antimicrobials and host factors. This resistance introduces a critical clinical challenge, particularly in cases associated with implants increasing the predisposition for bacterial infections. Preventing such infections requires the development of novel antimicrobials or compounds that enhance bactericidal effect of currently available antibiotics. We have synthesized and characterized twelve novel silver(I) cyanoximates designated as Ag(ACO), Ag(BCO), Ag(CCO), Ag(ECO), Ag(PiCO), Ag(PICO) (yellow and red polymorphs), Ag(BIHCO), Ag(BIMCO), Ag(BOCO), Ag(BTCO), Ag(MCO) and Ag(PiPCO). The compounds exhibit a remarkable resistance to high intensity visible light, UV radiation and heat and have poor solubility in water. All these compounds can be well incorporated into the light-curable acrylate polymeric composites that are currently used as dental fillers or adhesives of indwelling medical devices. A range of dry weight % from 0.5 to 5.0 of the compounds was tested in this study. To study the potential of these compounds in preventing planktonic and biofilm growth of bacteria, we selected two human pathogens (Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus) and Gram-positive environmental isolate Bacillus aryabhattai. Both planktonic and biofilm growth was abolished completely in the presence of 0.5% to 5% of the compounds. The most efficient inhibition was shown by Ag(PiCO), Ag(BIHCO) and Ag(BTCO). The inhibition of biofilm growth by Ag(PiCO)-yellow was confirmed by scanning electron microscopy (SEM). Application of Ag(BTCO) and Ag(PiCO)-red in combination with tobramycin, the antibiotic commonly used to treat P. aeruginosa infections, showed a significant synergistic effect. Finally, the inhibitory effect lasted for at least 120 h in P. aeruginosa and 36 h in S. aureus and B. aryabhattai. Overall, several silver(I) cyanoximates complexes efficiently prevent biofilm development of both Gram-negative and Gram-positive bacteria and present a particularly significant potential for applications against P. aeruginosa infections.
Collapse
|
23
|
Hecel A, Kolkowska P, Krzywoszynska K, Szebesczyk A, Rowinska-Zyrek M, Kozlowski H. Ag+ Complexes as Potential Therapeutic Agents in Medicine and Pharmacy. Curr Med Chem 2019; 26:624-647. [DOI: 10.2174/0929867324666170920125943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/28/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022]
Abstract
Silver is a non-essential element with promising antimicrobial and anticancer properties. This work is a detailed summary of the newest findings on the bioinorganic chemistry of silver, with a special focus on the applications of Ag+ complexes and nanoparticles. The coordination chemistry of silver is given a reasonable amount of attention, summarizing the most common silver binding sites and giving examples of such binding motifs in biologically important proteins. Possible applications of this metal and its complexes in medicine, particularly as antibacterial and antifungal agents and in cancer therapy, are discussed in detail. The most recent data on silver nanoparticles are also summarized.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50383 Wroclaw, Poland
| | - Paulina Kolkowska
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Karolina Krzywoszynska
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| | - Agnieszka Szebesczyk
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| | | | - Henryk Kozlowski
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| |
Collapse
|
24
|
Kiamco MM, Zmuda HM, Mohamed A, Call DR, Raval YS, Patel R, Beyenal H. Hypochlorous-Acid-Generating Electrochemical Scaffold for Treatment of Wound Biofilms. Sci Rep 2019; 9:2683. [PMID: 30804362 PMCID: PMC6389966 DOI: 10.1038/s41598-019-38968-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 01/07/2019] [Indexed: 11/10/2022] Open
Abstract
Biofilm formation causes prolonged wound infections due to the dense biofilm structure, differential gene regulation to combat stress, and production of extracellular polymeric substances. Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa are three difficult-to-treat biofilm-forming bacteria frequently found in wound infections. This work describes a novel wound dressing in the form of an electrochemical scaffold (e-scaffold) that generates controlled, low concentrations of hypochlorous acid (HOCl) suitable for killing biofilm communities without substantially damaging host tissue. Production of HOCl near the e-scaffold surface was verified by measuring its concentration using needle-type microelectrodes. E-scaffolds producing 17, 10 and 7 mM HOCl completely eradicated S. aureus, A. baumannii, and P. aeruginosa biofilms after 3 hours, 2 hours, and 1 hour, respectively. Cytotoxicity and histopathological assessment showed no discernible harm to host tissues when e-scaffolds were applied to explant biofilms. The described strategy may provide a novel antibiotic-free strategy for treating persistent biofilm-associated infections, such as wound infections.
Collapse
Affiliation(s)
- Mia Mae Kiamco
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Hannah M Zmuda
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Abdelrhman Mohamed
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Douglas R Call
- The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Yash S Raval
- Divisions of Clinical Microbiology, Rochester, MN, USA
| | - Robin Patel
- Divisions of Clinical Microbiology, Rochester, MN, USA
- Divisions of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Haluk Beyenal
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| |
Collapse
|
25
|
Persistent Wound Drainage After Total Joint Arthroplasty: A Narrative Review. J Arthroplasty 2019; 34:175-182. [PMID: 30245124 DOI: 10.1016/j.arth.2018.08.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/17/2018] [Accepted: 08/27/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Persistent wound drainage after total joint arthroplasty (TJA) is an important complication with potential substantial adverse consequences, in particular periprosthetic joint infection. METHODS This review evaluated the available literature regarding several issues in the field of persistent wound drainage after TJA and offers a classification of persistent wound drainage and an algorithmic approach to the decision-making process. RESULTS Available literature addressing the diagnosis and treatment of persistent wound drainage after TJA is scarce and an evidence-based clinical guideline is lacking. This is partially caused by the absence of a universally accepted definition of persistent wound drainage. In patients with persistent wound drainage, clinical signs and serological tests can be helpful in the diagnosis of a developing infection. Regarding the treatment of persistent wound drainage, nonsurgical treatment consists of absorbent dressings, pressure bandages, and temporary joint immobilization. Surgical treatment is advised when wound drainage persists for more than 5-7 days and consists of open debridement with irrigation and exchange of modular components and antimicrobial treatment. CONCLUSION Based on this literature review, we proposed a classification and algorithmic approach for the management of patients with persistent wound drainage after TJA. Hopefully, this offers the orthopedic surgeon a practical clinical guideline by finding the right balance between overtreatment and undertreatment, weighing the risks and benefits. However, this classification and algorithmic approach should first be evaluated in a prospective trial.
Collapse
|
26
|
Blanchette KA, Wenke JC. Current therapies in treatment and prevention of fracture wound biofilms: why a multifaceted approach is essential for resolving persistent infections. J Bone Jt Infect 2018; 3:50-67. [PMID: 29761067 PMCID: PMC5949568 DOI: 10.7150/jbji.23423] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic orthopedic injuries, particularly extremity wounds, are a significant cause of morbidity. Despite prophylactic antibiotic treatment and surgical intervention, persistent infectious complications can and do occur. Persistent bacterial infections are often caused by biofilms, communities of antibiotic tolerant bacteria encased within a matrix. The structural and metabolic differences in this mode of growth make treatment difficult. Herein, we describe both established and novel, experimental treatments targeted at various stages of wound healing that are specifically aimed at reducing and eliminating biofilm bacteria. Importantly, the highly tolerant nature of these bacterial communities suggests that most singular approaches could be circumvented and a multifaceted, combinatorial approach will be the most effective strategy for treating these complicated infections.
Collapse
Affiliation(s)
| | - Joseph C Wenke
- US Army Institute of Surgical Research, Ft Sam Houston, TX
| |
Collapse
|
27
|
Kalan L, Zhou M, Labbie M, Willing B. Measuring the microbiome of chronic wounds with use of a topical antimicrobial dressing - A feasibility study. PLoS One 2017; 12:e0187728. [PMID: 29155834 PMCID: PMC5695787 DOI: 10.1371/journal.pone.0187728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Polymicrobial communities colonize all wounds, and biofilms are hypothesized to be a key link to the chronic state and stalled healing. Molecular methods offer greater insight when studying microbial ecology in chronic wounds, as only a small fraction of wound bacteria are cultured by currently available methods and studies have shown little agreement between culture and molecular based approaches. Some interventions, like dressings with oxidized silver, are reported to help the stalled wounds move to a normal healing trajectory but the underlying mechanisms are difficult to measure. One hypothesis is that the use of topical antimicrobial dressings targets the wound microbiome and reduces bioburden. OBJECTIVES Our objective was to determine if culture-independent molecular methods could be used to identify the microbial composition in chronic wounds, and measure the microbiome over time when a topical antimicrobial dressing is used to reduce bioburden. METHODS Patients with chronic wounds defined as >6 weeks in duration and not taking systemic antibiotics were recruited to participate. A wound contact layer containing silver oxynitrate was applied immediately after routine sharp debridement material was collected and swabs of the wound bed taken. Next-generation sequencing of the bacterial 16S rRNA gene in each specimen was used to measure the microbiome. RESULTS Distinct bacterial communities were observed between swab and debridement samples, highlighting spatial differences and the importance of sampling consistency. The microbial communities appeared to be similar between different diabetes statuses, but different among the three wound categories included. CONCLUSIONS Culture-independent methods can be applied to measure the microbiome of chronic wounds even when a topical antimicrobial dressing is applied to the wound.
Collapse
Affiliation(s)
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | - Benjamin Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Konstantinow A, Fischer TV, Ring J. Effectiveness of collagen/oxidised regenerated cellulose/silver-containing composite wound dressing for the treatment of medium-depth split-thickness skin graft donor site wounds in multi-morbid patients: a prospective, non-comparative, single-centre study. Int Wound J 2017; 14:791-800. [PMID: 27905181 PMCID: PMC7949593 DOI: 10.1111/iwj.12698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/03/2016] [Accepted: 11/06/2016] [Indexed: 12/27/2022] Open
Abstract
Split-thickness skin grafting (STSG) is a widely used method in reconstructive surgery, but donor site wounds (DSWs) are often slow healing and painful. This prospective study evaluated the performance of a composite wound dressing containing collagen/oxidised regenerated cellulose in the treatment of medium-depth (0·4 mm) DSWs in 25 multi-morbid patients with chronic leg ulcers requiring STSG. The range of patients' ages was 44-84 years (mean 71·6 years) with DSW sizes ranging between 12 and 162 cm2 (mean 78 cm2 ). Comorbidities included anticoagulation therapy (15 patients), anaemia (11 patients), diabetes (6 patients) and methicillin-resistant Staphylococcus aureus (MRSA) ulcer colonisation (6 patients). The first dressing change was performed after 10 days. Complete reepithelialisation was observed between the 10th and 34th day (mean 17·2, median 14 days). Postoperative medium to strong bleeding occurred in only five patients (four with anticoagulation). Wound pain levels one day after harvesting were only moderate (range 0-1·5, mean 0·5, median 0·5 on a six-item scale). No wound infection was observed during the first dressing. The composite dressing used allowed for the fast healing of medium-depth DSWs with minimal or no postoperative pain and bleeding in older multi-morbid patients under anticoagulation treatment.
Collapse
Affiliation(s)
- Alexander Konstantinow
- Department of Dermatology and Allergology BiedersteinTechnical University MunichMunichGermany
| | - Tatjana V Fischer
- Department of Dermatology and Allergology BiedersteinTechnical University MunichMunichGermany
| | - Johannes Ring
- Department of Dermatology and Allergology BiedersteinTechnical University MunichMunichGermany
| |
Collapse
|
29
|
Silver Oxide Coatings with High Silver-Ion Elution Rates and Characterization of Bactericidal Activity. Molecules 2017; 22:molecules22091487. [PMID: 28880225 PMCID: PMC6151401 DOI: 10.3390/molecules22091487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/21/2023] Open
Abstract
This paper reports the synthesis and characterization of silver oxide films for use as bactericidal coatings. Synthesis parameters, dissolution/elution rate, and bactericidal efficacy are reported. Synthesis conditions were developed to create AgO, Ag2O, or mixtures of AgO and Ag2O on surfaces by reactive magnetron sputtering. The coatings demonstrate strong adhesion to many substrate materials and impede the growth of all bacterial strains tested. The coatings are effective in killing Escherichia coli and Staphylococcus aureus, demonstrating a clear zone-of-inhibition against bacteria growing on solid media and the ability to rapidly inhibit bacterial growth in planktonic culture. Additionally, the coatings exhibit very high elution of silver ions under conditions that mimic dynamic fluid flow ranging between 0.003 and 0.07 ppm/min depending on the media conditions. The elution of silver ions from the AgO/Ag2O surfaces was directly impacted by the complexity of the elution media, with a reduction in elution rate when examined in complex cell culture media. Both E. coli and S. aureus were shown to bind ~1 ppm Ag+/mL culture. The elution of Ag+ resulted in no increases in mammalian cell apoptosis after 24 h exposure compared to control, but apoptotic cells increased to ~35% by 48 and 72 h of exposure. Taken together, the AgO/Ag2O coatings described are effective in eliciting antibacterial activity and have potential for application on a wide variety of surfaces and devices.
Collapse
|
30
|
Meekul J, Chotirosniramit A, Himakalasa W, Orrapin S, Wongthanee A, Pongtam O, Kulprachakarn K, Rerkasem K. A Randomized Controlled Trial on the Outcome in Comparing an Alginate Silver Dressing With a Conventional Treatment of a Necrotizing Fasciitis Wound. INT J LOW EXTR WOUND 2017; 16:108-113. [PMID: 28682725 DOI: 10.1177/1534734617701051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Necrotizing fasciitis (NF) is a high morbidity and mortality disease and also demands high economic resources. The standard treatment of NF is surgical debridement and proper dressing for wound bed preparation. The efficacy of silver alginate dressing can inhibit the growth of microorganisms and keep the environment clean for wound bed preparation. However an optimal dressing to manage such wounds has yet to emerge. NF patients who were admitted between April 2013 and May 2016 were randomized to have wound dressing using either silver dressing (Ag group) or normal saline solution gauze (NSS group). The 4 main outcomes for comparison between the 2 groups were the duration of wound bed preparation, total cost during hospital stay, the duration of hospital stay, and the pain score. Thirty-nine patients were included in the study: 19 patients in the NSS group and 20 patients in the Ag group. The mean duration of wound bed preparation in the NSS group was 31.87 days, and in Ag group it was 21.39 days, but this trend was not statistically significant ( P = .057). The mean cost of treatment in the NSS and Ag groups was not significantly different ( P = .434; US$3308.83 and US$2647.82, respectively). The duration of hospital days in the 2 groups was not significantly different either (29.19 days [NSS group] and 20.99 days [Ag group]; P = .222). The pain score was significantly lower in the Ag group than those in the NSS group. Although silver dressing seems to be expensive, the cost of total treatment during hospital stay and the duration of hospital stay were not significantly different between groups. However, the mean duration of wound bed preparation seems to trend favoring toward the silver dressing group.
Collapse
Affiliation(s)
- Jarernchon Meekul
- 1 Department of Surgery, Faculty of Medicine, Chiang Mai University, Thailand
| | | | | | - Saritphat Orrapin
- 3 Department of Surgery, Faculty of Medicine, Thammasat University (Rangsit Campus), Thailand
| | - Antika Wongthanee
- 4 NCD Center of Excellence, Research Institute of Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Orapin Pongtam
- 5 NCD Center, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand
| | - Kanokwan Kulprachakarn
- 5 NCD Center, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand
| | - Kittipan Rerkasem
- 1 Department of Surgery, Faculty of Medicine, Chiang Mai University, Thailand.,4 NCD Center of Excellence, Research Institute of Health Sciences, Chiang Mai University, Chiang Mai, Thailand.,5 NCD Center, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand
| |
Collapse
|
31
|
Ivancic A. Recent Trends in Alginate, Chitosan and Alginate-Chitosan Antimicrobial Systems. CHEMISTRY JOURNAL OF MOLDOVA 2016. [DOI: 10.19261/cjm.2016.11(2).03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
Desroche N, Dropet C, Janod P, Guzzo J. Antibacterial properties and reduction of MRSA biofilm with a dressing combining polyabsorbent fibres and a silver matrix. J Wound Care 2016; 25:577-584. [DOI: 10.12968/jowc.2016.25.10.577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- N. Desroche
- Nexidia SAS, 15 Rue de Mayence, F-21000 DIJON
| | - C. Dropet
- Nexidia SAS, 15 Rue de Mayence, F-21000 DIJON
| | - P. Janod
- Urgo Recherche Innovation et Développement, 42 rue de Longvic, F-21300 CHENOVE
| | - J. Guzzo
- UMR A, Procédés Alimentaires et Microbiologiques, Université de Bourgogne, IUVV, rue Claude Ladrey, F-21000 DIJON
| |
Collapse
|
33
|
Paladini F, Di Franco C, Panico A, Scamarcio G, Sannino A, Pollini M. In Vitro Assessment of the Antibacterial Potential of Silver Nano-Coatings on Cotton Gauzes for Prevention of Wound Infections. MATERIALS 2016; 9:ma9060411. [PMID: 28773531 PMCID: PMC5456794 DOI: 10.3390/ma9060411] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022]
Abstract
Multidrug-resistant organisms are increasingly implicated in acute and chronic wound infections, thus compromising the chance of therapeutic options. The resistance to conventional antibiotics demonstrated by some bacterial strains has encouraged new approaches for the prevention of infections in wounds and burns, among them the use of silver compounds and nanocrystalline silver. Recently, silver wound dressings have become widely accepted in wound healing centers and are commercially available. In this work, novel antibacterial wound dressings have been developed through a silver deposition technology based on the photochemical synthesis of silver nanoparticles. The devices obtained are completely natural and the silver coatings are characterized by an excellent adhesion without the use of any binder. The silver-treated cotton gauzes were characterized through scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA) in order to verify the distribution and the dimension of the silver particles on the cotton fibers. The effectiveness of the silver-treated gauzes in reducing the bacterial growth and biofilm proliferation has been demonstrated through agar diffusion tests, bacterial enumeration test, biofilm quantification tests, fluorescence and SEM microscopy. Moreover, potential cytotoxicity of the silver coating was evaluated through 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay (MTT) and the extract method on fibroblasts and keratinocytes. Inductively coupled plasma mass spectrometry (ICP-MS) was performed in order to determine the silver release in different media and to relate the results to the biological characterization. All the results obtained were compared with plain gauzes as a negative control, as well as gauzes treated with a higher silver percentage as a positive control.
Collapse
Affiliation(s)
- Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, Lecce 73100, Italy.
| | | | - Angelica Panico
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, Lecce 73100, Italy.
| | - Gaetano Scamarcio
- CNR-IFN U.O.S. Bari, Via Amendola 173, Bari 70126, Italy.
- Dipartimento Interateneo di Fisica, University of Bari Aldo Moro, Via Amendola 173, Bari 70126, Italy.
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, Lecce 73100, Italy.
| | - Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, Lecce 73100, Italy.
| |
Collapse
|
34
|
Kuehl R, Brunetto PS, Woischnig AK, Varisco M, Rajacic Z, Vosbeck J, Terracciano L, Fromm KM, Khanna N. Preventing Implant-Associated Infections by Silver Coating. Antimicrob Agents Chemother 2016; 60:2467-75. [PMID: 26883700 PMCID: PMC4808148 DOI: 10.1128/aac.02934-15] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/04/2016] [Indexed: 01/22/2023] Open
Abstract
Implant-associated infections (IAIs) are a dreaded complication mainly caused by biofilm-forming staphylococci. Implant surfaces preventing microbial colonization would be desirable. We examined the preventive effect of a silver-coated titanium-aluminum-niobium (TiAlNb) alloy. The surface elicited a strong, inoculum-dependent activity againstStaphylococcus epidermidisandStaphylococcus aureusin an agar inhibition assay. Gamma sterilization and alcohol disinfection did not alter the effect. In a tissue cage mouse model, silver coating of TiAlNb cages prevented perioperative infections in an inoculum-dependent manner and led to a 100% prevention rate after challenge with 2 × 10(6)CFU ofS. epidermidisper cage. InS. aureusinfections, silver coating had only limited effect. Similarly, daptomycin or vancomycin prophylaxis alone did not preventS. aureusinfections. However, silver coating combined with daptomycin or vancomycin prophylaxis thwarted methicillin-resistantS. aureusinfections at a prevention rate of 100% or 33%, respectively. Moreover, silver release from the surface was independent of infection and occurred rapidly after implantation. On day 2, a peak of 82 μg Ag/ml was reached in the cage fluid, corresponding to almost 6× the MIC of the staphylococci. Cytotoxicity toward leukocytes in the cage was low and temporary. Surrounding tissue did not reveal histological signs of silver toxicity.In vitro, no emergence of silver resistance was observed in several clinical strains of staphylococci upon serial subinhibitory silver exposures. In conclusion, our data demonstrate that silver-coated TiAlNb is potent for prevention of IAIs and thus can be considered for clinical application.
Collapse
Affiliation(s)
- Richard Kuehl
- Infection Biology Laboratory, Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | | | - Anne-Kathrin Woischnig
- Infection Biology Laboratory, Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Massimo Varisco
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Zarko Rajacic
- Infection Biology Laboratory, Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Juerg Vosbeck
- Institute of Pathology, University Hospital of Basel, Basel, Switzerland
| | - Luigi Terracciano
- Institute of Pathology, University Hospital of Basel, Basel, Switzerland
| | - Katharina M Fromm
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Nina Khanna
- Infection Biology Laboratory, Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
35
|
Moriarty TF, Kuehl R, Coenye T, Metsemakers WJ, Morgenstern M, Schwarz EM, Riool M, Zaat SA, Khana N, Kates SL, Richards RG. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 2016; 1:89-99. [PMID: 28461934 PMCID: PMC5367564 DOI: 10.1302/2058-5241.1.000037] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Orthopaedic and trauma device-related infection (ODRI) remains one of the major complications in modern trauma and orthopaedic surgery.Despite best practice in medical and surgical management, neither prophylaxis nor treatment of ODRI is effective in all cases, leading to infections that negatively impact clinical outcome and significantly increase healthcare expenditure.The following review summarises the microbiological profile of modern ODRI, the impact antibiotic resistance has on treatment outcomes, and some of the principles and weaknesses of the current systemic and local antibiotic delivery strategies.The emerging novel strategies aimed at preventing or treating ODRI will be reviewed. Particular attention will be paid to the potential for clinical impact in the coming decades, when such interventions are likely to be critically important.The review focuses on this problem from an interdisciplinary perspective, including basic science innovations and best practice in infectious disease. Cite this article: Moriarty TF, Kuehl R, Coenye T, et al. Orthopaedic device related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 2016;1:89-99. DOI: 10.1302/2058-5241.1.000037.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nina Khana
- University Hospital of Basel, Switzerland
| | | | | |
Collapse
|
36
|
Burkova YL, Beleneva IA, Shchipunov YA. Bactericidal sodium alginate films containing nanosized silver particles. COLLOID JOURNAL 2015. [DOI: 10.1134/s1061933x15060058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Oquendo M, Agrawal V, Reyna R, Patel HI, Emran MA, Almond PS. Silver-impregnated hydrofiber dressing followed by delayed surgical closure for management of infants born with giant omphaloceles. J Pediatr Surg 2015; 50:1668-72. [PMID: 26386876 DOI: 10.1016/j.jpedsurg.2015.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We successfully employed silver-impregnated hydrofiber dressing for management of giant omphaloceles (GO) followed by delayed surgical closure. STUDY DESIGN Between 2005 and 2008, eight consecutive GO infants were cared for at Driscoll Children's Hospital. Four patients had additional congenital anomalies including Beckwith-Wiedemann (n = 1), tetralogy of Fallot (n = 1), pulmonary hypoplasia (n = 1), and ruptured omphalocele (n=1). Infants underwent amnion epithelization using a silver-impregnated hydrofiber dressing over the course of several months followed by delayed surgical closure. Mean ± SD of parameters including maternal age, gestational age, infant weight, size of GO, preoperative intubation, preoperative hospitalization, time to epithelization, days to surgical closure, postoperative hospitalization, postoperative intubation and months of follow-up were studied. RESULTS Five patients underwent successful closure, 2 were lost to follow-up and 1 was lost because of withdrawal of support. The maternal age, gestation age and weight of infant were 28 ± 5.3 years, 34 ± 4 weeks and 2.5 ± 0.62 kg, respectively. The GO size was 11 cm in length and 11 cm in width, respectively. Preoperative hospitalization days were 78 ± 74 days. Preoperative intubation was 3.5 ± 3.1 days with 2 neonates requiring tracheostomy and home ventilation owing to additional congenital abnormalities. Time to epithelization was 2.9 ± 0.9 months. Days to surgical closure and postoperative hospitalization were 331 ± 119 days and 5 ± 3.4 days, respectively. Average follow-up was 37 ± 27 months. No treatment associated morbidities are noted. CONCLUSIONS Silver-impregnated hydrofiber mediated epithelization of GO followed by delayed surgical closure is safe for management of infants.
Collapse
Affiliation(s)
- Marcial Oquendo
- Department of Pediatrics, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Vaidehi Agrawal
- Department of Surgery, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Roxana Reyna
- Nursing Resources, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Haroon I Patel
- Department of Surgery, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Mohammad A Emran
- Department of Surgery, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - P Stephen Almond
- Department of Surgery, Driscoll Children's Hospital, Corpus Christi, TX, USA.
| |
Collapse
|
38
|
Deepa I, Kumar SN, Sreerag RS, Nath VS, Mohandas C. Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria. Front Microbiol 2015; 6:876. [PMID: 26379651 PMCID: PMC4548193 DOI: 10.3389/fmicb.2015.00876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023] Open
Abstract
Skin and chronic wound infections caused by various pathogenic bacteria are an increasing and urgent health problem worldwide. In the present investigation ethyl acetate extract of an Achromobacter sp. associated with a Rhabditis entomopathogenic nematode (EPN), displayed promising antibacterial property and was further purified by silica gel column chromatography to get three different cyclic dipeptides (CDPs). Based on the spectral data and Marfey's analyses, the CDPs were identified as cyclo(D-Leu-D-Arg) (1), cyclo(L-Trp-L-Arg) (2), and cyclo(D-Trp-D-Arg) (3), respectively. Three CDPs were active against all the 10 wound associated bacteria tested. The significant antibacterial activity was recorded by CDP 3, and highest activity of 0.5 μg/ml was recorded against Staphylococcus aureus and Pseudomonas aeruginosa. The synergistic antibacterial activities of CDPs and ampicillin were assessed using the checkerboard microdilution method. The results of the current study recorded that the combined effects of CDPs and ampicillin principally recorded synergistic activity. Interestingly, the combination of CDPs and ampicillin also recorded enhanced inhibition of biofilm formation by bacteria. Moreover, CDPs significantly stimulate the production of IL-10 and IL-4 (anti-inflammatory cytokines) by human peripheral blood mononuclear cells. CDPs do not make any significant effect on the production of pro-inflammatory cytokines like TNF-α. The three CDPs have been studied for their effect on intracellular S. aureus in murine macrophages (J774) using 24 h exposure to 0.5X, 1X, and 2X MIC concentrations. Significant decrease in intracellular S. aureus burden was recorded by CDPs. CDPs also recorded no cytotoxicity toward FS normal fibroblast, VERO, and L231 normal lung epithelial cell lines. Antimicrobial activity of the arginine containing CDPs against the wound associated bacteria is reported here for the first. Moreover, this is also the first report on the production of CDPs by Achromobacter sp. Finally, we conclude that the Achromobacter sp. is an incredibly promising source of natural bioactive secondary metabolites especially against wound pathogenic bacteria that may receive significant benefit in the field of human medicine in near future as topical agents.
Collapse
Affiliation(s)
- Indira Deepa
- Division of Crop Protection, Central Tuber Crops Research Institute Thiruvananthapuram, India
| | - Sasidharan N Kumar
- Division of Crop Protection, Central Tuber Crops Research Institute Thiruvananthapuram, India
| | - Ravikumar S Sreerag
- Division of Crop Protection, Central Tuber Crops Research Institute Thiruvananthapuram, India
| | - Vishnu S Nath
- Division of Crop Protection, Central Tuber Crops Research Institute Thiruvananthapuram, India
| | - Chellapan Mohandas
- Division of Crop Protection, Central Tuber Crops Research Institute Thiruvananthapuram, India
| |
Collapse
|
39
|
Percival SL, McCarty SM. Silver and Alginates: Role in Wound Healing and Biofilm Control. Adv Wound Care (New Rochelle) 2015; 4:407-414. [PMID: 26155383 PMCID: PMC4486446 DOI: 10.1089/wound.2014.0541] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/15/2014] [Indexed: 01/08/2023] Open
Abstract
Significance: Chronic wounds are known to be a significant issue globally. Of concern in wounds are the numbers and types of residing microorganisms and the ability of the host's immune system to control their proliferation. Wound healing is impeded by colonizing microorganisms growing within the biofilm phenotypic state. In this state microorganisms are recalcitrant to routinely impeded by used antimicrobial interventions. Recent advances: Silver has been reported to demonstrate efficacy on planktonic microorganisms both within the in vitro and in vivo environments. However, when silver is incorporated into a wound dressing, its antimicrobial efficacy on biofilms within the in vivo environment remains contentious. Critical Issues: Unequivocal evidence of the efficacy of silver, and wound dressings containing silver, on biofilms in clinical situations is lacking. This is principally due to the deficiency of definite biofilm definitions, markers, and evidence in the chronic wound environment. Future Direction: Research studies demonstrating antimicrobial efficacy on in vitro biofilms can be used to generate data and information appropriate for extrapolation and applicability to the in vivo environment. It is very important that inventors of antimicrobial wound dressings ensure efficacy against both planktonic and sessile microorganisms, within the in vitro and in vivo environments.
Collapse
Affiliation(s)
- Steven L. Percival
- Surface Science Research Centre, University of Liverpool, Liverpool, United Kingdom
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
- Scapa Healthcare, Manchester, United Kingdom
| | - Sara M. McCarty
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
40
|
Agrawal V, Almond PS, Reyna R, Emran MA. Successful three stage repair of a large congenital abdominal region defect. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2015. [DOI: 10.1016/j.epsc.2015.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Alhusein N, De Bank PA, Blagbrough IS, Bolhuis A. Killing bacteria within biofilms by sustained release of tetracycline from triple-layered electrospun micro/nanofibre matrices of polycaprolactone and poly(ethylene-co-vinyl acetate). Drug Deliv Transl Res 2015; 3:531-41. [PMID: 25786373 DOI: 10.1007/s13346-013-0164-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the controlled release of the antibiotic tetracycline (tet) HCl from a triple-layered electrospun matrix consisting of a central layer of poly(ethylene-co-vinyl acetate (PEVA) sandwiched between outer layers of poly-ε-caprolactone (PCL). These micro/nanofibre layers with tet successfully encapsulated (essentially quantitatively at 3 and 5 % w/w) in each layer, efficiently inhibited the growth of a panel of bacteria, including clinical isolates, as shown by a modified Kirby-Bauer disc assay. Furthermore, they demonstrated high biological activity in increasingly complex models of biofilm formation (models that are moving closer to the situation in a wound) by stopping biofilm formation, by killing preformed biofilms and killing mature, dense biofilm colonies of Staphylococcus aureus MRSA252. Tet is clinically useful with potential applications in wound healing and especially in complicated skin and skin-structure infections; electrospinning provides good encapsulation efficiency of tet within PCL/PEVA/PCL polymers in micro/nanofibre layers which display sustained antibiotic release in formulations that are anti-biofilm.
Collapse
Affiliation(s)
- Nour Alhusein
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | | | | | | |
Collapse
|
42
|
Paladini F, Picca RA, Sportelli MC, Cioffi N, Sannino A, Pollini M. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 52:1-10. [PMID: 25953533 DOI: 10.1016/j.msec.2015.03.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/16/2015] [Accepted: 03/22/2015] [Indexed: 02/07/2023]
Abstract
Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag2O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production.
Collapse
Affiliation(s)
- F Paladini
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy.
| | - R A Picca
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - M C Sportelli
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - N Cioffi
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - A Sannino
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - M Pollini
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| |
Collapse
|
43
|
Sarkar K, Sen K. On the design of Ag–morin nanocomposite to modify calcium alginate gel: framing out a novel sodium ion trap. RSC Adv 2015. [DOI: 10.1039/c5ra10938h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present work describes the design of a Ag–morin nanocomposite and its subsequent incorporation in calcium alginate gels which have the unique property to uptake and release sodium ions.
Collapse
Affiliation(s)
- Kangkana Sarkar
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| | - Kamalika Sen
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
44
|
Dhanya SR, Kumar SN, Sankar V, Raghu KG, Kumar BSD, Nair MS. Nimbolide from Azadirachta indica and its derivatives plus first-generation cephalosporin antibiotics: a novel drug combination for wound-infecting pathogens. RSC Adv 2015. [DOI: 10.1039/c5ra16071e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We evaluate the in vitro efficacy of nimbolide, desacetylnimbin, and the amide derivatives of nimbolide in combination with first-generation cephalosporin antibiotics against major wound-associated bacterial pathogens.
Collapse
Affiliation(s)
- S. R. Dhanya
- Organic Chemistry Section
- Chemical Sciences and Technology Division
- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram-695019
- India
| | - S. Nishanth Kumar
- Agroprocessing and Natural Products Division
- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram-695019
- India
| | - Vandana Sankar
- Agroprocessing and Natural Products Division
- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram-695019
- India
| | - K. G. Raghu
- Agroprocessing and Natural Products Division
- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram-695019
- India
| | - B. S. Dileep Kumar
- Agroprocessing and Natural Products Division
- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram-695019
- India
| | - Mangalam S. Nair
- Organic Chemistry Section
- Chemical Sciences and Technology Division
- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram-695019
- India
| |
Collapse
|
45
|
Percival SL, Finnegan S, Donelli G, Vuotto C, Rimmer S, Lipsky BA. Antiseptics for treating infected wounds: Efficacy on biofilms and effect of pH. Crit Rev Microbiol 2014; 42:293-309. [DOI: 10.3109/1040841x.2014.940495] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Ciliberti M, De Lara F, Serra G, Tafuro F, Iazzetta F, De Martino V, Filosa A, Scognamiglio R, Ciliberti G, Veneri M. Effective management of pressure ulcers using Hydrofibre technology with silver ions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.wndm.2014.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Poor AE, Ercan UK, Yost A, Brooks AD, Joshi SG. Control of Multi-Drug-Resistant Pathogens with Non-Thermal-Plasma-Treated Alginate Wound Dressing. Surg Infect (Larchmt) 2014; 15:233-43. [DOI: 10.1089/sur.2013.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Alexander E. Poor
- Department of Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Presented in part at the Infectious Diseases Society of America, October 2011, Boston, Massachusetts and Annual Meeting of the Academic Surgical Congress, February 2012, Manhattan Beach, California
| | - Utku K. Ercan
- Department of Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Presented in part at the Infectious Diseases Society of America, October 2011, Boston, Massachusetts and Annual Meeting of the Academic Surgical Congress, February 2012, Manhattan Beach, California
| | - Adam Yost
- Department of Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Presented in part at the Infectious Diseases Society of America, October 2011, Boston, Massachusetts and Annual Meeting of the Academic Surgical Congress, February 2012, Manhattan Beach, California
| | - Ari D. Brooks
- Department of Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Presented in part at the Infectious Diseases Society of America, October 2011, Boston, Massachusetts and Annual Meeting of the Academic Surgical Congress, February 2012, Manhattan Beach, California
| | - Suresh G. Joshi
- Department of Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Presented in part at the Infectious Diseases Society of America, October 2011, Boston, Massachusetts and Annual Meeting of the Academic Surgical Congress, February 2012, Manhattan Beach, California
| |
Collapse
|
48
|
|
49
|
Hansen E, Durinka JB, Costanzo JA, Austin MS, Deirmengian GK. Negative pressure wound therapy is associated with resolution of incisional drainage in most wounds after hip arthroplasty. Clin Orthop Relat Res 2013; 471:3230-6. [PMID: 23539123 PMCID: PMC3773159 DOI: 10.1007/s11999-013-2937-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Persistent wound drainage after hip arthroplasty is a risk factor for periprosthetic infection. Negative pressure wound therapy (NPWT) has been used in other fields for wound management although it is unclear whether the technique is appropriate for total hip arthroplasty. QUESTIONS/PURPOSES We determined (1) the rate of wound complications related to use of NPWT for persistent incisional drainage after hip arthroplasty; (2) the rate of resolution of incisional drainage using this modality; and (3) risk factors for failure of NPWT for this indication. METHODS In a pilot study we identified 109 patients in whom NPWT was used after hip arthroplasty for treating postoperative incisional drainage between April 2006 and April 2010. On average, the NPWT was placed on postoperative Day 3 to 4 (range, 2-9 days) and applied for 2 days (range, 1-10 days). We then determined predictors of subsequent surgery. Patients were followed until failure or a minimum of 1 year (average, 29 months; range, 1-62 months). RESULTS Eighty-three patients (76%) had no further surgery and 26 patients (24%) had subsequent surgery: 11 had superficial irrigation and débridement (I&D), 12 had deep I&D with none requiring further surgery, and three ultimately had component removal. Predictors of subsequent surgery included international normalized ratio level greater than 2, greater than one prior hip surgery, and device application greater than 48 hours. There were no wound-related complications associated with NPWT. CONCLUSIONS The majority of our patients had cessation of wound drainage with NPWT. LEVEL OF EVIDENCE Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Erik Hansen
- The Rothman Institute of Orthopaedics at Thomas Jefferson University Hospital, 925 Chestnut Street, 5th Floor, Philadelphia, PA 19107 USA
| | - Joel B. Durinka
- The Rothman Institute of Orthopaedics at Thomas Jefferson University Hospital, 925 Chestnut Street, 5th Floor, Philadelphia, PA 19107 USA
| | - James A. Costanzo
- The Rothman Institute of Orthopaedics at Thomas Jefferson University Hospital, 925 Chestnut Street, 5th Floor, Philadelphia, PA 19107 USA
| | - Matthew S. Austin
- The Rothman Institute of Orthopaedics at Thomas Jefferson University Hospital, 925 Chestnut Street, 5th Floor, Philadelphia, PA 19107 USA
| | - Gregory K. Deirmengian
- The Rothman Institute of Orthopaedics at Thomas Jefferson University Hospital, 925 Chestnut Street, 5th Floor, Philadelphia, PA 19107 USA
| |
Collapse
|
50
|
Cost-effectiveness analysis in comparing alginate silver dressing with silver zinc sulfadiazine cream in the treatment of pressure ulcers. Arch Plast Surg 2013; 40:589-96. [PMID: 24086815 PMCID: PMC3785595 DOI: 10.5999/aps.2013.40.5.589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 01/25/2023] Open
Abstract
Background The treatment of pressure ulcers is complicated, given the various wound dressing products available. The cost of different treatments varies and the cost-effectiveness of each product has not been thoroughly evaluated. We compare two wound dressing protocols-alginate silver dressing (AlSD) and silver zinc sulfadiazine cream (AgZnSD) with regard to wound healing and cost-effectiveness. Methods Patients with grade III or IV sacral or trochanteric pressure ulcers were eligible for this prospective, randomized controlled trial. The patients were randomized to receive one of the two dressings for an eight-week period. The criteria of efficacy were based on the Pressure Ulcer Scale for Healing (PUSH) scoring tool. The cost of treatment was also assessed. Results Twenty patients (12 women and 8 men) were randomly assigned to receive either AlSD (n=10) or AgZnSD cream (n=10). The demographic data and wound characteristics were comparable in the two groups. The two groups showed no significant difference in the reduction of PUSH score, wound size, or volume of exudate. The tissue type score was significantly lower in the AlSD group (3.15±0.68-1.85±0.68 vs. 2.73±0.79-2.2±0.41; P=0.015). The cost of treatment was significantly lower in the AlSD group (377.17 vs. 467.74 USD, respectively; P<0.0001). Conclusions Alginate silver dressing could be effectively used in the treatment of grade III and IV pressure ulcers. It can improve wound tissue characteristics and is cost-effective.
Collapse
|