1
|
Espíndola KMM, Varela ELP, de Albuquerque RDFV, Figueiredo RA, dos Santos SM, Malcher NS, da S. Seabra PS, Fonseca ADN, de Azevedo Sousa KM, de Oliveira SBB, Carneiro ADS, Coleman MD, Monteiro MC. Alpha-Lipoic Acid and Its Enantiomers Prevent Methemoglobin Formation and DNA Damage Induced by Dapsone Hydroxylamine: Molecular Mechanism and Antioxidant Action. Int J Mol Sci 2022; 24:ijms24010057. [PMID: 36613503 PMCID: PMC9820452 DOI: 10.3390/ijms24010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 12/24/2022] Open
Abstract
Dapsone (DDS) therapy can frequently lead to hematological side effects, such as methemoglobinemia and DNA damage. In this study, we aim to evaluate the protective effect of racemic alpha lipoic acid (ALA) and its enantiomers on methemoglobin induction. The pre- and post-treatment of erythrocytes with ALA, ALA isomers, or MB (methylene blue), and treatment with DDS-NOH (apsone hydroxylamine) was performed to assess the protective and inhibiting effect on methemoglobin (MetHb) formation. Methemoglobin percentage and DNA damage caused by dapsone and its metabolites were also determined by the comet assay. We also evaluated oxidative parameters such as SOD, GSH, TEAC (Trolox equivalent antioxidant capacity) and MDA (malondialdehyde). In pretreatment, ALA showed the best protector effect in 2.5 µg/mL of DDS-NOH. ALA (1000 µM) was able to inhibit the induced MetHb formation even at the highest concentrations of DDS-NOH. All ALA tested concentrations (100 and 1000 µM) were able to inhibit ROS and CAT activity, and induced increases in GSH production. ALA also showed an effect on DNA damage induced by DDS-NOH (2.5 µg/mL). Both isomers were able to inhibit MetHb formation and the S-ALA was able to elevate GSH levels by stimulating the production of this antioxidant. In post-treatment with the R-ALA, this enantiomer inhibited MetHb formation and increased GSH levels. The pretreatment with R-ALA or S-ALA prevented the increase in SOD and decrease in TEAC, while R-ALA decreased the levels of MDA; and this pretreatment with R-ALA or S-ALA showed the effect of ALA enantiomers on DNA damage. These data show that ALA can be used in future therapies in patients who use dapsone chronically, including leprosy patients.
Collapse
Affiliation(s)
- Kaio Murilo Monteiro Espíndola
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Everton Luiz Pompeu Varela
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | | | - Rosiane Araújo Figueiredo
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Sávio Monteiro dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Nívea Silva Malcher
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Pamela Suelen da S. Seabra
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Andréia do Nascimento Fonseca
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Karla Marcely de Azevedo Sousa
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Susan Beatriz Batista de Oliveira
- Central Laboratory of the State of Pará-CLSP, Belém 66823-010, PA, Brazil
- Postgraduate Program in Neuroscience and Cell Biology, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Agnaldo da Silva Carneiro
- Postgraduate Program in Medicinal Chemistry and Molecular Modeling, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Michael D. Coleman
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Marta Chagas Monteiro
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
- Correspondence:
| |
Collapse
|
3
|
Chan WH, Houng WL, Lin CAJ, Lee CH, Li PW, Hsieh JT, Shen JL, Yeh HI, Chang WH. Impact of dihydrolipoic acid on mouse embryonic stem cells and related regulatory mechanisms. ENVIRONMENTAL TOXICOLOGY 2013; 28:87-97. [PMID: 21462292 DOI: 10.1002/tox.20700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
α-Lipoic acid (LA) is a thiol with antioxidant properties that protects against oxidative stress-induced apoptosis. LA is absorbed from the diet, taken up by cells and tissues, and subsequently reduced to dihydrolipoic acid (DHLA). Recently, DHLA has been used as the hydrophilic nanomaterial preparations, and therefore, determination of its bio-safety profile is essential. In this article, we show that DHLA (50-100 μM) induces apoptotic processes in mouse embryonic stem cells (ESC-B5), but exerts no injury effects at treatment dosages below 50 μM. Higher concentrations of DHLA (50-100 μM) directly increased the reactive oxygen species (ROS) content in ESC-B5 cells, along with a significant increase in cytoplasmic free calcium and nitric oxide (NO) levels, loss of mitochondrial membrane potential (MMP), activation of caspases-9 and -3, and cell death. Pretreatment with NO scavengers suppressed the apoptotic biochemical changes induced by 100 μM DHLA and promoted the gene expression levels of p53 and p21 involved in apoptotic signaling. Our results collectively indicate that DHLA at concentrations of 50-100 μM triggers apoptosis of ESC-B5 cells, which involves both ROS and NO. Importantly, at doses of less than 50 μM (0-25 μM), DHLA does not exert hazardous effects on ESC-B5 cell properties, including viability, development and differentiation. These results provide important information in terms of dosage safety and biocompatibility of DHLA to facilitate its further use as a precursor for biomaterial preparation.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Coleman MD, Rimmer GSE, Haenen GRMM. Effects of lipoic acid and dihydrolipoic acid on total erythrocytic thiols under conditions of restricted glucose in vitro. Basic Clin Pharmacol Toxicol 2007; 100:139-44. [PMID: 17244264 DOI: 10.1111/j.1742-7843.2006.00025.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of lipoic acid and dihydrolipoic acid were explored on total thiol maintenance in diabetic and non-diabetic human erythrocytes in vitro over 22 hr in a 37 degrees C incubation system with no added glucose. Over 18-22.5 hr after treatment in both non-diabetic and diabetic cells, lipoic acid (1 mM) was associated with greater loss of cellular thiols than dihydrolipoic acid (1 mM), compared to respective control values. At 0.1 mM, in non-diabetic cells, although lipoic acid-treated cells' thiol levels were significantly lower than control, there was no significant difference between dihydrolipoic acid-treated cells and control cells regarding thiol levels. In addition, at 0.1 mM, dihydrolipoic acid-treated diabetic cells showed a reduction in thiol levels compared to control. At 0.01 mM, lipoic acid-treated cells had significantly lower measured thiol levels compared with diabetic cells exposed to dihydrolipoic acid, whereas in non-diabetic cells, dihydrolipoic acid-treated erythrocytic thiol levels were significantly greater than those treated with lipoic acid, although there were no other significant differences between the groups. At 22.5 hr, control values of methaemoglobin rose to 6.4 +/- 1.1% in diabetic cells and 3.6 +/- 2.1% in non-diabetic cells. Lipoic acid (1 mM) showed greater methaemoglobin formation in diabetic rather than non-diabetic cells (13.6 +/- 1.5% versus 11.6 +/- 1.5%), whereas dihydrolipoic acid-treated diabetic and non-diabetic cells were less potent in methaemoglobin generation (8.5 +/- 2.4% and 8.4 +/- 1.4%, respectively). These studies suggest that in certain circumstances such as hypoglycaemia, lipoic acid administration may actually be detrimental to cellular oxidant protection status.
Collapse
Affiliation(s)
- Michael D Coleman
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| | | | | |
Collapse
|