1
|
Singh D, Bist P, Choudhary S. Co-exposure to multiple heavy metals and metalloid induces dose dependent modulation in antioxidative, inflammatory, DNA damage and apoptic pathways progressing to renal dysfunction in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104537. [PMID: 39214194 DOI: 10.1016/j.etap.2024.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Humans are exposed to a cocktail of heavy metal toxicants at the same time in the environment rather than single metal. The kidney is often a site of early damage due to high renal contact to these pollutants. This study was done to examine the cumulative toxic effect of multiple elements prevalent in the environment. To explore the effect of subchronic exposure to heavy metal mixture male and female Swiss albino mice were randomly divided into 14 groups and given varying doses [MPL (maximum permissible limit), 1X, 5X, 10X, 50X, or 100X] of the multiple metals and metalloid mixtures via drinking water for 8 weeks. It was determined that metal treatment caused increased metal load in renal tissue. The kidney function deteriorated in response to 10X, 50X, 100X concentration of the dosing mixture was found associated to oxidative stress, glomerular damage, necrosis, cell death and further exacerbation of the inflammation.
Collapse
Affiliation(s)
- Damini Singh
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Priyanka Bist
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
2
|
Aleti RR, Festa AA, Voskressensky LG, Van der Eycken EV. Synthetic Strategies in the Preparation of Phenanthridinones. Molecules 2021; 26:5560. [PMID: 34577030 PMCID: PMC8466741 DOI: 10.3390/molecules26185560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Phenanthridinones are important heterocyclic frameworks present in a variety of complex natural products, pharmaceuticals and displaying wide range of pharmacological actions. Its structural importance has evoked a great deal of interest in the domains of organic synthesis and medicinal chemistry to develop new synthetic methodologies, as well as novel compounds of pharmaceutical interest. This review focuses on the synthesis of phenanthridinone scaffolds by employing aryl-aryl, N-aryl, and biaryl coupling reactions, decarboxylative amidations, and photocatalyzed reactions.
Collapse
Affiliation(s)
- Rajeshwar Reddy Aleti
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya St., 6, 117198 Moscow, Russia; (R.R.A.); (A.A.F.); (L.G.V.)
| | - Alexey A. Festa
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya St., 6, 117198 Moscow, Russia; (R.R.A.); (A.A.F.); (L.G.V.)
| | - Leonid G. Voskressensky
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya St., 6, 117198 Moscow, Russia; (R.R.A.); (A.A.F.); (L.G.V.)
| | - Erik V. Van der Eycken
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya St., 6, 117198 Moscow, Russia; (R.R.A.); (A.A.F.); (L.G.V.)
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
3
|
Yuan TH, Jhuang MJ, Yeh YP, Chen YH, Lu S, Chan CC. Relationship between renal function and metal exposure of residents living near the No. 6 Naphtha Cracking Complex: A cross-sectional study. J Formos Med Assoc 2021; 120:1845-1854. [PMID: 33933337 DOI: 10.1016/j.jfma.2021.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND/PURPOSE Heavy metals impair renal function, causing chronic kidney disease (CKD), and the petrochemical industry is one of the major environmental metal emission sources. This study aimed to investigate the relationship between renal function and metal exposure among the Taiwanese residents living near a petrochemical industry site. METHODS We recruited residents near the No. 6 Naphtha Cracking Complex, and they were categorized into a high-exposure (HE) group (N = 190) in Taisi Village and a low-exposure (LE) group (N = 1184) in other villages of Dacheng Township in Changhua County of Taiwan. The urinary nickel, chromium, and vanadium levels of the study subjects were measured and the levels were standardized by urine creatinine, and the estimated glomerular filtration rates (eGFRs) were calculated to estimate renal function by one-time health data. Linear regression models were applied to illustrate the correlations between the distance to the complex and urinary metal levels and renal function; linear and logistic regression models were applied to evaluate the associations between urinary metal levels and renal function indicators. RESULTS The study subjects living closer to the petrochemical complex had significantly higher urinary nickel, chromium, and vanadium levels and worse renal function than study subjects living farther away. The urinary nickel and chromium levels of the study subjects were associated with their renal function indicators. When the subject's urinary nickel level increased 1-fold, the eGFR level significantly decreased by 0.820 ml/min/1.73 m2. CONCLUSION Residents living closer to the petrochemical industry were exposed to higher metal levels and had worse renal function, and the nickel exposure of residents was potentially related to their decline in renal function.
Collapse
Affiliation(s)
- Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan
| | - Ming-Jie Jhuang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yen-Po Yeh
- Changhua County Public Health Bureau, Changhua, Taiwan
| | - Yi-Hsuan Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Sasha Lu
- Head-Royce School, Oakland, CA, United States
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Cheng J, Fan W, Zhao X, Liu Y, Cheng Z, Liu Y, Liu J. Oxidative Stress and Histological Alterations of Chicken Brain Induced by Oral Administration of Chromium(III). Biol Trace Elem Res 2016; 173:185-93. [PMID: 26873037 DOI: 10.1007/s12011-016-0640-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
This experiment was conducted to investigate the oxidative stress in chickens exposed to different concentrations of chromium trichloride (CrCl3) in drinking water. Seventy-two Hylan Brown male chickens were randomly divided into four groups: three experimental groups and one control group. The experimental groups were exposed to three different doses (50 % LD50, 25 % LD50, and 12.5 % LD50) of CrCl3 mg/kg body weight for 42 days, while the control group was given the equivalent water. The activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and non-enzymatic index (glutathione, total antioxidant capacity, malondialdehyde, and hydrogen peroxide) were measured after obtaining the brain samples. Results suggested that 50 % LD50 chromium(III) significantly increased (P < 0.05) the contents of malondialdehyde and hydrogen peroxide. The antioxidant enzyme activities, total glutathione concentration, and total antioxidant capacity decreased significantly (P < 0.05) compared with those of the controls and were consistent with the increase in dosage and time. Additionally, extensive histological alterations were observed in the chicken brain, such as the vacuolization and nuclear condensation of the neurons. These results indicated that exposure to high-dose CrCl3 for a certain time could induce the occurrence of oxidative stress and histological alterations.
Collapse
Affiliation(s)
- Jia Cheng
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Wentao Fan
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaona Zhao
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanhan Liu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
5
|
Passeri D, Camaioni E, Liscio P, Sabbatini P, Ferri M, Carotti A, Giacchè N, Pellicciari R, Gioiello A, Macchiarulo A. Concepts and Molecular Aspects in the Polypharmacology of PARP-1 Inhibitors. ChemMedChem 2015; 11:1219-26. [PMID: 26424664 DOI: 10.1002/cmdc.201500391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/08/2022]
Abstract
Recent years have witnessed a renewed interest in PARP-1 inhibitors as promising anticancer agents with multifaceted functions. Particularly exciting developments include the approval of olaparib (Lynparza) for the treatment of refractory ovarian cancer in patients with BRCA1/2 mutations, and the increasing understanding of the polypharmacology of PARP-1 inhibitors. The aim of this review article is to provide the reader with a comprehensive overview of the distinct levels of the polypharmacology of PARP-1 inhibitors, including 1) inter-family polypharmacology, 2) intra-family polypharmacology, and 3) multi-signaling polypharmacology. Progress made in gaining insight into the molecular basis of these multiple target-independent and target-dependent activities of PARP-1 inhibitors are discussed, with an outlook on the potential impact that a better understanding of polypharmacology may have in aiding the explanation as to why some drug candidates work better than others in clinical settings, albeit acting on the same target with similar inhibitory potency.
Collapse
Affiliation(s)
- Daniela Passeri
- TES Pharma S.r.l., via Palmiro Togliatti 20, 06073 Corciano, Perugia, Italy
| | - Emidio Camaioni
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Paride Liscio
- TES Pharma S.r.l., via Palmiro Togliatti 20, 06073 Corciano, Perugia, Italy
| | - Paola Sabbatini
- TES Pharma S.r.l., via Palmiro Togliatti 20, 06073 Corciano, Perugia, Italy
| | - Martina Ferri
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Andrea Carotti
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Nicola Giacchè
- TES Pharma S.r.l., via Palmiro Togliatti 20, 06073 Corciano, Perugia, Italy
| | | | - Antimo Gioiello
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Antonio Macchiarulo
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy.
| |
Collapse
|
6
|
Sahu BD, Koneru M, Bijargi SR, Kota A, Sistla R. Chromium-induced nephrotoxicity and ameliorative effect of carvedilol in rats: Involvement of oxidative stress, apoptosis and inflammation. Chem Biol Interact 2014; 223:69-79. [DOI: 10.1016/j.cbi.2014.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/05/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
|
7
|
Liu Y, Zhang JL, Zhou MB, Song RJ, Li JH. Copper-catalyzed cascade cyclization of 1,7-enynes with aromatic sulfonyl chlorides toward selective assembly of benzo[j]phenanthridin-6(5H)-ones. Chem Commun (Camb) 2014; 50:14412-4. [DOI: 10.1039/c4cc06913g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A new Cu-catalyzed cascade cyclization reaction of 1,n-enynes with aromatic sulfonyl chlorides using an alkenyl–Cu intermediate strategy is described.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082, China
| | - Jia-Ling Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082, China
| | - Ming-Bo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082, China
| | - Ren-Jie Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082, China
| |
Collapse
|
8
|
Zhou TB, Jiang ZP. Role of poly (ADP-ribose)-polymerase and its signaling pathway with renin-angiotensin aldosterone system in renal diseases. J Recept Signal Transduct Res 2013; 34:143-8. [PMID: 24303937 DOI: 10.3109/10799893.2013.865748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP), a ubiquitous, chromatin-bound enzyme, plays a crucial role in many processes, including DNA repair, cell death, metabolism, and inflammatory responses, by activating DNA repair pathways responsible for cellular survival. Renin-angiotensin-aldosterone system (RAAS) genes encode renin, angiotensinogen, angiotensin-converting enzyme, angiotensin type-1 receptor and aldosterone synthase gene. RAAS is a hormone system which acts on multiple physiologic pathways primarily by regulating blood pressure, electrolyte and fluid homeostasis in mammals, but also by local autocrine and paracrine actions. The current status quo of scientific evidence shows that there might be a signaling pathway between PARP and RAAS. Herein, we review the role of PARP and its signaling pathways with RAAS in renal diseases.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | | |
Collapse
|
9
|
Liang Z, Zhang J, Liu Z, Wang K, Zhang Y. Pd(II)-catalyzed C(sp2)–H carbonylation of biaryl-2-amine: synthesis of phenanthridinones. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.05.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Peixoto EBMI, Papadimitriou A, Lopes de Faria JM, Lopes de Faria JB. Tempol reduces podocyte apoptosis via PARP signaling pathway in experimental diabetes mellitus. Nephron Clin Pract 2012; 120:e81-90. [PMID: 22555049 DOI: 10.1159/000337364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/17/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS In diabetic hypertensive rats, tempol reduces albuminuria by restoring the redox imbalance. Increased formation of reactive oxygen species leading to activation of poly(ADP-ribose) polymerase (PARP)-1 and podocyte loss by apoptosis contribute to albuminuria in diabetes mellitus (DM). In the present study, we investigated the hypothesis that in DM tempol reduces albuminuria by inhibition of PARP-induced podocyte apoptosis. METHODS DM was induced in 4-week-old spontaneously hypertensive rats by streptozotocin. Mouse and human podocyte cell lines were cultured in normal or high-glucose conditions, with or without tempol and/or a PARP-1 inhibitor, PJ34. RESULTS In diabetic rats, tempol treatment did not affect plasma glucose levels or systolic blood pressure. Albuminuria was higher in diabetic rats, and it was reduced by tempol. DM leads to an elevation of glomerular apoptotic cells and to podocyte loss; both were prevented by tempol treatment. DM increases the expression of poly(ADP-ribose)-modified proteins in isolated glomeruli, and it was reduced by tempol. In vitro, high glucose increased caspase-3 activity and led to a higher number of apoptotic cells that were prevented by tempol and the PARP-1 inhibitor. CONCLUSION In DM, tempol reduces albuminuria associated with reduction of podocyte apoptosis and decreasing oxidative stress via PARP signaling.
Collapse
Affiliation(s)
- Elisa B M I Peixoto
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Division of Nephrology, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | | | | |
Collapse
|
11
|
Abraham P, Rabi S. Aminoguanidine, a selective nitric oxide synthase inhibitor, attenuates cyclophosphamide-induced renal damage by inhibiting protein nitration and poly(ADP-Ribose) polymerase activation. Chemotherapy 2011; 57:327-34. [PMID: 21893984 DOI: 10.1159/000330463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 05/30/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cyclophosphamide (CP) is an antineoplastic agent that is used for the treatment of many neoplastic diseases. Renal damage is one of the dose-limiting side effects of CP. Recent studies show that nitrosative stress plays an important role in CP-induced renal damage. AIM The purpose of our study was to investigate whether aminoguanidine (AG), a selective inducible nitric oxide synthase inhibitor, protects against CP-induced nitrosative stress and renal damage. METHOD Renal damage was induced in rats by administration of a single injection of CP at a dose of 150 mg/kg body weight intraperitoneally. For the AG pretreatment studies, the rats were injected intraperitoneally with AG at a dose of 200 mg/kg body weight 1 h before administration of CP. The control rats received AG or saline alone. All the rats were killed 16 h after the administration of CP or saline. Pretreatment with AG prevented CP-induced nitration of protein tyrosine and poly(ADP-ribose) polymerase (PARP) activation. RESULT Pretreatment with AG attenuated CP-induced renal damage. The present study demonstrates that AG is effective in preventing CP-induced renal damage and also that the protective effect is from its ability to inhibit nitric oxide-induced protein nitration and PARP activation. CONCLUSION The present study shows that AG can prevent CP-induced renal damage by inhibiting protein tyrosine nitration and PARP activation. Thus, a more efficient and comfortable therapy can be achieved for patients in need of CP treatment. AG appears to be a promising drug for the prevention of nephrotoxicity of CP.
Collapse
Affiliation(s)
- Premila Abraham
- Department of Biochemistry, Christian Medical College, Vellore, India. premilaabraham @ yahoo.com
| | | |
Collapse
|
12
|
Giansanti V, Donà F, Tillhon M, Scovassi AI. PARP inhibitors: new tools to protect from inflammation. Biochem Pharmacol 2010; 80:1869-77. [PMID: 20417190 DOI: 10.1016/j.bcp.2010.04.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
Poly(ADP-ribosylation) consists in the conversion of β-NAD(+) into ADP-ribose, which is then bound to acceptor proteins and further used to form polymers of variable length and structure. The correct turnover of poly(ADP-ribose) is ensured by the concerted action of poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) enzymes, which are responsible for polymer synthesis and degradation, respectively. Despite the positive role of poly(ADP-ribosylation) in sensing and repairing DNA damage, generated also by ROS, PARP over-activation could allow NAD depletion and consequent necrosis, thus leading to an inflammatory condition in many diseases. In this respect, inhibition of PARP enzymes could exert a protective role towards a number of pathological conditions; i.e. the combined treatment of tumors with PARP inhibitors/anticancer agents proved to have a beneficial effect in cancer therapy. Thus, pharmacological inactivation of poly(ADP-ribosylation) could represent a novel therapeutic strategy to limit cellular injury and to attenuate the inflammatory processes that characterize many disorders.
Collapse
Affiliation(s)
- Vincenzo Giansanti
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, I-27100 Pavia, Italy
| | | | | | | |
Collapse
|