1
|
Hadrup N, Sharma AK, Jacobsen NR, Loeschner K. Distribution, metabolism, excretion, and toxicity of implanted silver: a review. Drug Chem Toxicol 2021; 45:2388-2397. [PMID: 34455878 DOI: 10.1080/01480545.2021.1950167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Some implantable medical devices contain silver. We aimed to assess at what amount implanted silver becomes toxic. Silver was elevated in bodily fluids and tissues surrounding silver-containing implants. Silver released from implants also distributes to blood and other tissues; there is evidence to suggest silver can pass the blood-brain-barrier. Silver can be deposited as nano-sized particles in various tissues. Such particles, in addition to silver, often contain other elements too, e.g., selenium and sulfur. Silver released from implants seems to stay in the body for long periods (years). Reported excretion pathways following implantation are urinary and fecal ones. Reported toxicological effects were virtually all local reactions surrounding the implants. Argyria is a blue-gray discoloration of the skin due to deposited silver granules. Localized argyria has been described after the implantation of acupuncture needles and silver-coated prostheses, although the presence of silver was tested only for and shown in the former. Other toxicological effects include local tissue reactivity and examples of neurotoxic and vascular effects. We did not include genotoxicity studies in the present publication as we recently evaluated silver to be genotoxic. Carcinogenicity studies were absent. We conclude that local toxicity of implanted silver can be foreseen in some situations.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anoop K Sharma
- Division for Diet, Disease Prevention and Toxicology, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Katrin Loeschner
- Division for Food Technology, Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
2
|
Bencsik A, Lestaevel P, Guseva Canu I. Nano- and neurotoxicology: An emerging discipline. Prog Neurobiol 2018; 160:45-63. [DOI: 10.1016/j.pneurobio.2017.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 09/10/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022]
|
3
|
Duda F, Bradel S, Bleich A, Abendroth P, Heemeier T, Ehlert N, Behrens P, Esser KH, Lenarz T, Brandes G, Prenzler NK. Biocompatibility of silver containing silica films on Bioverit® II middle ear prostheses in rabbits. J Biomater Appl 2015; 30:17-29. [PMID: 25659947 DOI: 10.1177/0885328215570103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For several centuries silver is known for its antibacterial effects. The middle ear is an interesting new scope for silver application since chronic inflammations combined with bacterial infection cause complete destruction of the fragile ossicle chain and tympanic membrane. The resulting conductive deafness requires tympanoplasty for reconstruction. Strategies to prevent bacterial growth on middle ear prostheses are highly recommended. In this study, rabbits were implanted with Bioverit® II middle ear prostheses functionalized with silver containing dense and nanoporous silica films which were compared with pure silica coatings as well as silver sulfadiazine cream applied on nanoporous silica coating. The health status of animals was continuously monitored; blood was examined before and after implantation. After 21 days, the middle ears were inspected; implants and mucosal samples were processed for electron microscopy. Autopsies were performed and systemic spreading of silver was chemically analyzed exemplarily in liver and kidneys. For verification of direct cytotoxicity, NIH 3T3 cells were cultured on similar silver containing silica coatings on glass up to 3 days. In vitro a reduced viability of fibroblasts adhering directly on the samples was detected compared to cells growing on the surrounding plastic of the same culture dish. In transmission electron microscopy, phagocytosed silver silica fragments, silver sulfadiazine cream as well as silver nanoparticles were noticed inside endosomes. In vivo, clinical and post mortem examinations were inconspicuous. Chemical analyses showed no increased silver content compared to controls. Mucosal coverages on almost all prostheses were found. But reduction of granulation tissue was only obvious around silver-coated implants. Single necroses and apoptosis in the mucosa were correlated by intracellular accumulation of metallic silver. For confirming supportive healing effects of middle ear implants, silver ion aggregates need to be tested in the future to optimize biocompatibility while assuring bactericidal effects in the middle ear.
Collapse
Affiliation(s)
- Franziska Duda
- ENT Department, Hannover Medical School, Hannover, Germany
| | - Susanne Bradel
- ENT Department, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Philipp Abendroth
- Cluster of Excellence "Hearing4all", Institute for Inorganic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Tanja Heemeier
- Cluster of Excellence "Hearing4all", Institute for Inorganic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Nina Ehlert
- Cluster of Excellence "Hearing4all", Institute for Inorganic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Peter Behrens
- Cluster of Excellence "Hearing4all", Institute for Inorganic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Karl-Heinz Esser
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Lenarz
- ENT Department, Hannover Medical School, Hannover, Germany
| | - Gudrun Brandes
- Institute of Cellular Biology in the Centre for Anatomy, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
4
|
Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE. Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev 2014; 114:10976-1026. [PMID: 25353708 DOI: 10.1021/cr500252u] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahentha Krishnamoorthy
- Institute of Bioengineering and ‡School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | | | | | | |
Collapse
|
5
|
Bencsik A. [Is the brain protected from the impact of nanomaterial exposure?]. Biol Aujourdhui 2014; 208:159-65. [PMID: 25190575 DOI: 10.1051/jbio/2014020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 11/15/2022]
Abstract
Beside natural and entropic nanoparticules (NPs), the engineered nanoparticules are now more and more present in many different industrial and medical applications. Notably, despite this fast development of the nanotechnologies, little is known about a possible impact on health and environment. Above all, the impact on human body and especially on the brain is not known. Among the possible ways of exposure to NPs, inhalation and ingestion are those probably the most effective to reach the brain. Until recently the scientific literature on the subject was very poor, but looking back to the last 10 years scientific productions, it is now possible to identify critical elements that should help to evaluate how well the brain is spared from a potential NP impact. First we recall some properties that characterize the nervous system as compared to other peripheral organs. Then we review the possible ways of exposure that lead to efficient direct and indirect translocation to the brain, we describe some significant data that allow to show which cells and in which sub-cellular compartment NPs are detected. We propose to review the NPs parameters that could favor translocation to the brain. Then with several examples we report the different types of neurotoxicity that have been described until now. Finally we raise several questions that need to be seriously evaluated through new experiments in order to complete our knowledge on the precise impact of NPs on brain function.
Collapse
|
6
|
Cupaioli FA, Zucca FA, Boraschi D, Zecca L. Engineered nanoparticles. How brain friendly is this new guest? Prog Neurobiol 2014; 119-120:20-38. [PMID: 24820405 DOI: 10.1016/j.pneurobio.2014.05.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 12/19/2022]
Abstract
In the last 30 years, the use of engineered nanoparticles (NPs) has progressively increased in many industrial and medical applications. In therapy, NPs may allow more effective cellular and subcellular targeting of drugs. In diagnostic applications, quantum dots are exploited for their optical characteristics, while superparamagnetic iron oxides NPs are used in magnetic resonance imaging. NPs are used in semiconductors, packaging, textiles, solar cells, batteries and plastic materials. Despite the great progress in nanotechnologies, comparatively little is known to date on the effects that exposure to NPs may have on the human body, in general and specifically on the brain. NPs can enter the human body through skin, digestive tract, airways and blood and they may cross the blood-brain barrier to reach the central nervous system. In addition to the paucity of studies describing NP effects on brain function, some of them also suffer of insufficient NPs characterization, inadequate standardization of conditions and lack of contaminant evaluation, so that results from different studies can hardly be compared. It has been shown in vitro and in vivo in rodents that NPs can impair dopaminergic and serotoninergic systems. Changes of neuronal morphology and neuronal death were reported in mice treated with NPs. NPs can also affect the respiratory chain of mitochondria and Bax protein levels, thereby causing apoptosis. Changes in expression of genes involved in redox pathways in mouse brain regions were described. NPs can induce autophagy, and accumulate in lysosomes impairing their degradation capacity. Cytoskeleton and vesicle trafficking may also be affected. NPs treated animals showed neuroinflammation with microglia activation, which could induce neurodegeneration. Considering the available data, it is important to design adequate models and experimental systems to evaluate in a reliable and controlled fashion the effects of NPs on the brain, and generate data representative of effects on the human brain, thereby useful for developing robust and valid nanosafety standards.
Collapse
Affiliation(s)
- Francesca A Cupaioli
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Diana Boraschi
- Institute of Biomedical Technologies, National Research Council of Italy, Unit of Pisa, Pisa, Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
7
|
McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal 2014; 22:116-127. [PMID: 24673909 PMCID: PMC4281024 DOI: 10.1016/j.jfda.2014.01.010] [Citation(s) in RCA: 426] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/27/2013] [Indexed: 12/12/2022] Open
Abstract
Silver is an ancient antibiotic that has found many new uses due to its unique properties on the nanoscale. Due to its presence in many consumer products, the toxicity of nanosilver has become a hot topic. This review summarizes recent advances, particularly the molecular mechanism of nanosilver toxicity. The surface of nanosilver can easily be oxidized by O2 and other molecules in the environmental and biological systems leading to the release of Ag+, a known toxic ion. Therefore, nanosilver toxicity is closely related to the release of Ag+. In fact, it is difficult to determine what portion of the toxicity is from the nano-form and what is from the ionic form. The surface oxidation rate is closely related to the nanosilver surface coating, coexisting molecules, especially thiol-containing compounds, lighting conditions, and the interaction of nanosilver with nucleic acids, lipid molecules, and proteins in a biological system. Nanosilver has been shown to penetrate the cell and become internalized. Thus, nanosilver often acts as a source of Ag+ inside the cell. One of the main mechanisms of toxicity is that it causes oxidative stress through the generation of reactive oxygen species and causes damage to cellular components including DNA damage, activation of antioxidant enzymes, depletion of antioxidant molecules (e.g., glutathione), binding and disabling of proteins, and damage to the cell membrane. Several major questions remain to be answered: (1) the toxic contribution from the ionic form versus the nano-form; (2) key enzymes and signaling pathways responsible for the toxicity; and (3) effect of coexisting molecules on the toxicity and its relationship to surface coating.
Collapse
Affiliation(s)
- Danielle McShan
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| | - Paresh C Ray
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| | - Hongtao Yu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
8
|
Pedersen DS, Tran TP, Smidt K, Bibby BM, Rungby J, Larsen A. Metallic gold beads in hyaluronic acid: a novel form of gold-based immunosuppression? Investigations of the immunosuppressive effects of metallic gold on cultured J774 macrophages and on neuronal gene expression in experimental autoimmune encephalomyelitis. Biometals 2013; 26:369-85. [PMID: 23653168 DOI: 10.1007/s10534-013-9616-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/13/2013] [Indexed: 01/03/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease caused by recurring attacks of neuroinflammation leading to neuronal death. Immune-suppressing gold salts are used for treating connective tissue diseases; however, side effects occur from systemic spread of gold ions. This is limited by exploiting macrophage-induced liberation of gold ions (dissolucytosis) from gold surfaces. Injecting gold beads in hyaluronic acid (HA) as a vehicle into the cavities of the brain can delay clinical signs of disease progression in the MS model, experimental autoimmune encephalitis (EAE). This study investigates the anti-inflammatory properties of metallic gold/HA on the gene expression of tumor necrosis factor (Tnf-α), Interleukin (Il)-1β, Il-6, Il-10, Colony-stimulating factor (Csf)-v2, Metallothionein (Mt)-1/2, Bcl-2 associated X protein (Bax) and B cell lymphoma (Bcl)-2 in cultured J774 macrophages and in rodents with early stages of EAE. Cells grew for 5 days on gold/HA or HA, then receiving 1,000 ng/mL lipopolysaccharide (LPS) as inflammatory challenge. In the EAE experiment, 12 Lewis rats received gold injections and control groups included 11 untreated and 12 HA-treated EAE rats and five healthy animals. The experiment terminated day 9 when the first ten animals showed signs of EAE, only one of which were gold-treated (1p = 0.0367). Gene expression in the macrophages showed a statistically significant decrease in Il-6, Il-1β and Il-10-response to LPS; interestingly HA induced a statistically significant increase of Il-10. In the EAE model gene expression of inflammatory cytokines increased markedly. Compared to EAE controls levels of Tnf-α, Il-1β, Il-10, Il-6, IL-2, Ifn-γ, Il-17, transforming growth factor (Tgf)-β, superoxide dismutase (Sod)-2, Mt-2 and fibroblast growth factor (Fgf)-2 were lower in the gold-treated group. HA-treated animals expressed similar or intermediate levels. Omnibus testing for reduced inflammatory response following gold-treatment was not significant, but tendencies towards a decrease in the Sod-2, Fgf-2, Il-1β response and a higher Bdnf and IL-23 gene expression were seen. In conclusion, our findings support that bio-liberation of gold from metallic gold surfaces have anti-inflammatory properties similar to classic gold compounds, warranting further studies into the pharmacological potential of this novel gold-treatment and the possible synergistic effects of hyaluronic acid.
Collapse
Affiliation(s)
- Dan Sonne Pedersen
- Department of Biomedicine, Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, Building 1240, 3rd Floor, 8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
9
|
Chernousova S, Epple M. Silber als antibakterielles Agens: Ion, Nanopartikel, Metall. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205923] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 2012; 52:1636-53. [PMID: 23255416 DOI: 10.1002/anie.201205923] [Citation(s) in RCA: 1292] [Impact Index Per Article: 107.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/22/2012] [Indexed: 12/12/2022]
Abstract
The antibacterial action of silver is utilized in numerous consumer products and medical devices. Metallic silver, silver salts, and also silver nanoparticles are used for this purpose. The state of research on the effect of silver on bacteria, cells, and higher organisms is summarized. It can be concluded that the therapeutic window for silver is narrower than often assumed. However, the risks for humans and the environment are probably limited.
Collapse
Affiliation(s)
- Svitlana Chernousova
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| | | |
Collapse
|