1
|
Ding M, Bao Y, Liang H, Zhang X, Li B, Yang R, Zeng N. Potential mechanisms of formononetin against inflammation and oxidative stress: a review. Front Pharmacol 2024; 15:1368765. [PMID: 38799172 PMCID: PMC11116718 DOI: 10.3389/fphar.2024.1368765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Formononetin (FMNT) is a secondary metabolite of flavonoids abundant in legumes and graminaceous plants such as Astragalus mongholicus Bunge [Fabaceae; Astragali radix] and Avena sativa L. [Poaceae]. Astragalus is traditionally used in Asia countries such as China, Korea and Mongolia to treat inflammatory diseases, immune disorders and cancers. In recent years, inflammation and oxidative stress have been found to be associated with many diseases. A large number of pharmacological studies have shown that FMNT, an important bioactive metabolite of Astragalus, has a profoundly anti-inflammatory and antioxidant potential. This review focuses on providing comprehensive and up-to-date findings on the efficacy of the molecular targets and mechanisms involve of FMNT and its derivatives against inflammation and oxidative stress in both in vitro and in vivo. Relevant literature on FMNT against inflammation and oxidative stress between 2013 and 2023 were analyzed. FMNT has antioxidant and anti-inflammatory potential and shows mild or no toxicity in various diseases. Moreover, in the medical field, FMNT has shown potential in the prevention and treatment of cancers, neurological diseases, fibrotic diseases, allergic diseases, metabolic diseases, cardiovascular diseases, gastrointestinal diseases and autoimmune diseases. Thus, it is expected to be utilized in more products in the medical, food and cosmetic industries in the future.
Collapse
Affiliation(s)
- Meiling Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwen Bao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongwei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Shen C, Chen Q, Chen S, Lin Y. Mechanism of Danggui Buxue decoction in the treatment of myocardial infarction based on network pharmacology and experimental identification. Heliyon 2024; 10:e29360. [PMID: 38665560 PMCID: PMC11043959 DOI: 10.1016/j.heliyon.2024.e29360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Background Myocardial infarction (MI) remains one of the major causes of high morbidity and mortality worldwide. Danggui Buxue Decoction (DBD)-an ancient Chinese herbal decoction-has been used to prevent coronary heart disease, which was called "chest palsy" in ancient clinics. However, the mechanism of DBD in the treatment of MI remains unclear. The aim of this study was to explore the effect and mechanism of DBD on MI by combining network pharmacology with in vivo experiments. Materials and methods First, public databases were used to identify the key active chemicals and possible targets of DBD. The MI targets were obtained from the Therapeutic Target Database, and the function of the target genes in relation to linked pathways was investigated. Subsequently, Cytoscape software was used to build a target-signaling pathway network. Finally, the efficacy of DBD therapy on MI was validated using in vivo investigations combined with molecular docking. Results In traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), 27 bioactive compounds were screened from DBD. A total of 213 common targets were obtained, including 507 DBD targets and 2566 MI targets. Enrichment analysis suggests that PI3K/AKT is a potential signaling pathway for DBD-based protection. Immunofluorescence and protein blotting confirmed PI3K/AKT1, ERK2, and CASPASE-9 as the target proteins. Molecular docking analysis showed that quercetin, kaempferol, isoflavanones, isorhamnetin, hederagenin, and formononetin had high binding affinity to AKT1, ERK2, and CASPASE-9. Conclusions This study demonstrated that the therapeutic benefit of DBD on MI may be mediated via target proteins in the PI3K/AKT pathway, such as AKT1, ERK2, and CASPASE-9. Our study data can help to provide ideas and identify new treatment targets for MI.
Collapse
Affiliation(s)
- Chuqiao Shen
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
| | - Qian Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Shuo Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Yixuan Lin
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
| |
Collapse
|
3
|
Wang Q, Chen G, Chen X, Liu Y, Qin Z, Lin P, Shang H, Ye M, He L, Yao Z. Development of a three-step-based novel strategy integrating DMPK with network pharmacology and bioactivity evaluation for the discovery of Q-markers of traditional Chinese medicine prescriptions: Danlou tablet as an example. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154511. [PMID: 36334388 DOI: 10.1016/j.phymed.2022.154511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/02/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Quality marker (Q-marker) serves an important role in promoting the standardization of the quality of traditional Chinese medicine (TCM) prescriptions. However, discovering comprehensive and representative Q-markers from TCM prescriptions composed of multiple components remains difficult. PURPOSE A three-step-based novel strategy integrating drug metabolism and pharmacokinetics (DMPK) with network pharmacology and bioactivity evaluation was proposed to discover the Q-markers and applied to a research example of Danlou tablet (DLT), a famous TCM prescription with remarkable and reliable clinical effects for coronary heart disease (CHD). METHODS Firstly, the metabolic profile in vivo of DLT was systemically characterized, and the pharmacokinetic (PK) properties of PK markers were then investigated. Secondly, an integrated network of "PK markers - CHD targets - pathways - therapeutic effects" was established to screen out the crucial PK markers of DLT against CHD. Thirdly, the crucial PK markers that could exhibit strong myocardial protection activity in the H9c2 cardiomyocyte model were selected as the candidate Q-markers of DLT. According to the proportion of their Cmax value in vivo, the candidate Q-markers were configured into a composition; the bioactivity was then evaluated to confirm their synergistic effect and justify their usage as Q-markers. RESULTS First of all, a total of 110 DLT-related xenobiotics (35 prototypes and 75 metabolites) were detected in bio-samples, and the pharmacokinetic properties of 13 PK markers of DLT were successfully characterized, revealing the quality transitivity and traceability from prescription to in vivo. Then, 6 crucial PK markers with three topological features (degree, betweenness, and closeness) greater than the average values in the pharmacology network were screened out as the key components of DLT against CHD. Furthermore, among these 6 crucial PK markers, 5 components (puerarin, alisol A, daidzein, paeoniflorin, and tanshinone IIA) with strong myocardial protection activity were chosen as the candidate Q-markers to constitute a new composition. The composition activated the expression of the PI3K/AKT pathway and exhibited strong myocardial protection activity, and the effective concentrations (nM level) of these components in the composition were significantly lower than their individually effective concentrations (μM level), indicating that there was a certain synergistic effect between them. Hence, the 5 components with multiple properties, including testability, quality transitivity and traceability from prescription to in vivo, effectiveness, and compatibility contribution, were defined as comprehensive and representative Q-markers of DLT. CONCLUSION This study not only presented a novel idea for the revelation of comprehensive and representative Q-markers in quality control research of TCM prescriptions, but also identified the reasonable Q-markers of DLT for the first time to improve the quality control level of DLT.
Collapse
Affiliation(s)
- Qi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guotao Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xintong Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yuehe Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zifei Qin
- Department of Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Pei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Bai Y, He Z, Duan W, Gu H, Wu K, Yuan W, Liu W, Huang H, Li Y. Sodium formononetin-3'-sulphonate alleviates cerebral ischemia-reperfusion injury in rats via suppressing endoplasmic reticulum stress-mediated apoptosis. BMC Neurosci 2022; 23:74. [PMID: 36482320 PMCID: PMC9733209 DOI: 10.1186/s12868-022-00762-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sodium formononetin-3'-sulphonate (Sul-F) may alleviate I/R injury in vivo with uncertain mechanism. Endoplasmic reticulum (ER) stress-mediated apoptosis participates in the process of cerebral ischemia-reperfusion (I/R) injury. Our aim is to figure out the effect of Sul-F on cerebral I/R injury and to verify whether it works through suppressing ER stress-mediated apoptosis. RESULTS The cerebral lesions of middle cerebral artery occlusion (MCAO) model in SD rats were aggravated after 24 h of reperfusion, including impaired neurological function, increased infarct volume, intensified inflammatory response and poor cell morphology. After intervention, the edaravone (EDA, 3 mg/kg) group and Sul-F high-dose (Sul-F-H, 80 mg/kg) group significantly alleviated I/R injury via decreasing neurological score, infarct volume and the serum levels of inflammatory factors (TNF-α, IL-1β and IL-6), as well as alleviating pathological injury. Furthermore, the ER stress level and apoptosis rate were elevated in the ischemic penumbra of MCAO group, and were significantly blocked by EDA and Sul-F-H. In addition, EDA and Sul-F-H significantly down-regulated the ER stress related PERK/eIF2α/ATF4 and IRE1 signal pathways, which led to reduced cell apoptosis rate compared with the MCAO group. Furthermore, there was no difference between the EDA and Sul-F-H group in terms of therapeutic effect on cerebral I/R injury, indicating a therapeutic potential of Sul-F for ischemic stroke. CONCLUSIONS Sul-F-H can significantly protects against cerebral I/R injury through inhibiting ER stress-mediated apoptosis in the ischemic penumbra, which might be a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yue Bai
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Zhiwei He
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Weisong Duan
- grid.452702.60000 0004 1804 3009Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - He Gu
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Kefeng Wu
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Wei Yuan
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Wenkang Liu
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Huaipeng Huang
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Yanan Li
- grid.256883.20000 0004 1760 8442Department of Clinical Laboratory Diagnosis, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| |
Collapse
|
5
|
Neto JC, Paulino ET, Rodrigues AKBF, Silva JCGD, Bernardino AC, Oliveira JMDS, Nascimento TGD, Oliveira WDS, Santos JCC, Smaniotto S, Ribeiro ÊAN. Cardioprotective effect of hydroalcoholic extract of Brazilian red propolis against isoproterenol-induced myocardial infarction in rats. PHYTOMEDICINE PLUS 2022; 2:100190. [DOI: 10.1016/j.phyplu.2021.100190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Hypobaric hypoxia triggers pyroptosis in the retina via NLRP3 inflammasome activation. Apoptosis 2022; 27:222-232. [PMID: 35088163 DOI: 10.1007/s10495-022-01710-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 11/02/2022]
Abstract
Hypobaric hypoxia initiates multiple impairment to the retina and is the major cause contributing to retinal function deficits such as high altitude retinopathy. However, the underlying molecular mechanism has not been clearly defined so far and remains to be clarified. In the present study, we have undertaken an approach to mimic 5000 m altitude with a low-pressure oxygen cabin and evaluated if pyroptosis is involved in the mechanisms by which hypobaric hypoxia triggers retinal impairment. We also used Radix Astragali seu Hedysari Compound (RAHC) to determine whether RAHC is capable of exerting protective effects on the hypobaric hypoxia-induced retinal dysfunction. We found that hypobaric hypoxia stress activated inflammasome complex through increasing NOD-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1, and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) protein levels. The protein expression of gasdermin-D, a master executor of pyroptosis, and NADPH oxidase 4, which is regarded as a main generator of reactive oxygen species (ROS), also elevated upon hypobaric hypoxia exposure. In addition, hypobaric hypoxia induced a significant increase in pro-inflammatory cytokines expression including interleukin-1β and interleukin-18 in the rat retina. Our results indicate that hypobaric hypoxia initiates pyroptosis in the rat retina. RAHC attenuates hypobaric hypoxia-triggered retinal pyroptosis via inhibiting NLRP3 inflammasome activation and release of pro-inflammatory cytokines. The involvement of pyroptosis pathway in the retina in response to hypobaric hypoxia supports a novel insight to clarify the pathogenesis of hypobaric hypoxia-induced retinal impairment and provides a feasibility of inflammasome modulation for preserving retinal function.
Collapse
|
7
|
Sunagawa M, Takayama Y, Kato M, Tanaka M, Fukuoka S, Okumo T, Tsukada M, Yamaguchi K. Kampo Formulae for the Treatment of Neuropathic Pain ∼ Especially the Mechanism of Action of Yokukansan ∼. Front Mol Neurosci 2021; 14:705023. [PMID: 34970116 PMCID: PMC8712661 DOI: 10.3389/fnmol.2021.705023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Kampo medicine has been practiced as traditional medicine (TM) in Japan. Kampo medicine uses Kampo formulae that are composed of multiple crude drugs to make Kampo formulae. In Japan, Kampo formulae are commonly used instead of or combined with Western medicines. If drug therapy that follows the guidelines for neuropathic pain does not work or cannot be taken due to side effects, various Kampo formulae are considered as the next line of treatment. Since Kampo formulae are composed of two or more kinds of natural crude drugs, and their extracts contain many ingredients with pharmacological effects, one Kampo formula usually has multiple effects. Therefore, when selecting a formula, we consider symptoms other than pain. This review outlines the Kampo formulae that are frequently used for pain treatment and their crude drugs and the basic usage of each component. In recent years, Yokukansan (YKS) has become one of the most used Kampo formulae for pain treatment with an increasing body of baseline research available. We outline the known and possible mechanisms by which YKS exerts its pharmacologic benefits as an example of Kampo formulae's potency and holistic healing properties.
Collapse
Affiliation(s)
- Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Yasunori Takayama
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Mami Kato
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Midori Tanaka
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
- Department of Rehabilitation Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Seiya Fukuoka
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
- Department of Ophthalmology, School of Medicine, Showa University, Tokyo, Japan
| | - Takayuki Okumo
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Mana Tsukada
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Kojiro Yamaguchi
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
8
|
Ononin inhibits cerebral ischemia/reperfusion injury via suppression of inflammatory responses in experimental rats and SH-SY5Y cells. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Xiong W, Lan Q, Liang X, Zhao J, Huang H, Zhan Y, Qin Z, Jiang X, Zheng L. Cartilage-targeting poly(ethylene glycol) (PEG)-formononetin (FMN) nanodrug for the treatment of osteoarthritis. J Nanobiotechnology 2021; 19:197. [PMID: 34217311 PMCID: PMC8254262 DOI: 10.1186/s12951-021-00945-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Intra-articular (IA) injection is an efficient treatment for osteoarthritis, which will minimize systemic side effects. However, the joint experiences rapid clearance of therapeutics after intra-articular injection. Delivering system modified through active targeting strategies to facilitate localization within specific joint tissues such as cartilage is hopeful to increase the therapeutic effects. In this study, we designed a nanoscaled amphiphilic and cartilage-targeting polymer-drug delivery system by using formononetin (FMN)-poly(ethylene glycol) (PEG) (denoted as PCFMN), which was prepared by PEGylation of FMN followed by coupling with cartilage-targeting peptide (CollBP). Our results showed that PCFMN was approximately regular spherical with an average diameter about 218 nm. The in vitro test using IL-1β stimulated chondrocytes indicated that PCFMN was biocompatible and upregulated anabolic genes while simultaneously downregulated catabolic genes of the articular cartilage. The therapeutic effects in vivo indicated that PCFMN could effectively attenuate the progression of OA as evidenced by immunohistochemical staining and histological analysis. In addition, PCFMN showed higher intention time in joints and better anti-inflammatory effects than FMN, indicating the efficacy of cartilage targeting nanodrug on OA. This study may provide a reference for clinical OA therapy.
Collapse
Affiliation(s)
- Wei Xiong
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiumei Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaonan Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hanji Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yanting Zhan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Xianfang Jiang
- Department of Oral Radiology, Guangxi Medical University College of Stomatology, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
10
|
Liu G, Zhao W, Bai J, Cui J, Liang H, Lu B. Formononetin protects against concanavalin-A-induced autoimmune hepatitis in mice through its anti-apoptotic and anti-inflammatory properties. Biochem Cell Biol 2021; 99:231-240. [PMID: 33749318 DOI: 10.1139/bcb-2020-0197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease that seriously threatens the health of humans globally. Formononetin (FMN) is a natural herb extract with multiple biological functions. In this study, an experimental model of AIH was established in mice through the use of concanavalin A (ConA). To investigate the effects of FMN on ConA-induced hepatitis, the mice were pretreated with 50 or 100 mg/kg body mass of FMN. The results show that FMN alleviated ConA-induced liver injury of mice in a dose-dependent manner. Moreover, pretreatment with FMN inhibited the apoptosis of hepatocytes in the ConA-treated mice through downregulating the expression of pro-apoptotic proteins (Bax, cleaved caspase 9, and cleaved caspase 3) and upregulating the expression of anti-apoptotic protein (Bcl-2). It was also found that the levels of proinflammatory cytokines were greatly reduced in the serum and liver tissues of mice pretreated with FMN. Further studies showed that FMN reduced the level of phosphorylated nuclear factor kappa B (p-NF-κB) p65 and enhanced the level of IκBα (inhibitor of NF-κB), suggesting that FMN inhibits the activation of the NF-κB signaling pathway. In addition, FMN inhibited activation of the NOD-like receptor protein 3 (NLRP3) inflammasome. Therefore, FMN could be a promising agent for the treatment of AIH.
Collapse
Affiliation(s)
- Guangwei Liu
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450004, P.R. China
| | - Wenxia Zhao
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450004, P.R. China
| | - Jiameng Bai
- Spleen, Stomach and Hepatobiliary Department, Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China
| | - Jianjiao Cui
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450004, P.R. China
| | - Haowei Liang
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450004, P.R. China
| | - Baoping Lu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China
| |
Collapse
|
11
|
Oza MJ, Kulkarni YA. Formononetin Ameliorates Diabetic Neuropathy by Increasing Expression of SIRT1 and NGF. Chem Biodivers 2020; 17:e2000162. [PMID: 32459048 DOI: 10.1002/cbdv.202000162] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Abstract
Diabetic neuropathy is commonly observed complication in more than 50 % of type 2 diabetic patients. Histone deacetylases including SIRT1 have significant role to protect neuron from hyperglycemia induced damage. Formononetin (FMNT) is known for its effect to control hyperglycemia and also activate SIRT1. In present study, we evaluated effect of FMNT as SIRT1 activator in type 2 diabetic neuropathy. Type 2 diabetic neuropathy was induced in rats by modification of diet for 15 days using high fat diet and administration of streptozotocin (35 mg/kg/day, i. p.). FMNT treatment was initiated after confirmation of type 2 diabetes. Treatment was given for 16 weeks at 10, 20 and 40 mg/kg/day dose orally. FMNT treatment-controlled hypoglycemia and reduced insulin resistance significantly in diabetic animals. FMNT treatment reduced oxidative stress in sciatic nerve tissue. FMNT treatment also reduced thermal hyperalgesia and mechanical allodynia significantly. It improved conduction velocity in nerve and unregulated SIRT1 and NGF expression in sciatic nerve tissue. Results of present study indicate that continuous administration of FMNT protected diabetic animals from hyperglycemia induced neuronal damage by controlling hyperglycemia and increasing SIRT1 and NGF expression in nerve tissue. Thus, FMNT can be an effective candidate for treatment of type 2 diabetic neuropathy.
Collapse
Affiliation(s)
- Manisha J Oza
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, 400056, India.,SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
12
|
Wu Y, Cai C, Yang L, Xiang Y, Zhao H, Zeng C. Inhibitory effects of formononetin on the monocrotaline‑induced pulmonary arterial hypertension in rats. Mol Med Rep 2020; 21:1192-1200. [PMID: 31922224 PMCID: PMC7003019 DOI: 10.3892/mmr.2020.10911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a fatal syndrome resulting from enhanced pulmonary arterial pressure and pulmonary vessel resistance. Perivascular inflammation and extracellular matrix deposition are considered to be the crucial pathophysiologic bases of PAH. Formononetin (FMN), a natural phytoestrogen isolated from red clover (Trifolium pratense), has a variety of proapoptotic, anti-inflammatory and anti-tumor activities. However, the therapeutic effectiveness of FMN for PAH remains unclear. In the present study, 60 mg/kg monocrotaline (MCT) was first used to induce PAH in rats, and then all rats were treated with different concentrations of FMN (10, 30 and 60 mg/kg/day). At the end of this study, the hemodynamics and pulmonary vascular morphology of rats were evaluated. Specifically, matrix metalloproteinase (MMP)2, transforming growth factor β1 (TGFβ1) and MMP9 were measured using western blot and immunohistochemical staining. Collagen type I, collagen type III, fibronectin, monocyte chemotactic protein-1, tumor necrosis factor-α, interleukin-1β, ERK and NF-κB were quantified using western blotting. The results demonstrated that FMN significantly alleviated the changes of hemodynamics and pulmonary vascular morphology, and decreased the MCT-induced upregulations of TGFβ1, MMP2 and MMP9 expression levels. Meanwhile, the expression levels of collagen type I, collagen type III and fibronectin in rat lungs decreased after FMN treatment. Furthermore, the phosphorylated ERK and NF-κB also decreased after FMN treatment. Taken together, the present study indicated that FMN serves a therapeutic role in the MCT-induced PAH in rats via suppressing pulmonary vascular remodeling, which may be partially related to ERK and NF-κB signals.
Collapse
Affiliation(s)
- Yonghui Wu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Changhong Cai
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Lebing Yang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yijia Xiang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Huan Zhao
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Chunlai Zeng
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
13
|
Cai C, Xiang Y, Wu Y, Zhu N, Zhao H, Xu J, Lin W, Zeng C. Formononetin attenuates monocrotaline‑induced pulmonary arterial hypertension via inhibiting pulmonary vascular remodeling in rats. Mol Med Rep 2019; 20:4984-4992. [PMID: 31702810 PMCID: PMC6854580 DOI: 10.3892/mmr.2019.10781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life‑threatening disease induced by the excessive proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs). Formononetin (FMN) is a natural isoflavone with numerous cardioprotective properties, which can inhibit the proliferation and induce the apoptosis of tumor cells; however, whether FMN has a therapeutic effect on PAH remains unclear. In the present study, PAH was induced in rats with monocrotaline (MCT, 60 mg/kg); rats were then administered FMN (10, 30 or 60 mg/kg/day). At the end of the experiment, hemodynamic changes, right ventricular hypertrophy and lung morphological characteristics were evaluated. α‑smooth muscle actin (α‑SMA), proliferating cell nuclear antigen (PCNA), and TUNEL were detected by immunohistochemical staining. The expression of PCNA, Bcl‑2‑associated X protein (Bax), Bcl‑2 and, cleaved caspase‑3, and activation of AKT and ERK were examined by western blot analysis. The results demonstrated that FMN significantly ameliorated the right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling induced by MCT. FMN also attenuated MCT‑induced increased expression of α‑SMA and PCNA. The ratio of Bax/Bcl‑2 and cleaved caspase‑3 expression increased in rat lung tissue in response to FMN treatment. Furthermore, reduced phosphorylation of AKT and ERK was also observed in FMN‑treated rats. Therefore, FMN may provide protection against MCT‑induced PAH by preventing pulmonary vascular remodeling, potentially by suppressing the PI3K/AKT and ERK pathways in rats.
Collapse
Affiliation(s)
- Changhong Cai
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yijia Xiang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yonghui Wu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Ning Zhu
- Department of Cardiology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Huan Zhao
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Jian Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Wensheng Lin
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Chunlai Zeng
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
14
|
Soundharrajan I, Kim DH, Kuppusamy P, Choi KC. Modulation of osteogenic and myogenic differentiation by a phytoestrogen formononetin via p38MAPK-dependent JAK-STAT and Smad-1/5/8 signaling pathways in mouse myogenic progenitor cells. Sci Rep 2019; 9:9307. [PMID: 31243298 PMCID: PMC6594940 DOI: 10.1038/s41598-019-45793-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/12/2019] [Indexed: 11/09/2022] Open
Abstract
Formononetin (FN), a typical phytoestrogen has attracted substantial attention as a novel agent because of its diverse biological activities including, osteogenic differentiation. However, the molecular mechanisms underlying osteogenic and myogenic differentiation by FN in C2C12 progenitor cells remain unknown. Therefore the objective of the current study was to investigate the action of FN on myogenic and osteogenic differentiation and its impact on signaling pathways in C2C12 cells. FN significantly increased myogenic markers such as Myogenin, myosin heavy chains, and myogenic differentiation 1 (MyoD). In addition, the expression of osteogenic specific genes alkaline phosphatase (ALP), Run-related transcription factor 2(RUNX2), and osteocalcin (OCN) were up-regulated by FN treatment. Moreover, FN enhanced the ALP level, calcium deposition and the expression of bone morphogenetic protein isoform (BMPs). Signal transduction pathways mediated by p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-related kinases (ERKs), protein kinase B (Akt), Janus kinases (JAKs), and signal transducer activator of transcription proteins (STATs) in myogenic and osteogenic differentiation after FN treatment were also examined. FN treatment activates myogenic differentiation by increasing p38MAPK and decreasing JAK1-STAT1 phosphorylation levels, while osteogenic induction was enhanced by p38MAPK dependent Smad, 1/5/8 signaling pathways in C2C12 progenitor cells.
Collapse
Affiliation(s)
- Ilavenil Soundharrajan
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Da Hye Kim
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY, 40536, USA
| | - Palaniselvam Kuppusamy
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea.
| |
Collapse
|
15
|
Focus on Formononetin: Anticancer Potential and Molecular Targets. Cancers (Basel) 2019; 11:cancers11050611. [PMID: 31052435 PMCID: PMC6562434 DOI: 10.3390/cancers11050611] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 12/11/2022] Open
Abstract
Formononetin, an isoflavone, is extracted from various medicinal plants and herbs, including the red clover (Trifolium pratense) and Chinese medicinal plant Astragalus membranaceus. Formononetin's antioxidant and neuroprotective effects underscore its therapeutic use against Alzheimer's disease. Formononetin has been under intense investigation for the past decade as strong evidence on promoting apoptosis and against proliferation suggests for its use as an anticancer agent against diverse cancers. These anticancer properties are observed in multiple cancer cell models, including breast, colorectal, and prostate cancer. Formononetin also attenuates metastasis and tumor growth in various in vivo studies. The beneficial effects exuded by formononetin can be attributed to its antiproliferative and cell cycle arrest inducing properties. Formononetin regulates various transcription factors and growth-factor-mediated oncogenic pathways, consequently alleviating the possible causes of chronic inflammation that are linked to cancer survival of neoplastic cells and their resistance against chemotherapy. As such, this review summarizes and critically analyzes current evidence on the potential of formononetin for therapy of various malignancies with special emphasis on molecular targets.
Collapse
|
16
|
Huang Z, Liu Y, Huang X. Formononetin may protect aged hearts from ischemia/reperfusion damage by enhancing autophagic degradation. Mol Med Rep 2018; 18:4821-4830. [PMID: 30320398 PMCID: PMC6236296 DOI: 10.3892/mmr.2018.9544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/01/2018] [Indexed: 01/18/2023] Open
Abstract
Myocardial infarction is a leading cause of mortality worldwide, and timely blood/oxygen reperfusion may substantially improve the outcome of infarction. However, ischemia/reperfusion (I/R) may cause severe side effects through excess reactive oxygen species generation. To develop novel methods to relieve I/R induced cell damage, the present study used a component of traditional Chinese medicine. In the present study, isolated heart tissue from aged mice and H9C2 cells with chemically‑induced aging were used as experimental subjects, and it was demonstrated that formononetin was able to alleviate I/R‑induced cell or tissue apoptosis. By applying formononetin to I/R‑damaged tissue or cells, it was demonstrated that formononetin was able to enhance autophagy and thus alleviate I/R‑induced cell damage. Furthermore, it was observed that I/R was able to inhibit lysosomal degradation processes in aged tissues or cells by impairing the lysosome acidification level, and formononetin was able to reverse this process via the re‑acidification of lysosomes. In conclusion, the present study demonstrated that formononetin was able to alleviate I/R‑induced cellular apoptosis in aged cells by facilitating autophagy.
Collapse
Affiliation(s)
- Zhengxin Huang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yingfeng Liu
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xianping Huang
- Laboratory of Biochemistry, Hunan University of Chinese Medicine, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
17
|
Song T, Zhao J, Jiang T, Jin X, Li Y, Liu X. Formononetin protects against balloon injury‑induced neointima formation in rats by regulating proliferation and migration of vascular smooth muscle cells via the TGF‑β1/Smad3 signaling pathway. Int J Mol Med 2018; 42:2155-2162. [PMID: 30066831 DOI: 10.3892/ijmm.2018.3784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/25/2018] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the effects of formononetin (FMN) against balloon injury‑induced neointima formation in vivo and platelet‑derived growth factor (PDGF)‑BB‑induced proliferation and migration of vascular smooth muscle cells (VSMCs) in vitro, and explored the underlying mechanisms. A rat model of carotid artery injury was established, in order to examine the effects of FMN on balloon injury‑induced neointima formation. Histological observation of the carotid artery tissues was conducted by hematoxylin and eosin staining. VSMC proliferation during neointima formation was observed by proliferating cell nuclear antigen staining. Subsequently, rat aortic VSMCs were isolated, and the effects of FMN on PDGF‑BB‑induced VSMC proliferation and migration were determined using Cell Counting Kit‑8 and Transwell/wound healing assays, respectively. Immunohistochemical and immunocytochemical staining was applied to measure the expression of transforming growth factor (TGF)‑β in carotid artery tissues and VSMCs, respectively. SMAD family member 3 (Smad3)/phosphorylated (p)‑Smad3 expression was examined by western blotting. FMN treatment significantly inhibited the abnormal proliferation of smooth muscle cells in neointima, and alterations to the vascular structure were attenuated. In addition, pretreatment with FMN effectively inhibited the proliferation of PDGF‑BB‑stimulated VSMCs (P<0.05). FMN also reduced the number of cells that migrated to the lower surface of the Transwell chamber and decreased wound‑healing percentage (P<0.05). The expression levels of TGF‑β were decreased by FMN treatment in vivo and in vitro, and Smad3/p‑Smad3 expression was also markedly inhibited. In conclusion, FMN significantly protected against balloon injury‑induced neointima formation in the carotid artery of a rat model; this effect may be associated with the regulation of VSMC proliferation and migration through altered TGF‑β1/Smad3 signaling.
Collapse
Affiliation(s)
- Tao Song
- Department of Vascular Surgery, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| | - Jingdong Zhao
- Department of Vascular Surgery, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| | - Tongbai Jiang
- Department of Vascular Surgery, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yubin Li
- Department of Vascular Surgery, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| | - Xinrong Liu
- Hemodialysis Center, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
18
|
Yang XX, Zhou YZ, Xu F, Yu J, Gegentana, Shang MY, Wang X, Cai SQ. Screening potential mitochondria-targeting compounds from traditional Chinese medicines using a mitochondria-based centrifugal ultrafiltration/liquid chromatography/mass spectrometry method. J Pharm Anal 2018; 8:240-249. [PMID: 30140488 PMCID: PMC6104153 DOI: 10.1016/j.jpha.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Mitochondria regulate numerous crucial cell processes, including energy production, apoptotic cell death, oxidative stress, calcium homeostasis and lipid metabolism. Here, we applied an efficient mitochondria-based centrifugal ultrafiltration/liquid chromatography/mass spectrometry (LC/MS) method, also known as screening method for mitochondria-targeted bioactive constituents (SM-MBC). This method allowed searching natural mitochondria-targeting compounds from traditional Chinese medicines (TCMs), including Puerariae Radix (PR) and Chuanxiong Radix (CR). A total of 23 active compounds were successfully discovered from the two TCMs extracts. Among these 23 hit compounds, 17 were identified by LC/MS, 12 of which were novel mitochondria-targeting compounds. Among these, 6 active compounds were analyzed in vitro for pharmacological tests and found able to affect mitochondrial functions. We also investigated the effects of the hit compounds on HepG2 cell proliferation and on loss of cardiomyocyte viability induced by hypoxia/reoxygenation injury. The results obtained are useful for in-depth understanding of mechanisms underlying TCMs therapeutic effects at mitochondria level and for developing novel potential drugs using TCMs as lead compounds. Finally, we showed that SM-MBC was an efficient protocol for the rapid screening of mitochondria-targeting constituents from complex samples such as PR and CR extracts.
Collapse
Affiliation(s)
- Xing-Xin Yang
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China.,College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Kunming 650500, Yunnan Province, PR China
| | - Yu-Zhen Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China
| | - Feng Xu
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Kunming 650500, Yunnan Province, PR China
| | - Gegentana
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China
| | - Ming-Ying Shang
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China
| | - Xuan Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China
| | - Shao-Qing Cai
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China
| |
Collapse
|
19
|
Mao S, Chen P, Li T, Guo L, Zhang M. Tongguan Capsule Mitigates Post-myocardial Infarction Remodeling by Promoting Autophagy and Inhibiting Apoptosis: Role of Sirt1. Front Physiol 2018; 9:589. [PMID: 29872406 PMCID: PMC5972280 DOI: 10.3389/fphys.2018.00589] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Left ventricular (LV) adverse remodeling and the concomitant functional deterioration contributes to the poor prognosis of patients with myocardial infarction (MI). Thus, a more effective treatment strategy is needed. Tongguan capsule (TGC), a patented Chinese medicine, has been shown to be cardioprotective in both humans and animals following ischemic injury, although its precise mechanism remains unclear. To investigate whether TGC can improve cardiac remodeling in the post-infarct heart, adult C57/BL6 mice underwent coronary artery ligation and were administered TGC or vehicle (saline) for 6 weeks. The results demonstrated that the TGC group showed significant improvement in survival ratio and cardiac function and structure as compared to the vehicle group. Histological and western blot analyses revealed decreased cellular inflammation and apoptosis in cardiomyocytes of the TGC group. Furthermore, TGC upregulated the Atg5 expression and LC3II-to-LC3I ratio but downregulated autophagy adaptor p62 expression, suggesting that TGC led to increased autophagic flux. Interestingly, with the administration of 3-methyladenine, an autophagy inhibitor, in conjunction with TGC, the aforesaid effects significantly decreased. Further mechanistic studies revealed that TGC increased silent information regulator 1 (Sirt1) expression to reduce the phosphorylation of the mammalian target of rapamycin and its downstream effectors P70S6K and 4EBP1. Moreover, the induction of Sirt1 by TGC was inhibited by the specific inhibitor EX527. In the presence of EX527, TGC-induced autophagy-specific proteins were downregulated, while apoptotic and inflammatory factors were upregulated. In summary, our results demonstrate that TGC improved cardiac remodeling in a murine model of MI by preventing cardiomyocyte inflammation and apoptosis but enhancing autophagy through Sirt1 activation.
Collapse
Affiliation(s)
- Shuai Mao
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Peipei Chen
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ting Li
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Liheng Guo
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Minzhou Zhang
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Urandur S, Banala VT, Shukla RP, Mittapelly N, Pandey G, Kalleti N, Mitra K, Rath SK, Trivedi R, Ramarao P, Mishra PR. Anisamide-Anchored Lyotropic Nano-Liquid Crystalline Particles with AIE Effect: A Smart Optical Beacon for Tumor Imaging and Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12960-12974. [PMID: 29577719 DOI: 10.1021/acsami.7b19109] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The prospective design of nanocarriers for personalized oncotherapy should be an ensemble of targeting, imaging, and noninvasive therapeutic capabilities. Herein, we report the development of the inverse hexagonal nano-liquid crystalline (NLC) particles that are able to host formononetin (FMN), a phytoestrogen with known anticancer activity, and tetraphenylethene (TPE), an iconic optical beacon with aggregation-induced emission (AIE) signature, simultaneously. Ordered three-dimensional mesoporous internal structure and high-lipid-volume fraction of NLC nanoparticles (NLC NPs) frame the outer compartment for the better settlement of payloads. Embellishment of these nanoparticles by anisamide (AA), a novel sigma receptor targeting ligand using carbodiimide coupling chemistry ensured NLC's as an outstanding vehicle for possible utility in surveillance of tumor location as well as the FMN delivery through active AIE imaging. The size and structural integrity of nanoparticles were evaluated by quasi-elastic light scattering, cryo field emission scanning electron microscopy small-angle X-ray scattering. The existence of AIE effect in the nanoparticles was evidenced through the photophysical studies that advocate the application of NLC NPs in fluorescence-based bioimaging. Moreover, confocal microscopy illustrated the single living cell imaging ability endowed by the NLC NPs. In vitro and in vivo studies supported the enhanced efficacy of targeted nanoparticles (AA-NLC-TF) in comparison to nontargeted nanoparticles (NLC-TF) and free drug. Apparently, this critically designed multimodal NLC NPs may establish a promising platform for targeted and image-guided chemotherapy for breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Pratibha Ramarao
- Soft Condensed Matter Lab , Raman Research Institute , Bangalore 560080 , India
| | | |
Collapse
|
21
|
Dong Z, Shi Y, Zhao H, Li N, Ye L, Zhang S, Zhu H. Sulphonated Formononetin Induces Angiogenesis through Vascular Endothelial Growth Factor/cAMP Response Element-Binding Protein/Early Growth Response 3/Vascular Cell Adhesion Molecule 1 and Wnt/β-Catenin Signaling Pathway. Pharmacology 2017; 101:76-85. [PMID: 29131133 DOI: 10.1159/000480662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/25/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sodium formononetin-3'-sulphonate (Sul-F) is a derivative of the isoflavone formononetin. In this study, we investigated whether Sul-F can regulate angiogenesis and the potential mechanism in vitro. METHODS We examined the effects of Sul-F on cell proliferation, cell invasion, and tube formation in the human umbilical vein endothelial cell line (HUVEC). To better understand the mechanism involved, we investigated effects of the following compounds: cAMP response element-binding protein (CREB) inhibitor 2-naphthol-AS-E-phosphate (KG-501), early growth response 3 (Egr-3) siRNA, vascular endothelial growth factor (VEGF) antagonist soluble VEGF receptor 1 (sFlt-1), VEGF receptor 2 blocker SU-1498, Wnt5a antagonist WIF-1 recombinant protein (WIF-1), and inhibitor of Wnt/β-catenin recombinant Dickkopf-1 protein (DKK-1). HUVEC proliferation was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). A scratch adhesion test was used to assess cell invasion ability. Matrigel tube formation assay was performed to test capillary tube formation ability. Activation of the VEGF/CREB/Egr-3/Vascular cell adhesion molecule 1 (VCAM-1) pathway in HUVEC was tested by Western blot analysis. RESULTS Our results suggest that Sul-F induced angiogenesis in vitro by enhancing cell proliferation, invasion, and tube formation. The increase in proliferation and tube formation by Sul-F was counteracted by DKK-1, WIF-1, SU1498, KG-501, sFlt-1, and Egr-3 siRNA. CONCLUSIONS These results may suggest that Sul-F induces angiogenesis in vitro via a programed Wnt/β-catenin pathway and VEGF/CREB/Egr-3/VCAM-1 signaling axis.
Collapse
Affiliation(s)
- Zhaoju Dong
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Yanan Shi
- School of Pharmaceutical Sciences and Institute of Material Medica, Binzhou Medical University, Yantai, China
| | - Huijuan Zhao
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Ning Li
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Liang Ye
- School of Public Health and Management, Binzhou Medical University, Yantai, China.,Institute of Toxicology, Binzhou Medical University, Yantai, China
| | - Shuping Zhang
- School of Pharmaceutical Sciences and Institute of Material Medica, Binzhou Medical University, Yantai, China
| | - Haibo Zhu
- School of Public Health and Management, Binzhou Medical University, Yantai, China.,Institute of Toxicology, Binzhou Medical University, Yantai, China
| |
Collapse
|
22
|
Li C, Gao Y, Wang Y, Li G, Fan X, Li Y, Guo C, Tao J. Genotoxicity testing of sodium formononetin-3′-sulphonate (Sul-F) by assessing bacterial reverse mutation, chromosomal aberrations and micronucleus tests. Regul Toxicol Pharmacol 2017; 86:374-378. [DOI: 10.1016/j.yrtph.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/24/2022]
|
23
|
Wu J, Ke X, Ma N, Wang W, Fu W, Zhang H, Zhao M, Gao X, Hao X, Zhang Z. Formononetin, an active compound of Astragalus membranaceus (Fisch) Bunge, inhibits hypoxia-induced retinal neovascularization via the HIF-1α/VEGF signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3071-3081. [PMID: 27729769 PMCID: PMC5042190 DOI: 10.2147/dddt.s114022] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND It has been reported that formononetin (FMN), one of the main ingredients from famous traditional Chinese medicine "Huang-qi" (Astragalus membranaceus [Fisch] Bunge) for Qi-tonifying, exhibits the effects of immunomodulation and tumor growth inhibition via antiangiogenesis. Furthermore, A. membranaceus may alleviate the retinal neovascularization (NV) of diabetic retinopathy. However, the information of FMN on retinal NV is limited so far. In the present study, we investigated the effects of FMN on the hypoxia-induced retinal NV and the possible related mechanisms. MATERIALS AND METHODS The VEGF secretion model of acute retinal pigment epithelial-19 (ARPE-19) cells under chemical hypoxia was established by the exposure of cells to 150 μM CoCl2 and then cells were treated with 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1, a potent HIF-1α inhibitor, 1.0 μg/mL) or different concentrations of FMN (0.2 μg/mL, 1.0 μg/mL, and 5.0 μg/mL). The supernatants of cells were collected 48 hours later to measure the VEGF concentrations, following the manufacturer's instruction. The mRNA expressions of VEGF, HIF-1α, PHD-2, and β-actin were analyzed by quantitative reverse transcription polymerase chain reaction, and the protein expressions of HIF-1α and PHD-2 were determined by Western blot analysis. Furthermore, the rats with retinopathy were treated by intraperitoneal administration of conbercept injection (1.0 mg/kg) or FMN (5.0 mg/kg and 10.0 mg/kg) in an 80% oxygen atmosphere. The retinal avascular areas were assessed through visualization of the retinal vasculature by adenosine diphosphatase staining and hematoxylin and eosin staining. RESULTS FMN can indeed inhibit the VEGF secretion of ARPE-19 cells under hypoxia, downregulate the mRNA expression of VEGFA and PHD-2, and decrease the protein expression of VEGF, HIF-1α, and PHD-2 in vitro. Furthermore, FMN can prevent hypoxia-induced retinal NV in vivo. CONCLUSION FMN can ameliorate retinal NV via the HIF-1α/VEGF signaling pathway, and it may become a potential drug for the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Jianming Wu
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou; Post-Doctoral Research Station, Kanghong Pharmaceutical Group; Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiao Ke
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Na Ma
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Wei Wang
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Wei Fu
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Hongcheng Zhang
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Manxi Zhao
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Xiaoping Gao
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Xiaofeng Hao
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Zhirong Zhang
- Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
24
|
Li C, Li G, Gao Y, Sun C, Wang X. A 90-day subchronic toxicity study with sodium formononetin-3′-sulphonate (Sul-F) delivered to dogs via intravenous administration. Regul Toxicol Pharmacol 2016; 77:87-92. [DOI: 10.1016/j.yrtph.2016.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
25
|
Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2060874. [PMID: 27034732 PMCID: PMC4806648 DOI: 10.1155/2016/2060874] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/02/2015] [Accepted: 12/06/2015] [Indexed: 11/30/2022]
Abstract
The opening of mitochondrial permeability transition pore (mPTP) is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD) and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxygen species (ROS) and glycogen synthase kinase 3β (GSK-3β), in the regulation of mPTP opening. We found that formononetin suppressed the formation of ROS and superoxide in a concentration-dependent manner. Formononetin also rescued OGD/reoxygenation-induced loss of mitochondrial membrane integrity. Further studies suggested that formononetin induced Akt activation and GSK-3β (Ser9) phosphorylation, thereby reducing GSK-3β activity towards mPTP opening. PI3K and PKC inhibitors abolished the effects of formononetin on mPTP opening and GSK-3β phosphorylation. Immunoprecipitation experiments further revealed that formononetin increased the binding of phosphor-GSK-3β to adenine nucleotide translocase (ANT) while it disrupted the complex of ANT with cyclophilin D. Moreover, immunofluorescence revealed that phospho-GSK-3β (Ser9) was mainly deposited in the space between mitochondria and cell nucleus. Collectively, these results indicated that formononetin protected cardiomyocytes from OGD/reoxygenation injury via inhibiting ROS formation and promoting GSK-3β phosphorylation.
Collapse
|
26
|
Li G, Yang M, Hao X, Li C, Gao Y, Tao J. Acute toxicity of sodium formononetin-3′-sulphonate (Sul-F) in Sprague-Dawley rats and Beagle dogs. Regul Toxicol Pharmacol 2015; 73:629-33. [DOI: 10.1016/j.yrtph.2015.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/23/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
27
|
Wang H, Zhang D, Ge M, Li Z, Jiang J, Li Y. Formononetin inhibits enterovirus 71 replication by regulating COX- 2/PGE₂ expression. Virol J 2015; 12:35. [PMID: 25890183 PMCID: PMC4351682 DOI: 10.1186/s12985-015-0264-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/12/2015] [Indexed: 02/07/2023] Open
Abstract
Background The activation of ERK, p38 and JNK signal cascade in host cells has been demonstrated to up-regulate of enterovirus 71 (EV71)-induced cyclooxygenase-2 (COX-2)/ prostaglandins E2 (PGE2) expression which is essential for viral replication. So, we want to know whether a compound can inhibit EV71 infection by suppressing COX-2/PGE2 expression. Methods The antiviral effect of formononetin was determined by cytopathic effect (CPE) assay and the time course assays. The influence of formononetin for EV71 replication was determined by immunofluorescence assay, western blotting assay and qRT-PCR assay. The mechanism of the antiviral activity of formononetin was determined by western blotting assay and ELISA assay. Results Formononetin could reduce EV71 RNA and protein synthesis in a dose-dependent manner. The time course assays showed that formononetin displayed significant antiviral activity both before (24 or 12 h) and after (0–6 h) EV71 inoculation in SK-N-SH cells. Formononetin was also able to prevent EV71-induced cytopathic effect (CPE) and suppress the activation of ERK, p38 and JNK signal pathways. Furthermore, formononetin could suppress the EV71-induced COX-2/PGE2 expression. Also, formononetin exhibited similar antiviral activities against other members of Picornaviridae including coxsackievirus B2 (CVB2), coxsackievirus B3 (CVB3) and coxsackievirus B6 (CVB6). Conclusions Formononetin could inhibit EV71-induced COX-2 expression and PGE2 production via MAPKs pathway including ERK, p38 and JNK. Formononetin exhibited antiviral activities against some members of Picornaviridae. These findings suggest that formononetin could be a potential lead or supplement for the development of new anti-EV71 agents in the future.
Collapse
Affiliation(s)
- Huiqiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Dajun Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Miao Ge
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
28
|
Wang M, Si JY, Yu YL, Gao MM, Zhang JY, Xing XY, Liu Y, Sun GB, Sun XB. Red clover flavonoids protect against oxidative stress-induced cardiotoxicity in vivo and in vitro. RSC Adv 2014. [DOI: 10.1039/c4ra08407a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Re: The bone-promoting actions of formononetin in established osteopenia--reply. Menopause 2013; 20:478-9. [PMID: 23921476 DOI: 10.1097/gme.0b013e31828a6d1a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:457052. [PMID: 23762138 PMCID: PMC3666393 DOI: 10.1155/2013/457052] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/29/2013] [Indexed: 12/17/2022]
Abstract
Formononetin is a naturally occurring isoflavone, which can be found in low concentrations in many dietary products, but the greatest sources of this substance are Astragalus membranaceus, Trifolium pratense, Glycyrrhiza glabra, and Pueraria lobata, which all belong to Fabaceae family. Due to its structural similarity to 17β-estradiol, it can mimic estradiol's effect and therefore is considered as a “phytoestrogen.” The aim of this study was to examine the effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. 12-week-old female rats were divided into 4 groups: sham-operated, ovariectomized, ovariectomized treated with estradiol (0.2 mg/kg) and ovariectomized treated with formononetin (10 mg/kg). Analyzed substances were administered orally for 4 weeks. Ovariectomy caused osteoporotic changes, which can be observed in bone biomechanical features (decrease of maximum load and fracture load and increase of displacements for maximum and fracture loads) and bone chemical composition (increase of water and organic fraction content, while a decrease of minerals takes place). Supplementation with formononetin resulted in slightly enhanced bone mechanical properties and bone chemistry improvement (significantly lower water content and insignificantly higher mineral fraction content).
To summarize, administration of formononetin to ovariectomized rats shows beneficial effect on bone biomechanical features and chemistry; thus, it can prevent osteoporosis development.
Collapse
|
31
|
2-heptyl-formononetin increases cholesterol and induces hepatic steatosis in mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:926942. [PMID: 23738334 PMCID: PMC3657407 DOI: 10.1155/2013/926942] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/15/2013] [Accepted: 03/26/2013] [Indexed: 12/11/2022]
Abstract
Consumption of isoflavones may prevent adiposity, hepatic steatosis, and dyslipidaemia. However, studies in the area are few and primarily with genistein. This study investigated the effects of formononetin and its synthetic analogue, 2-heptyl-formononetin (C7F), on lipid and cholesterol metabolism in C57BL/6J mice. The mice were fed a cholesterol-enriched diet for five weeks to induce hypercholesterolemia and were then fed either the cholesterol-enriched diet or the cholesterol-enriched diet-supplemented formononetin or C7F for three weeks. Body weight and composition, glucose homeostasis, and plasma lipids were compared. In another experiment, mice were fed the above diets for five weeks, and hepatic triglyceride accumulation and gene expression and histology of adipose tissue and liver were examined. Supplementation with C7F increased plasma HDL-cholesterol thereby increasing the plasma level of total cholesterol. Supplementation with formononetin did not affect plasma cholesterol but increased plasma triglycerides levels. Supplementation with formononetin and C7F induced hepatic steatosis. However, formononetin decreased markers of inflammation and liver injury. The development of hepatic steatosis was associated with deregulated expression of hepatic genes involved in lipid and lipoprotein metabolism. In conclusion, supplementation with formononetin and C7F to a cholesterol-enriched diet adversely affected lipid and lipoprotein metabolism in C57BL/6J mice.
Collapse
|
32
|
Wang S, Zhang W, Pang X, Li L, He G, Yang X, Fang L, Zhang J, Du G. EETs mediate cardioprotection of salvianolic acids through MAPK signaling pathway. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2012.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
33
|
Zhao Y, Chen BN, Wang SB, Wang SH, Du GH. Vasorelaxant effect of formononetin in the rat thoracic aorta and its mechanisms. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2012; 14:46-54. [PMID: 22263593 DOI: 10.1080/10286020.2011.628939] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The purpose of the present study was to investigate the effect of formononetin and the related mechanisms on isolated rat thoracic aorta. Formononetin concentration dependently relaxed aortic rings precontracted with norepinephrine (NE, 1 μM) or KCl (80 mM). Pretreatment with formononetin noncompetitively inhibited contractile responses of aortas to NE and KCl. The vasorelaxant effect of formononetin partially relied on intact endothelia, which was significantly attenuated by incubation with N(ω)-nitro-L-arginine methyl ester (100 μM). In endothelium-denuded rings, glibenclamide (10 μM) and tetraethylammonium (5 mM) showed slight reduction in the vasorelaxant effect of formononetin. Moreover, formononetin reduced NE-induced transient contraction in Ca²⁺-free solution and inhibited the vasocontraction induced by increasing external calcium in medium plus 80 mM KCl. Our results suggested that formononetin induced relaxation in rat aortic rings through an endothelium-dependent manner via nitric oxide synthesis pathway, and also involving an endothelium-independent vasodilatation by the blockade of Ca²⁺ channels. The opening of K⁺ channels might also be one of the mechanisms of formononetin-induced vasorelaxation.
Collapse
Affiliation(s)
- Yan Zhao
- National Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | | | | | | | | |
Collapse
|