1
|
Casanova MR, Mota P, Vala H, Nóbrega C, Morais ADS, Silva CS, Barros AA, Reis RL, Lima E, Martins A, Neves NM. Functional recovery of injured cavernous nerves achieved through endogenous nerve growth factor-containing bioactive fibrous membrane. Acta Biomater 2023; 168:416-428. [PMID: 37467838 DOI: 10.1016/j.actbio.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Radical prostatectomy is a highly successful treatment for prostate cancer, among the most prevalent manifestations of the illness. Damage of the cavernous nerve (CN) during prostatectomy is the main cause of postoperative erectile dysfunction (ED). In this study, the capability of a personalized bioactive fibrous membrane to regenerate injured CN was investigated. The fibrous membrane bioactivity is conferred by the selectively bound nerve growth factor (NGF) present in the rat urine. In a rat model of bilateral CN crush, the implanted bioactive fibrous membrane induces CN regeneration and restoration of erectile function, showing a significantly increased number of smooth muscle cells and content of endothelial and neuronal nitric oxide synthases (eNOS; nNOS). In addition, the bioactive fibrous membrane promotes nerve regeneration by increasing the number of myelinated axons and nNOS-positive cells, therefore reversing the CN fibrosis found in untreated rats or rats treated with a bare fibrous membrane. Therefore, this personalized regenerative strategy could overcome the recognized drawbacks of currently available treatments for CN injuries. It may constitute an effective treatment for prostate cancer patients suffering from ED after being subject to radical prostatectomy. STATEMENT OF SIGNIFICANCE: The present work introduces a unique strategy to address post-surgical ED resulting from CN injury during pelvic surgery (e.g., radical prostatectomy, radical cystoprostatectomy, abdominoperineal resection). It comprises a bioactive and cell-free fibrous implant, customized to enhance CN recovery. Pre-clinical results in a rat model of bilateral CN crush demonstrated that the bioactive fibrous implant can effectively heal injured CN, and restore penile structure and function. This implant selectively binds NGF from patient fluids (i.e. urine) due to its functionalized surface and high surface area. Moreover, its local implantation reduces adverse side effects. This tailored regenerative approach has the potential to revolutionize the treatment of ED in prostate cancer patients following radical prostatectomy, overcoming current treatment limitations.
Collapse
Affiliation(s)
- Marta R Casanova
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Paulo Mota
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; Department of Urology, Hospital of Braga, E.P.E, Braga, Portugal
| | - Helena Vala
- Agrarian Superior School of Viseu (ESAV), Polytechnic Institute of Viseu, Viseu 3500-606, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Portugal
| | - Carmen Nóbrega
- Agrarian Superior School of Viseu (ESAV), Polytechnic Institute of Viseu, Viseu 3500-606, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Portugal
| | - Alain da Silva Morais
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Catarina S Silva
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Alexandre A Barros
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Rui L Reis
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Estevão Lima
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; Department of Urology, Hospital of Braga, E.P.E, Braga, Portugal
| | - Albino Martins
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Nuno M Neves
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal.
| |
Collapse
|
2
|
Song G, Hu P, Song J, Liu J, Ruan Y. Molecular pathogenesis and treatment of cavernous nerve injury-induced erectile dysfunction: A narrative review. Front Physiol 2022; 13:1029650. [PMID: 36277218 PMCID: PMC9582663 DOI: 10.3389/fphys.2022.1029650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Erectile dysfunction (ED) is a common complication after radical prostatectomy (RP), and it seriously affects the quality of life in patients and their partners. The primary trigger of postoperative ED is surgical injury to the cavernous nerves that control penile erection and run along the anterolateral aspect of the prostate. Despite the introduction and ongoing innovation of nerve-sparing techniques, a significant number of patients still suffer from moderate cavernous nerve injury (CNI), which is thought to be transient and reversible. Therefore, early postoperative penile rehabilitation therapy may salvage patients’ erectile function by promoting cavernous nerve regeneration and preventing penile structural alterations.Aims: To present a comprehensive overview of the current molecular pathogenesis of CNI-induced ED, as well as novel therapeutic strategies and their potential mechanisms.Methods: A literature search was performed using PubMed. Search terms included erectile dysfunction, cavernous nerve injury, pathogenesis, pathway, and treatment.Results: The NOS/NO pathway, oxidative stress-related pathway, RhoA/ROCK pathway, transforming growth factor-β (TGF-β), sonic hedgehog (Shh), and hydrogen sulfide (H2S) are involved in the molecular pathogenesis of CNI-induced ED. Multiple neurotrophins, including brain-derived nerve growth factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and neurturin (NTN), were found to promote cavernous nerve regeneration. Emerging therapeutic approaches can be roughly summarized into four categories, namely small molecule and drug, stem cell-based therapy (SCT), micro-energy therapy and platelet-rich plasma (PRP) therapy.Conclusion: These pathways collectively lead to the irreversible damage to the penile structure after CNI. The combined early rehabilitation strategies of promoting upstream nerve regeneration and recovering abnormal molecular signals of downstream penis are presumed to save patients’ erectile function after RP. In future studies, the cross-talk between these molecular pathways needs to be further clarified, and the questions of how denervation injury induces the molecular alterations in the penis also need to be addressed.
Collapse
|
3
|
Bonaterra GA, Struck N, Zuegel S, Schwarz A, Mey L, Schwarzbach H, Strelau J, Kinscherf R. Characterization of atherosclerotic plaques in blood vessels with low oxygenated blood and blood pressure (Pulmonary trunk): role of growth differentiation factor-15 (GDF-15). BMC Cardiovasc Disord 2021; 21:601. [PMID: 34920697 PMCID: PMC8684150 DOI: 10.1186/s12872-021-02420-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth differentiation factor (GDF)-15 is linked to inflammation, cancer, and atherosclerosis. GDF-15 is expressed in most tissues but is extremely induced under pathological conditions. Elevated serum levels are suggested as a risk factor and a marker for cardiovascular diseases. However, the cellular sources and the effects of GDF-15 on the cardiovascular system have not been completely elucidated including progression, and morphology of atherosclerotic plaques. Thus, this work aimed to characterize the influence of GDF-15 deficiency on the morphology of atherosclerotic plaques in blood vessels with low-oxygen blood and low blood pressure as the pulmonary trunk (PT), in hypercholesterolemic ApoE-/- mice. METHODS GDF-15-/- ApoE-/- mice were generated by crossbreeding of ApoE-/-- and GDF-15-/- mice. After feeding a cholesterol-enriched diet (CED) for 20 weeks, samples of the brachiocephalic trunk (BT) and PT were dissected and lumen stenosis (LS) was measured. Furthermore, changes in the cellularity of the PT, amounts of apoptosis-, autophagy-, inflammation- and proliferation-relevant proteins were immunohisto-morphometrically analyzed. Additionally, we examined an atherosclerotic plaque in a human post mortem sample of the pulmonary artery. RESULTS After CED the body weight of GDF-15-/-ApoE-/- was 22.9% higher than ApoE-/-. Double knockout mice showed also an 35.3% increase of plasma triglyceride levels, whereas plasma cholesterol was similar in both genotypes. LS in the BT and PT of GDF-15-/-ApoE-/- mice was significantly reduced by 19.0% and by 6.7% compared to ApoE-/-. Comparing LS in PT and BT of the same genotype revealed a significant 38.8% (ApoE-/-) or 26.4% (GDF-15-/-ApoE-/-) lower LS in the PT. Immunohistomorphometry of atherosclerotic lesions in PT of GDF-15-/-ApoE-/- revealed significantly increased levels (39.8% and 7.3%) of CD68 + macrophages (MΦ) and α-actin + smooth muscle cells than in ApoE-/-. The density of TUNEL + , apoptotic cells was significantly (32.9%) higher in plaques of PT of GDF-15-/-ApoE-/- than in ApoE-/-. Analysis of atherosclerotic lesion of a human pulmonary artery showed sm-α-actin, CD68+, TUNEL+, Ki67+, and APG5L/ATG+ cells as observed in PT. COX-2+ and IL-6+ immunoreactivities were predominantly located in endothelial cells and subendothelial space. In BT and PT of GDF15-/-ApoE-/- mice the necrotic area was 10% and 6.5% lower than in ApoE-/-. In BT and PT of GDF15-/-ApoE-/- we found 40% and 57% less unstable plaques than ApoE-/- mice. CONCLUSIONS Atherosclerotic lesions occur in both, BT and PT, however, the size is smaller in PT, possibly due to the effect of the low-oxygen blood and/or lower blood pressure. GDF-15 is involved in atherosclerotic processes in BT and PT, although different mechanisms (e.g. apoptosis) in these two vessels seem to exist.
Collapse
Affiliation(s)
- G A Bonaterra
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany.
| | - N Struck
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - S Zuegel
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - A Schwarz
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - L Mey
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - H Schwarzbach
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - J Strelau
- Department of Functional Neuroanatomy, University of Heidelberg, 69120, Heidelberg, Germany
| | - R Kinscherf
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| |
Collapse
|
4
|
Liang S, Desai AA, Black SM, Tang H. Cytokines, Chemokines, and Inflammation in Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:275-303. [PMID: 33788198 DOI: 10.1007/978-3-030-63046-1_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
According to the World Symposium Pulmonary Hypertension (WSPH) classification, pulmonary hypertension (PH) is classified into five categories based on etiology. Among them, Group 1 pulmonary arterial hypertension (PAH) disorders are rare but progressive and often, fatal despite multiple approved treatments. Elevated pulmonary arterial pressure in patients with WSPH Group 1 PAH is mainly caused by increased pulmonary vascular resistance (PVR), due primarily to sustained pulmonary vasoconstriction and excessive obliterative pulmonary vascular remodeling. Growing evidence indicates that inflammation plays a critical role in the development of pulmonary vascular remodeling associated with PAH. While the role of auto-immunity is unclear, infiltration of inflammatory cells in and around vascular lesions, including T- and B-cells, dendritic cells, macrophages, and mast cells have been observed in PAH patients. Serum and plasma levels of chemokines, cytokines, and autoantibodies are also increased in PAH patients; some of these circulating molecules are correlated with disease severity and survival. Preclinical experiments have reported a key role of the inflammation in PAH pathophysiology in vivo. Importantly, anti-inflammatory and immunosuppressive agents have further exhibited therapeutic effects. The present chapter reviews published experimental and clinical evidence highlighting the canonical role of inflammation in the pathogenesis of PAH and as a major target for the development of anti-inflammatory therapies in patients with PAH.
Collapse
Affiliation(s)
- Shuxin Liang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China. .,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Kharazi U, Badalzadeh R. A review on the stem cell therapy and an introduction to exosomes as a new tool in reproductive medicine. Reprod Biol 2020; 20:447-459. [DOI: 10.1016/j.repbio.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/18/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
|
6
|
Chen S, Sun X, Wu S, Jiang J, Zhu C, Xu K, Xu K. Role of identified noncoding RNA in erectile dysfunction. Andrologia 2020; 52:e13596. [PMID: 32441367 DOI: 10.1111/and.13596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sixiang Chen
- Zhejiang Chinese Medical University Hangzhou China
| | | | - Suliu Wu
- Wuyi First People's Hospital Wuyi China
| | - Jing Jiang
- Zhejiang Chinese Medical University Hangzhou China
| | - Chenfeng Zhu
- Zhejiang Chinese Medical University Hangzhou China
| | - Kechen Xu
- Wuyi First People's Hospital Wuyi China
| | - Keyang Xu
- Hangzhou Xixi Hospital affiliated to Zhejiang Chinese Medical University Hangzhou China
| |
Collapse
|
7
|
Yang M, Sun JY, Ying CC, Wang Y, Guo YL. Adipose-derived stem cells modified by BDNF gene rescue erectile dysfunction after cavernous nerve injury. Neural Regen Res 2020; 15:120-127. [PMID: 31535660 PMCID: PMC6862402 DOI: 10.4103/1673-5374.264464] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cavernous nerve injury is the main cause of erectile dysfunction following radical prostatectomy. The recovery of erectile function following radical prostatectomy remains challenging. Our previous studies found that injecting adipose-derived stem cells (ADSCs) into the cavernosa could repair the damaged cavernous nerves, but the erectile function of the treated rats could not be restored to a normal level. We evaluated the efficacy of ADSCs infected with a lentiviral vector encoding rat brain-derived neurotrophic factor (lenti-rBDNF) in a rat model of cavernous nerve injury. The rats were equally and randomly divided into four groups. In the control group, bilateral cavernous nerves were isolated but not injured. In the bilateral cavernous nerve injury group, bilateral cavernous nerves were isolated and injured with a hemostat clamp for 2 minutes. In the ADSCGFP and ADSCrBDNF groups, after injury with a hemostat clamp for 2 minutes, rats were injected with ADSCs infected with lenti-GFP (1 × 106 in 20 μL) and lenti-rBDNF (1 × 106 in 20 μL), respectively. Erectile function was assessed 4 weeks after injury by measuring intracavernosal pressures. Then, penile tissues were collected for histological detection and western blot assay. Results demonstrated that compared with the bilateral cavernous nerve injury group, erectile function was significantly recovered in the ADSCGFP and ADSCrBDNF groups, and to a greater degree in the ADSCrBDNF group. Neuronal nitric oxide synthase content in the dorsal nerves and the ratio of smooth muscle/collagen were significantly higher in the ADSCrBDNF and ADSCGFP groups than in the bilateral cavernous nerve injury group. Neuronal nitric oxide synthase expression was obviously higher in the ADSCrBDNF group than in the ADSCGFP group. These findings confirm that intracavernous injection with ADSCs infected with lenti-rBDNF can effectively improve erectile dysfunction caused by cavernous nerve injury. This study was approved by the Medical Animal Care and Welfare Committee of Wuhan University, China (approval No. 2017-1638) on June 20, 2017.
Collapse
Affiliation(s)
- Mei Yang
- Department of Endocrinology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei Province, China
| | - Jiang-Yang Sun
- Department of Hepatobiliary Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Cheng-Cheng Ying
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yong Wang
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yong-Lian Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Wen Y, Liu G, Jia L, Ji W, Li H. MicroRNA-141 binds to the nerve growth factor receptor associated protein 1 gene and restores the erectile function of diabetic rats through down-regulating the nerve growth factor/neurotrophin receptor p75 (NGF/p75NTR) signaling. J Cell Biochem 2019; 120:7940-7951. [PMID: 30426562 DOI: 10.1002/jcb.28071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Erectile dysfunction (ED) is one of the major complications in diabetes mellitus (DM). We have previously reported that the nerve growth factor (NGF)/tyrosine kinase receptor (TrkA) signaling is actively involved in DM-induced ED (DMED). Here, we investigate the effect of micro-RNA-141 (miR-141) on the NGF/p75 neurotrophin receptor (p75NTR) signaling and erectile function of diabetic rats. METHODS Sprague-Dawlay (SD) rats were used to establish a DMED model. The dual-luciferase reporter gene assay was first performed to identify the nerve growth factor receptor-associated protein 1 (NGFRAP1) gene as the target gene of miR-141. The regulatory mechanisms underlying miR-141 governing NGFRAP1 in vivo were then validated by modulating the expressions of miR-141 and knocking down NGFRAP1. RESULTS The expressions of miR-141 were decreased while the expressions of NGFRAP1, NGF, and p75NTR were increased in DMED. miR-141 and downregulation of NGFRAP1, respectively, increased the density of corpus cavernosum smooth muscle and the ratio of intracavernosal pressure (ICP)/mean arterial blood pressure (MAP) and promoted the expression of α-actin and desmin as well. miR-141 also upregulated the expressions of NGFRAP1 in DMED, and knockdown of NGFRAP1 inhibited the productions of NGF and p75NTR. Furthermore, miR-141 suppressed the NGF/p75NTR signaling via binding to NGFRAP1. CONCLUSIONS NGF/p75NTR signaling actively participates in the pathogenesis of DMED. miR-141 binds to NGFRAP1 and restores the erectile function of diabetic rats via downregulation of NGF/p75NTR signaling.
Collapse
Affiliation(s)
- Yan Wen
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guohui Liu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Linpei Jia
- Department of Nephrology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wei Ji
- Department of Vascular Surgery, Jilin Provincial People's Hospital, Changchun, China
| | - Hai Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Yang BB, Hong ZW, Zhang Z, Yu W, Song T, Zhu LL, Jiang HS, Chen GT, Chen Y, Dai YT. Epalrestat, an Aldose Reductase Inhibitor, Restores Erectile Function in Streptozocin-induced Diabetic Rats. Int J Impot Res 2018; 31:97-104. [PMID: 30214006 PMCID: PMC6462873 DOI: 10.1038/s41443-018-0075-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 01/03/2023]
Abstract
Epalrestat, an aldose reductase inhibitor (ARI), was adopted to improve the function of peripheral nerves in diabetic patients. The aim of this study was to investigate whether epalrestat could restore the erectile function of diabetic erectile dysfunction using a rat model. From June 2016, 24 rats were given streptozocin (STZ) to induce the diabetic rat model, and epalrestat was administered to ten diabetic erectile dysfunction (DED) rats. Intracavernous pressure (ICP) and mean systemic arterial pressure (MAP), levels of aldose reductase (AR), nerve growth factor (NGF), neuronal nitric oxide synthase (nNOS), α-smooth muscle antigen (α-SMA), and von Willebrand factor (vWF) in the corpus cavernosum were analyzed. We discovered that epalrestat acted on cavernous tissue and partly restored erectile function. NGF and nNOS levels in the corpora were increased after treatment with epalrestat. We also found that the content of α-SMA-positive smooth muscle cells and vWF-positive endothelial cells in the corpora cavernosum were declined. Accordingly, epalrestat might improve erectile function by increasing the upregulation of NGF and nNOS to restore the function of the dorsal nerve of the penis.
Collapse
Affiliation(s)
- Bai-Bing Yang
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Zhi-Wei Hong
- Department of Urology, Fujian Provincial Hospital, Fuzhou, 350000, China
| | - Zheng Zhang
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Wen Yu
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Tao Song
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Lei-Lei Zhu
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - He-Song Jiang
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Guo-Tao Chen
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Yun Chen
- Department of Andrology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210000, China.
| | - Yu-Tian Dai
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China.
| |
Collapse
|
10
|
Yin GN, Park SH, Choi MJ, Limanjaya A, Ghatak K, Minh NN, Ock J, Song KM, Ryu JK, Suh JK. Penile neurovascular structure revisited: immunohistochemical studies with three-dimensional reconstruction. Andrology 2017; 5:964-970. [PMID: 28805947 DOI: 10.1111/andr.12387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Abstract
Penile erection is a neurovascular phenomenon that requires well coordinated and functional interaction between penile vascular and nervous systems. In order to provide a useful tool to examine pathologic changes in the erectile tissue, mainly focusing on penile neurovascular dysfunction, we established the technique to determine the differential distribution of endothelial cells, smooth muscle cells, pericytes, and nerve fibers in the mouse penis using immunohistochemical staining with three-dimensional reconstruction. Immunofluorescent staining of penile tissue was performed with antibodies against CD31 (an endothelial cell marker), smooth muscle α -actin (SMA, a smooth muscle cell marker), NG2 (a pericyte marker), or βIII-tubulin (a neuronal marker). We reconstructed three-dimensional images of penile vascular or neurovascular system from stacks of two-dimensional images, which allows volume rendering and provides reliable anatomic information. CD31-positive endothelial cells, SMA-positive smooth muscle cells, and NG2-positive pericytes were evenly distributed and composed sinusoidal or venous wall. However, the endothelial layer of the cavernous artery or dorsal artery was mainly covered with smooth muscle cells and rarely associated with pericytes. The reconstructed three-dimensional images clearly visualized typical wavy appearance of nerve fibers that evenly innervate to cavernous sinusoids, cavernous artery, dorsal vein, and dorsal artery. We observed a significant decrease in CD31-positive endothelial cells, NG2-positive pericytes, and βIII-tubulin-positive nerve fibers in the penis of diabetic mice compared with those in normal condition. Our protocol for immunofluorescent staining with three-dimensional reconstruction will allow a better understanding of the penile neurovascular anatomy and may constitute a standard technique to determine the efficacy of candidate therapeutics targeting therapeutic angiogenesis or neural regeneration.
Collapse
Affiliation(s)
- G N Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - S-H Park
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - M-J Choi
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - A Limanjaya
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - K Ghatak
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - N N Minh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - J Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - K-M Song
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - J-K Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea.,Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, Korea
| | - J-K Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
11
|
Katz EG, Moustafa AA, Heidenberg D, Haney N, Peak T, Lasker GF, Knoedler M, Rittenberg D, Rezk BM, Abd Elmageed ZY, Yafi FA, Sikka S, Abdel-Mageed AB, Hellstrom WJG. Pioglitazone Enhances Survival and Regeneration of Pelvic Ganglion Neurons After Cavernosal Nerve Injury. Urology 2016; 89:76-82. [PMID: 26772642 DOI: 10.1016/j.urology.2015.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/16/2015] [Accepted: 12/07/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate the effects of pioglitazone on pelvic ganglion neurons in a rat model of bilateral cavernosal nerve crush injury (BCNI), thereby elucidating the actions of pioglitazone in preventing post-prostatectomy neurogenic erectile dysfunction. METHODS Sprague-Dawley rats aged 12 weeks were divided into four groups: (a) sham procedure, (b) BCNI, (c) BCNI + postsurgical pioglitazone, and (d) BCNI + pre and postsurgical pioglitazone (preventive therapy). Preoperative injection of Fluoro-Gold (FG) fluorescent tracer into the cavernosal tissue was performed for retrograde labeling of pelvic ganglion cells. Pelvic ganglia were resected at 2 weeks in all rats and processed for real-time polymerase chain reaction, immunohistochemistry, and Western blot to examine the expression of FG, neuronal nitric oxide synthase, β-III tubulin, neurturin, and glial cell line-derived neurotrophic factor family receptor alpha-2 (GFRα2). RESULTS Animals treated with pre- and postsurgical pioglitazone demonstrated increased staining for FG similar to sham levels. Gene expression of neuronal nitric oxide synthase, neurturin, GFRα2, and β-III tubulin was also upregulated in the group receiving preventive therapy. CONCLUSION Pioglitazone provides a protective effect on pelvic ganglion neurons after BCNI.
Collapse
Affiliation(s)
- Eric G Katz
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Ahmed A Moustafa
- Department of Urology, Tulane University School of Medicine, New Orleans, LA; Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Daniel Heidenberg
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Nora Haney
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Taylor Peak
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - George F Lasker
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Margaret Knoedler
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Daniel Rittenberg
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Bashir M Rezk
- Department of Biology, Southern University of New Orleans, New Orleans, LA
| | | | - Faysal A Yafi
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Suresh Sikka
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Wayne J G Hellstrom
- Department of Urology, Tulane University School of Medicine, New Orleans, LA.
| |
Collapse
|
12
|
Li Y, Pan E, Wang Y, Zhu X, Wei A. Flk-1⁺Sca-1⁻ mesenchymal stem cells: functional characteristics in vitro and regenerative capacity in vivo. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9875-9888. [PMID: 26617697 PMCID: PMC4637782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/21/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) represent a powerful tool in regenerative medicine because of their differentiation and migration capacities. We aimed to investigate the possibility of Flk-1(+)Sca-1(-) mesenchymal stem cells (Flk-1(+)Sca-1(-) MSCs) transplantation to repair erectile function in patients suffering from diabetes mellitus (DM)-associated erectile dysfunction (ED). METHODS In this study, we isolated Flk-1(+)Sca-1(-) MSCs from bone marrow (bMSCs). Then, newborn male rats were intraperitoneally injected with 5-ethynyl-2-deoxyuridine for the purpose of tracking endogenous Flk-1(+)Sca-1(-) MSCs. Eight weeks later, 8 of these rats were randomly chosen to serve as normal control (N group). The remaining rats were injected intraperitoneally with 60 mg/kg of streptozotocin (STZ) to induce DM. Eight of these rats were randomly chosen to serve as DM control (DM group) while another 8 rats were subject to Flk-1(+)Sca-1(-) MSCs treatment (DM+MSC group). All rats were evaluated for erectile function by intracavernous pressure (ICP) measurement. Afterward, their penile tissues were examined by histology. RESULTS Flk-1(+)Sca-1(-) MSCs could differentiate into skeletal muscle cells and endothelial cells in vivo and in vitro. Engrafted Flk-1(+)Sca-1(-) MSCs were shown to home to injured muscle, participate in myofibers repair and could partially reconstitute the sarcolemmal expression of myocardin and ameliorate the level of related specific pathological markers. CONCLUSION Flk-1(+)Sca-1(-) MSCs could be used in the treatment erectile function in diabetes mellitus associated erectile dysfunction by promoting regeneration of nNOS-positive nerves, endothelium, and smooth muscle in the penis.
Collapse
Affiliation(s)
- Yugang Li
- Hospital of Integrated Traditional Chinese Medicine & Western Medicine, Southern Medical UniversityGuangzhou 510315, China
| | - Enshan Pan
- Hospital of Integrated Traditional Chinese Medicine & Western Medicine, Southern Medical UniversityGuangzhou 510315, China
| | - Yu Wang
- Hospital of Integrated Traditional Chinese Medicine & Western Medicine, Southern Medical UniversityGuangzhou 510315, China
| | - Xiaoguang Zhu
- Hospital of Integrated Traditional Chinese Medicine & Western Medicine, Southern Medical UniversityGuangzhou 510315, China
| | - Anyang Wei
- Department of Urology, Medical Center for Overseas Patients, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, China
| |
Collapse
|
13
|
Zhao HY, Wu J, Zhu JJ, Xiao ZC, He CC, Shi HX, Li XK, Yang SL, Xiao J. Research Advances in Tissue Engineering Materials for Sustained Release of Growth Factors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:808202. [PMID: 26347885 PMCID: PMC4548067 DOI: 10.1155/2015/808202] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 12/04/2022]
Abstract
Growth factors are a class of cytokines that stimulate cell growth and are widely used in clinical practice, such as wound healing, revascularization, bone repair, and nervous system disease. However, free growth factors have a short half-life and are instable in vivo. Therefore, the search of excellent carriers to enhance sustained release of growth factors in vivo has become an area of intense research interest. The development of controlled-release systems that protect the recombinant growth factors from enzymatic degradation and provide sustained delivery at the injury site during healing should enhance the growth factor's application in tissue regeneration. Thus, this study reviews current research on commonly used carriers for sustained release of growth factors and their sustained release effects for preservation of their bioactivity and their accomplishment in tissue engineering approaches.
Collapse
Affiliation(s)
- Hai-yang Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Molecular Pharmacology Research Center, Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiang Wu
- Molecular Pharmacology Research Center, Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing-jing Zhu
- Molecular Pharmacology Research Center, Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ze-cong Xiao
- Molecular Pharmacology Research Center, Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chao-chao He
- Molecular Pharmacology Research Center, Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hong-xue Shi
- Molecular Pharmacology Research Center, Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiao-kun Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Molecular Pharmacology Research Center, Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shu-lin Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jian Xiao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Molecular Pharmacology Research Center, Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
14
|
Tantawy AAG, Adly AAM, Ismail EAR, Youssef OI, Ali ME. Growth differentiation factor-15 in children and adolescents with thalassemia intermedia: Relation to subclinical atherosclerosis and pulmonary vasculopathy. Blood Cells Mol Dis 2015; 55:144-50. [PMID: 26142330 DOI: 10.1016/j.bcmd.2015.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Heart disease is the leading cause of mortality and one of the main causes of morbidity in β-thalassemia. Growth differentiation factor-15 (GDF-15), a member of the transforming growth factor-β superfamily, is a marker of ineffective erythropoiesis in several anemias. AIM To determine GDF-15 levels in children and adolescents with TI and the relation to hemolysis, iron overload and cardiovascular complications. METHODS GDF-15 was measured in 35 TI patients without symptoms for heart disease and correlated to echocardiographic parameters and carotid intima media thickness (CIMT). RESULTS GDF-15 levels were significantly higher in TI patients compared with controls (p < 0.001). Transfusion dependent patients had higher GDF-15 than non-transfusion dependent patients. TI patients with splenectomy, pulmonary hypertension risk, and heart disease had higher GDF-15 levels than those without. GDF-15 was lower among hydroxyurea-treated patients. Multiple linear regression analysis revealed that transfusion index (p=0.012), serum ferritin (p < 0.001), tricuspid regurgitant jet velocity (p < 0.001), ejection fraction (p=0.01) and CIMT (p=0.007) were independently related to GDF-15. According to ROC curve analysis, the cutoff value of GDF-15 at 1500 pg/mL could differentiate patients with and without heart disease. CONCLUSION GDF-15 would identify TI patients at increased risk of pulmonary and cardiovascular complications as well as subclinical atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | - Mohamed ElSayed Ali
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
15
|
Weyne E, Castiglione F, Van der Aa F, Bivalacqua TJ, Albersen M. Landmarks in erectile function recovery after radical prostatectomy. Nat Rev Urol 2015; 12:289-97. [PMID: 25868558 DOI: 10.1038/nrurol.2015.72] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The description of the nerve-sparing technique of radical prostatectomy by Walsh was one of the major breakthroughs in the surgical treatment of prostate cancer in the 20(th) century. However, despite this advance and consequent technological refinements to nerve-sparing surgery, a large proportion of men still suffer from erectile dysfunction (ED) as a complication of prostatectomy. A plethora of therapeutic approaches have been proposed to optimize erectile function recovery in these patients. Several preclinical and translational studies have shown benefits of therapies including PDE5 inhibitor (PDE5I) treatment, immunomodulation, neurotrophic factor administration, and regenerative techniques, such as stem cell therapy, in animal models. However, most of these approaches have either failed to translate to clinical use or have yet to be studied in human subjects. Penile rehabilitation with PDE5Is is currently the most commonly used clinical strategy, in spite of the absence of solid clinical evidence to support its use.
Collapse
Affiliation(s)
- Emmanuel Weyne
- Laboratory for Experimental Urology, Department of Development and Regeneration, University of Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Fabio Castiglione
- Urological Research Institute, San Raffaele Scientific Institution, via Olgettina 60, 20132 Milano, Italy
| | - Frank Van der Aa
- Laboratory for Experimental Urology, Department of Development and Regeneration, University of Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Marburg 420, Baltimore, MD 21287, USA
| | - Maarten Albersen
- Laboratory for Experimental Urology, Department of Development and Regeneration, University of Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Growth differentiation factor-15 in young sickle cell disease patients: Relation to hemolysis, iron overload and vascular complications. Blood Cells Mol Dis 2014; 53:189-93. [DOI: 10.1016/j.bcmd.2014.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/05/2014] [Accepted: 07/05/2014] [Indexed: 01/19/2023]
|
17
|
Albersen M, Berkers J, Dekoninck P, Deprest J, Lue TF, Hedlund P, Lin CS, Bivalacqua TJ, Van Poppel H, De Ridder D, Van der Aa F. Expression of a Distinct Set of Chemokine Receptors in Adipose Tissue-Derived Stem Cells is Responsible for In Vitro Migration Toward Chemokines Appearing in the Major Pelvic Ganglion Following Cavernous Nerve Injury. Sex Med 2014; 1:3-15. [PMID: 25356281 PMCID: PMC4184711 DOI: 10.1002/sm2.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Adipose tissue-derived stem cells (ADSCs) herald tremendous promise for clinical application in a wide range of injuries and diseases. Several preclinical reports demonstrate their efficacy in the treatment of cavernous nerve (CN) injury-induced erectile dysfunction in rats. It was recently illustrated that these effects were established as a result of ADSC migration to the major pelvic ganglion (MPG) where these cells induced neuroregeneration in loco. AIMS The study aims to identify chemotactic factors in the MPG following injury and to match upregulated chemokines to their respective receptors in human ADSC on the genomic, structural, and functional levels. METHODS Quantitative real-time polymerase chain reaction, fluorescence-activated cell sorting (FACS), intracellular FACS, immunofluorescence microscopy, migration assays, and calcium imaging were used in this study. MAIN OUTCOME MEASURES The main outcomes are chemokine expression in the MPG following CN injury, and the functional and structural presence of chemokine receptors in ADSC. RESULTS CCR4, CX3CR1, and XCR1 are functionally and structurally present in human ADSC, and are activated by the chemokines CCL2, CX3CL1, and XCL1 respectively, which are upregulated in the MPG following CN injury. CXCR4 and its ligand CXCL12 (SDF1) are likely no major homing factors for ADSC. Expression of chemokine receptor mRNA in ADSC did not necessarily translate into receptor presence at the cell surface and/or functional activation of these receptors. Most of the expressed chemokine receptors were detected in the intracellular compartment of these cells. CONCLUSIONS We identified the ligand/chemokine receptor pairs CCL2/CCR4, CX3CL1/CX3CR1, and XCL1/XCR1 as potentially responsible for ADSC homing toward the MPG following CN injury. The intracellular localization of various chemokine receptors likely indicates redirecting of chemokine receptors to the cell surface under specific cellular conditions. Furthermore, modification of expression of these receptors at the genomic level may potentially lead to improved migration toward injury sites and thus enhancement of treatment efficacy. Albersen M, Berkers J, Dekoninck P, Deprest J, Lue TF, Hedlund P, Lin C-S, Bivalacqua TJ, Van Poppel H, De Ridder D, and Van der Aa F. Expression of a distinct set of chemokine receptors in adipose tissue-derived stem cells is responsible for in vitro migration toward chemokines appearing in the major pelvic ganglion following cavernous nerve injury. Sex Med 2013;1:3-15.
Collapse
Affiliation(s)
- Maarten Albersen
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven Leuven, Belgium ; Laboratory of Experimental Gynecology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| | - Joost Berkers
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| | - Philip Dekoninck
- Laboratory of Experimental Gynecology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| | - Jan Deprest
- Laboratory of Experimental Gynecology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, University of California San Francisco, CA, USA
| | - Petter Hedlund
- Department of Urology, Urological Research Institute, Vita-Salute San Raffaele University Milan, Italy
| | - Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, University of California San Francisco, CA, USA
| | - Trinity J Bivalacqua
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions Baltimore, MD, USA
| | - Hendrik Van Poppel
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| | - Frank Van der Aa
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| |
Collapse
|
18
|
Chauhan V, Howland M. Gene expression responses in human lung fibroblasts exposed to alpha particle radiation. Toxicol In Vitro 2014; 28:1222-9. [PMID: 24945610 DOI: 10.1016/j.tiv.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/14/2014] [Accepted: 06/03/2014] [Indexed: 11/24/2022]
Abstract
This study examined alpha (α-) particle radiation effects on global changes in gene expression for the purposes of identifying potential signaling pathways that may be involved in Radon ((222)Rn) gas exposure and lung carcinogenesis. Human lung fibroblast cells were exposed to α-particle radiation at a dose range of 0-1.5Gy. Twenty-four hours post-exposure, transcript modulations were monitored using microarray technology. A total of 208 genes were shown to be dose-responsive (FDR adjusted p<0.05, Fold change>|2|) of which 32% were upregulated and 68% downregulated. Fourteen of the high expressing genes (>|4| fold) were further validated using alternate technology and among these genes, GDF15 and FGF2 were assessed at the protein level. GDF15, a known marker of lung injury, had expression levels 3-fold higher in exposed cell culture media, 24h post-irradiation as detected by ELISA. Further, pathway analysis of the dose-responsive transcripts showed them to be involved in biological processes related to cell cycle control/mitosis, chromosome instability and cell differentiation. This panel of genes with particular focus on GDF15 may merit further analysis to determine their specific role in mechanisms leading to α-particle induced lung carcinogenesis.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada.
| | - Matthew Howland
- Consumer and Clinical Radiation Protection Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| |
Collapse
|
19
|
Lee SH, Kim IG, Jung AR, Shrestha KR, Lee JH, Park KD, Chung BH, Kim SW, Kim KH, Lee JY. Combined effects of brain-derived neurotrophic factor immobilized poly-lactic-co-glycolic acid membrane with human adipose-derived stem cells and basic fibroblast growth factor hydrogel on recovery of erectile dysfunction. Tissue Eng Part A 2014; 20:2446-54. [PMID: 24673637 DOI: 10.1089/ten.tea.2013.0495] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Erectile dysfunction (ED) is the most frequent long-term problem after radical prostatectomy. We aimed to evaluate whether the use of combination therapy with basic fibroblast growth factor (bFGF)-hydrogel on corpus cavernosum and with adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF)-immobilized poly-lactic-co-glycolic acid (PLGA) membrane on the cavernous nerve (CN) could improve erectile function in a rat model of bilateral cavernous nerve crush injury (BCNI). Rats were randomly divided into five groups (n=15 per group): a normal group (N group), a group receiving saline application after bilateral cavernous nerve crush injury (BCNI), a group undergoing bFGF-hydrogel injection in the corpus cavernosum after BCNI (bFGF), a group receiving ADSC application covered with BDNF-membrane after BCNI (ADSC/BDNF), and a group undergoing coadministration of bFGF-hydrogel injection and BDNF-membrane with ADSCs after BDNF (bFGF+ADSC/BDNF). Four weeks postoperatively, the erectile function was assessed by detecting the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP). Smooth muscle and collagen contents were measured using Masson's trichrome staining. Neuronal nitric oxide synthase (nNOS) expression in the dorsal penile nerve was detected by immunostaining. The protein expression of the α-smooth muscle actin (α-SMA) and the cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum were quantified by western blot and cGMP assay, respectively. In the bFGF+ADSC/BDNF group, the erectile function was significantly elevated compared with the BCNI and other treated groups and showed a significantly increased smooth muscle/collagen ratio, nNOS content, α-SMA expression, and cGMP level. In particular, there were no statistical differences in the ICP/MAP ratio, smooth muscle/collagen ratio, and α-SMA and cGMP levels between the bFGF+ADSC/BDNF group and normal group. Application of the BDNF-immobilized PLGA membrane with human ADSC into the CN and bFGF-incorporated hydrogel into the corpus carvernosum improved nearly normal erectile function in a rat model of postprostatectomy ED. This result suggests that a combined application of bFGF+ADSC/BDNF might be a promising treatment for postprostatectomy ED.
Collapse
Affiliation(s)
- Seung Hwan Lee
- 1 Department of Urology, Gangnam Severance Hospital, Yousei University Health System , Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Binan L, Ajji A, De Crescenzo G, Jolicoeur M. Approaches for Neural Tissue Regeneration. Stem Cell Rev Rep 2013; 10:44-59. [DOI: 10.1007/s12015-013-9474-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Abstract
Establishing extracellular milieus to stimulate neuronal regeneration is a critical need in neuronal tissue engineering. Many studies have used a soluble factor (such as nerve growth factor or retinoic acid [RA]), micropatterned substrate, and electrical stimulation to induce enhanced neurogenesis in neuronal precursor cells. However, little attention has been paid to mechanical stimulation because neuronal cells are not generally recognized as being mechanically functional, a characteristic of mechanoresponsive cells such as osteoblasts, chondrocytes, and muscle cells. In this study, we performed proof-of-concept experiments to demonstrate the potential anabolic effects of mechanical stretch to enhance cellular neurogenesis. We cultured human neuroblastoma (SH-SY5Y) cells on collagen-coated membrane and applied 10% equibiaxial dynamic stretch (0.25 Hz, 120 min/d for 7 days) using a Flexcell device. Interestingly, cell stretch alone, even without a soluble neurogenic stimulatory factor (RA), produced significantly more and longer neurites than the non-RA-treated, static control. Specific neuronal differentiation and cytoskeletal markers (e.g., microtubule-associated protein 2 and neurofilament light chain) displayed compatible variations with respect to stretch stimulation.
Collapse
Affiliation(s)
- Suzanne Higgins
- Department of Biological Systems Engineering, University of Nebraska , Lincoln, Nebraska
| | | | | | | |
Collapse
|
22
|
Poudel I, Lee JS, Tan L, Lim JY. Micropatterning-retinoic acid co-control of neuronal cell morphology and neurite outgrowth. Acta Biomater 2013; 9:4592-8. [PMID: 22939924 DOI: 10.1016/j.actbio.2012.08.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/18/2012] [Accepted: 08/26/2012] [Indexed: 01/14/2023]
Abstract
Creating physical-biochemical superposed microenvironments optimal for stimulating neurite outgrowth would be beneficial for neuronal regenerative medicine. We investigated potential co-regulatory effects of cell micropatterning and retinoic acid (RA) soluble factor on neuronal cell morphology and neurite outgrowth. Human neuroblastoma (SH-SY5Y) cell patterning sensitivity could be enhanced by poly-L-lysine-g-polyethylene glycol cell-repellent back-filling, enabling cell confinement in lanes as narrow as 5 μm. Cells patterned on narrow (5 and 10 μm) lanes showed preferred nucleus orientation following the patterning direction. These cells also showed high nucleus aspect ratio but constrained nucleus spreading. On the other hand, cells on wide (20 μm and above) lanes showed random nucleus orientation and cell and nucleus sizes similar to those on unpatterned controls. All these changes were generally maintained with or without RA. Confining cells on narrow (5 and 10 μm) lanes, even without RA, significantly enhanced neurite extension relative to unpatterned control, which was further stimulated by RA. Interestingly, cell patterning on 5 and 10 μm lanes without RA produced longer neurites relative to the RA treatment alone case. Our data on the potential interplay between microscale physical cell confinement and RA-soluble stimulation may provide a new, integrative insight on how to trigger neurite/axon formation for neuronal regenerative medicine.
Collapse
|
23
|
Wu C, Wu Y, Ho H, Chen K, Sheu M, Chiang H. The Neuroprotective Effect of Platelet‐rich Plasma on Erectile Function in Bilateral Cavernous Nerve Injury Rat Model. J Sex Med 2012; 9:2838-48. [DOI: 10.1111/j.1743-6109.2012.02881.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Kim SJ, Choi SW, Hur KJ, Park SH, Sung YC, Ha YS, Cho HJ, Hong SH, Lee JY, Hwang TK, Kim SW. Synergistic effect of mesenchymal stem cells infected with recombinant adenovirus expressing human BDNF on erectile function in a rat model of cavernous nerve injury. Korean J Urol 2012; 53:726-32. [PMID: 23136635 PMCID: PMC3490095 DOI: 10.4111/kju.2012.53.10.726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/06/2012] [Indexed: 01/11/2023] Open
Abstract
Purpose To evaluate the combined role of mescenchymal stem cells (MSCs) infected with recombinant adenoviruses expressing human BDNF (rAd/hBDNF) on the erectile dysfunction in rat with cavernous nerve injury. Materials and Methods Rats divided into 4 groups: control group, bilateral cavernous nerve crushing group (BCNC group), BCNC with MSCs group and BCNC with MSCs infected with rAd/hBDNF group. After 4-week, functional assessment was done. PKH26 and BDNF staining of major pelvic ganglion and masson's trichrome staining of corpus cavernosum were performed. Western blot analysis of endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) was done in corpus cavernosum. Results After 4 weeks, BCNC with MSCs and MSCs infected with rAd/hBDNF groups showed significantly well-preserved erectile function compared with BCNC group. Moreover, the erectile function of MSCs infected with rAd/hBDNF group was significantly well-preserved than BCNC with MSCs group. The smooth muscle of corpus cavernosum was significantly preserved in BCNC with MSCs and MSCs infected with rAd/hBDNF groups compared with BCNC group. More preservation of smooth muscle was observed in rats with MSCs infected with rAd/hBDNF than with MSCs alone. Significant increase expression of eNOS and nNOS was noted in rats with MSCs infected with rAd/hBDNF than with MSCs alone. Conclusions The erectile function was more preserved after injection with MSCs infected with rAd/hBDNF in rat with ED caused by cavernous nerve injury. Therefore, the use of MSC infected with rAd/hBDNF may have a better treatment effect on ED cause by cavernous nerve injury.
Collapse
Affiliation(s)
- Su Jin Kim
- Department of Urology, The Catholic University of Korea School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim IG, Piao S, Lee JY, Hong SH, Hwang TK, Kim SW, Kim CS, Ra JC, Noh I, Lee JY. Effect of an adipose-derived stem cell and nerve growth factor-incorporated hydrogel on recovery of erectile function in a rat model of cavernous nerve injury. Tissue Eng Part A 2012; 19:14-23. [PMID: 22834730 DOI: 10.1089/ten.tea.2011.0654] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Postprostatectomy erectile dysfunction (ED) is the major problem for patients with clinically localized prostate cancer. Recently, gene and stem cell-based therapy of the corpus cavernosum has been attempted for postprostatectomy ED, but those therapies are limited by rapid blood flow and disruption of the normal architecture of the corpus cavernosum. In this study, we attempted to regenerate the damaged cavernous nerve (CN), which is the main cause of ED. We investigated the effectiveness of human adipose-derived stem cell (hADSC) and nerve growth factor-incorporated hyaluronic acid-based hydrogel (NGF-hydrogel) application on the CN in a rat model of bilateral cavernous nerve crush injury. Four weeks after the operation, erectile function was assessed by detecting the intracavernous pressure (ICP)/arterial pressure level by CN electrostimulation. The ICP was significantly increased by application of hADSC with NGF-hydrogel compared to the other experimental groups. CN and penile tissue were collected for histological examination. PKH-26 labeled hADSC colocalized with beta III tubulin were shown in CN tissue sections. hADSC/NGF-hydrogel treatment prevented smooth muscle atrophy in the corpus cavernosum. In addition, the hADSC/NGF-hydrogel group showed increased endothelial nitric oxide synthase protein expression. This study suggests that application of hADSCs with NGF-hydrogel on the CN might be a promising treatment for postprostatectomy ED.
Collapse
Affiliation(s)
- In Gul Kim
- Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yiou R, De Laet K, Hisano M, Salomon L, Abbou C, Lefaucheur J. Neurophysiological Testing to Assess Penile Sensory Nerve Damage After Radical Prostatectomy. J Sex Med 2012; 9:2457-66. [DOI: 10.1111/j.1743-6109.2012.02793.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Hakim L, Van der Aa F, Bivalacqua TJ, Hedlund P, Albersen M. Emerging tools for erectile dysfunction: a role for regenerative medicine. Nat Rev Urol 2012; 9:520-36. [PMID: 22824778 DOI: 10.1038/nrurol.2012.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Erectile dysfunction (ED) is the most common sexual disorder reported by men to their health-care providers and the most investigated male sexual dysfunction. Currently, the treatment of ED focuses on 'symptomatic relief' of ED and, therefore, tends to provide temporary relief rather than providing a cure or reversing the cause. The identification of a large population of "difficult-to-treat" patients has triggered researchers to identify novel treatment approaches, which focus on cure and restoration of the underlying cause of ED. Regenerative medicine has developed extensively in the past few decades and preclinical trials have emphasized the benefit of growth factor therapy, gene transfer, stem cells and tissue engineering for the restoration of erectile function. Development of clinical trials involving immunomodulation in postprostatectomy ED patients and the use of maxi-K channels for gene therapy are illustrative of the advances in the field. However, the search for novel treatment targets and a wealth of preclinical studies represent a dynamic and continuing field of enquiry.
Collapse
Affiliation(s)
- Lukman Hakim
- Laboratory of Experimental Urology, Department of Urology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
28
|
Hlaing SM, Garcia LA, Kovanecz I, Martinez RA, Shah S, Artaza JN, Ferrini MG. Sildenafil promotes neuroprotection of the pelvic ganglia neurones after bilateral cavernosal nerve resection in the rat. BJU Int 2012; 111:159-70. [PMID: 22672418 DOI: 10.1111/j.1464-410x.2012.11278.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine the gene expression profile of pelvic ganglia neurones after bilateral cavernosal nerve resection (BCNR) and subsequent treatment with sildenafil in relation to neurotrophic-related pathways. MATERIALS AND METHODS Fisher rats aged 5 months were subjected to BCNR or sham operation and treated with or without sildenafil (20 mg/kg body-weight in drinking water) for 7 days. Total RNA isolated from pelvic ganglia was subjected to reverse transcription and then to quantitative reverse transcriptase-polymerase chain reaction (PCR) with the RAT-neurotrophic array. Results were corroborated by real-time PCR and western blotting. Another set of animals were injected with a fluorescent tracer at the base of the penis, 7 days before BCNR or sham operation, and were sacrificed 7 days after surgery. Sections of pelvic ganglia were used for immunohistochemistry with antibodies against neurturin, neuronal nitric oxide synthase, tyrosine hydroxylase and glial cell line-derived neurotrophic factor receptor α2. RESULTS A down-regulation of the expression of neuronal nitric oxide synthase accompanied by changes in the level of cholinergic neurotrophic factors, such as neurturin and its receptor glial cell line-derived neurotrophic factor receptor α2, artemin, neurotrophin-4 and cilliary neurotrophic factor, was observed 7 days after BCNR in pelvic ganglia neurones. Treatment with sildenafil, starting immediately after surgery, reversed all these changes at a level similar to that in sham-operated animals. CONCLUSIONS Sildenafil treatment promotes changes in the neurotrophic phenotype, leading to a regenerative state of pelvic ganglia neurones. The present study provides a justification for the use of phosphodiesterase 5 inhibitors as a neuroprotective agent after BCNR.
Collapse
Affiliation(s)
- Su M Hlaing
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Piao S, Kim IG, Lee JY, Hong SH, Kim SW, Hwang TK, Oh SH, Lee JH, Ra JC, Lee JY. Therapeutic effect of adipose-derived stem cells and BDNF-immobilized PLGA membrane in a rat model of cavernous nerve injury. J Sex Med 2012; 9:1968-79. [PMID: 22642440 DOI: 10.1111/j.1743-6109.2012.02760.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Cavernous nerve injury is the main reason for post-prostatectomy erectile dysfunction (ED). Stem cell and neuroprotection therapy are promising therapeutic strategy for ED. AIM To evaluate the therapeutic efficacy of adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF) immobilized Poly-Lactic-Co-Glycolic (PLGA) membrane on the cavernous nerve in a rat model of post-prostatectomy ED. Methods. Rats were randomly divided into five groups: normal group, bilateral cavernous nerve crush injury (BCNI) group, ADSC (BCNI group with ADSCs on cavernous nerve) group, BDNF-membrane (BCNI group with BDNF/PLGA membrane on cavernous nerve) group, and ADSC/BDNF-membrane (BCNI group with ADSCs covered with BDNF/PLGA membrane on cavernous nerve) group. BDNF was controlled-released for a period of 4 weeks in a BDNF/PLGA porous membrane system. MAIN OUTCOME MEASURES Four weeks after the operation, erectile function was assessed by detecting the ratio of intra-cavernous pressure (ICP)/mean arterial pressure (MAP). Smooth muscle and collagen content were determined by Masson's trichrome staining. Neuronal nitric oxide synthase (nNOS) expression in the dorsal penile nerve was detected by immunostaining. Phospho-endothelial nitric oxide synthase (eNOS) protein expression and cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum were quantified by Western blotting and cGMP assay, respectively. RESULTS In the ADSC/BDNF-membrane group, erectile function was significantly elevated, compared with the BCNI and other treated groups. ADSC/BDNF-membrane treatment significantly increased smooth muscle/collagen ratio, nNOS content, phospho-eNOS protein expression, and cGMP level, compared with the BCNI and other treated groups. CONCLUSIONS ADSCs with BDNF-membrane on the cavernous nerve can improve erectile function in a rat model of post-prostatectomy ED, which may be used as a novel therapy for post-prostatectomy ED.
Collapse
Affiliation(s)
- Shuyu Piao
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sun C, Lin H, Yu W, Li X, Chen Y, Qiu X, Wang R, Dai Y. Neurotrophic effect of bone marrow mesenchymal stem cells for erectile dysfunction in diabetic rats. ACTA ACUST UNITED AC 2012; 35:601-7. [PMID: 22428616 DOI: 10.1111/j.1365-2605.2012.01250.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It has been demonstrated that intracavernous injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) had beneficial effects on improving erectile function in type-1 diabetic rats. This study was designed to investigate the neurotrophic effect of BM-MSCs for type-1 diabetic rats. Streptozocin-induced type-1 diabetic rats were randomly divided into three groups: diabetic group, BM-MSCs-treated group and BM-MSCs-conditioned medium-treated group. At the 3d, 1 and 2w time points after BM-MSCs injection, three randomly selected rats in MSCs group were sacrificed and penile samples were harvested to detect BM-MSCs in penile tissue. Four weeks after intracavernous injection of BM-MSCs or BM-MSCs-conditioned medium, intracavernous pressure (ICP) was assessed to evaluate the erectile function. Immunohistochemistry was used to track labelled BM-MSCs in penile tissue and to detect neuronal nitric oxide synthase (nNOS) and neurofilament (NF) positive fibres in penile dorsal nerve. Enzyme lined immunosorbent assay (ELISA) was used to measure the concentrations of vascular endothelial growth factor (VEGF), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in BM-MSCs-conditioned medium. BM- MSCs secreted detectable levels of VEGF, BDNF and NGF. Intracavernous injection of BM-MSCs improved erectile function in diabetic rats. The functional improvement was accompanied by promoted nNOS and NF positive nerve fibres within penile dorsal nerve in type-1 diabetic rats. Histological data revealed a time-dependent decrease in the number of BM-MSCs in the corpus cavernosum following injection. Furthermore, the beneficial effect of BM-MSCs was partially repeated by BM-MSCs-conditioned medium. Intracavernous injection of BM-MSCs is effective in improving nerve regeneration in diabetic rats. Paracrine effects of BM-MSCs are probably involved in the improvement.
Collapse
Affiliation(s)
- C Sun
- Department of Urology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Albersen M, Kendirci M, Van der Aa F, Hellstrom WJG, Lue TF, Spees JL. Multipotent stromal cell therapy for cavernous nerve injury-induced erectile dysfunction. J Sex Med 2011; 9:385-403. [PMID: 22145667 DOI: 10.1111/j.1743-6109.2011.02556.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Erectile dysfunction (ED) following radical prostatectomy (RP) is a result of inadvertent damage to the cavernous nerves that run close to the prostate capsula. The mechanisms behind the development of post-RP ED are increasingly recognized and include cavernosal fibrosis and cavernosal smooth muscle apoptosis, resulting from cavernous nerve degeneration due to neuropraxia. In recent years, cell-based therapies have received increasing attention regarding their potential for recovery of erectile function following cavernous nerve injury (CNI). Multipotent stromal cells (MSCs) are an attractive cell source for this application based on their regenerative potential and their clinical applicability. AIM To review available evidence on the efficacy and mechanisms of action of MSC application for the treatment of ED, with an emphasis on ED following CNI. METHODS A nonsystematic review was conducted on the available English literature between 1966 and 2011 on the search engines SciVerse-sciencedirect, SciVerse-scopus, Google Scholar, and PubMed. RESULTS MSCs from both bone marrow and adipose tissue have shown beneficial effects in a variety of animal models for ED. While MSC application in chronic disease models such as diabetes, aging, and hyperlipidemia may result in cell engraftment and possibly MSC differentiation, this observation has not been made in the acute CNI rat model. In the latter setting, MSC effects seem to be established by cell recruitment toward the major pelvic ganglion and local paracrine interaction with the host neural tissue. CONCLUSIONS While the type of model may influence the mechanisms of action of this MSC-based therapy, MSCs generally display efficacy in various animal models for ED. Before translation to the clinic is established, various hurdles need to be overcome.
Collapse
Affiliation(s)
- Maarten Albersen
- Laboratory of Experimental Urology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
32
|
Decaluwé K, Pauwels B, Verpoest S, Van de Voorde J. New Therapeutic Targets for the Treatment of Erectile Dysfunction. J Sex Med 2011; 8:3271-90. [DOI: 10.1111/j.1743-6109.2011.02459.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Lagoda G, Xie Y, Sezen SF, Hurt KJ, Liu L, Musicki B, Burnett AL. FK506 neuroprotection after cavernous nerve injury is mediated by thioredoxin and glutathione redox systems. J Sex Med 2011; 8:3325-34. [PMID: 21995851 DOI: 10.1111/j.1743-6109.2011.02500.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Immunophilin ligands such as FK506 (FK) preserve erectile function (EF) following cavernous nerve injury (CNI), although the precise mechanisms are unclear. We examined whether the thioredoxin (Trx) and glutathione (GSH) redox systems mediate this effect after CNI. AIM To investigate the roles of Trx reductase 2 (TrxR2) and S-Nitrosoglutathione reductase (GSNOR) as antioxidative/nitrosative and antiapoptotic mediators of the neuroprotective effect of FK in the penis after CNI. METHODS Adult male rats, wild-type (WT) mice, and GSNOR deficient (GSNOR -/-) mice were divided into four groups: sham surgery (CN [cavernous nerves] exposure only) + vehicle; sham surgery + FK (5 mg/kg/day/rat or 2 mg/kg/day/mouse, for 2 days, subcutaneous); CNI + vehicle; and CNI + FK. At day 4 after injury, electrically stimulated changes in intracavernosal pressure (ICP) were measured. Penises were collected for Western blot analysis of TrxR2, GSNOR, and Bcl-2, and for immunolocalization of TrxR2 and GSNOR. MAIN OUTCOME MEASURES EF assessment represented by maximal ICP and total ICP in response to electrical stimulation. Evaluation of protein expression levels and distribution patterns of antioxidative/nitrosative and antiapoptotic factors in penile tissue. RESULTS EF decreased after CNI compared with sham surgery values in both rats (P < 0.01) and WT and GSNOR -/- mice (P < 0.05). FK treatment preserved EF after CNI compared with vehicle treatment in rats (P < 0.01) and WT mice (P < 0.05) but not in GSNOR -/- mice. In rats, GSNOR (P < 0.01) and Bcl-2 (P < 0.05) expressions were significantly decreased after CNI. FK treatment in CN-injured rats restored expression of GSNOR and upregulated TrxR2 (P < 0.001) and Bcl-2 (P < 0.001) expressions compared with vehicle treatment. Localizations of proteins in the penis were observed for TrxR2 (endothelium, smooth muscle) and for GSNOR (nerves, endothelium, smooth muscle). CONCLUSIONS The neuroprotective effect of FK in preserving EF after CNI involves antioxidative/nitrosative and antiapoptotic mechanisms mediated, to some extent, by Trx and GSH systems.
Collapse
Affiliation(s)
- Gwen Lagoda
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins Hospital and The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Nickel N, Jonigk D, Kempf T, Bockmeyer CL, Maegel L, Rische J, Laenger F, Lehmann U, Sauer C, Greer M, Welte T, Hoeper MM, Golpon HA. GDF-15 is abundantly expressed in plexiform lesions in patients with pulmonary arterial hypertension and affects proliferation and apoptosis of pulmonary endothelial cells. Respir Res 2011; 12:62. [PMID: 21548946 PMCID: PMC3113721 DOI: 10.1186/1465-9921-12-62] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth-differentiation factor-15 (GDF-15) is a stress-responsive, transforming growth factor-β-related cytokine, which has recently been reported to be elevated in serum of patients with idiopathic pulmonary arterial hypertension (IPAH). The aim of the study was to examine the expression and biological roles of GDF-15 in the lung of patients with pulmonary arterial hypertension (PAH). METHODS GDF-15 expression in normal lungs and lung specimens of PAH patients were studied by real-time RT-PCR and immunohistochemistry. Using laser-assisted micro-dissection, GDF-15 expression was further analyzed within vascular compartments of PAH lungs. To elucidate the role of GDF-15 on endothelial cells, human pulmonary microvascular endothelial cells (HPMEC) were exposed to hypoxia and laminar shear stress. The effects of GDF-15 on the proliferation and cell death of HPMEC were studied using recombinant GDF-15 protein. RESULTS GDF-15 expression was found to be increased in lung specimens from PAH patients, compared to normal lungs. GDF-15 was abundantly expressed in pulmonary vascular endothelial cells with a strong signal in the core of plexiform lesions. HPMEC responded with marked upregulation of GDF-15 to hypoxia and laminar shear stress. Apoptotic cell death of HPMEC was diminished, whereas HPMEC proliferation was either increased or decreased depending of the concentration of recombinant GDF-15 protein. CONCLUSIONS GDF-15 expression is increased in PAH lungs and appears predominantly located in vascular endothelial cells. The expression pattern as well as the observed effects on proliferation and apoptosis of pulmonary endothelial cells suggest a role of GDF-15 in the homeostasis of endothelial cells in PAH patients.
Collapse
Affiliation(s)
- Nils Nickel
- Clinic for Pulmonary Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Albersen M, Fandel TM, Lin G, Wang G, Banie L, Lin CS, Lue TF. Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. J Sex Med 2011; 7:3331-40. [PMID: 20561166 DOI: 10.1111/j.1743-6109.2010.01875.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Erectile dysfunction (ED) remains a major complication after radical prostatectomy. The use of adipose tissue-derived stem cells (ADSCs) has shown promising results for the treatment of ED. However, the mechanisms of action for stem cell therapy remain controversial, with increasing evidence pointing to paracrine pathways. AIM To determine the effects and to identify the mechanism of action of ADSC and ADSC-derived lysate in a rat model of cavernous nerve (CN) crush injury. METHODS Thirty-two male Sprague-Dawley rats were randomly divided into four equal groups: one group underwent sham operation, while three groups underwent bilateral CN crush. Crush-injury groups were treated at the time of injury with intracavernous injection of ADSC, lysate, or vehicle only (injured controls). Erectile function was assessed by CN electrostimulation at 4 weeks. Penile tissue was collected for histology. MAIN OUTCOME MEASURES Intracavernous pressure increase upon CN stimulation; neuronal nitric oxide synthase (nNOS) content in the dorsal penile nerve; smooth muscle content, collagen content, and number of apoptotic cells in the corpus cavernosum. RESULTS Both ADSC and lysate treatments resulted in significant recovery of erectile function, as compared with vehicle treatment. nNOS content was preserved in both the ADSC and lysate group, with significantly higher expression compared with vehicle-treated animals. There was significantly less fibrosis and a significant preservation of smooth muscle content in the ADSC and lysate groups compared with injured controls. The observed functional improvement after lysate injection supports the hypothesis that ADSCs act through release of intracellular preformed substances or by active secretion of certain biomolecules. The underlying mechanism of recovery appears to involve neuron preservation and cytoprotection by inhibition of apoptosis. CONCLUSIONS Penile injection of both ADSC and ADSC-derived lysate can improve recovery of erectile function in a rat model of neurogenic ED.
Collapse
Affiliation(s)
- Maarten Albersen
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang H, Yang R, Wang Z, Lin G, Lue TF, Lin CS. Adipose tissue-derived stem cells secrete CXCL5 cytokine with neurotrophic effects on cavernous nerve regeneration. J Sex Med 2010; 8:437-46. [PMID: 21114767 DOI: 10.1111/j.1743-6109.2010.02128.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Previously we reported that paracrine actions likely mediated the therapeutic effects of adipose tissue-derived stem cells (ADSCs) on a rat model of cavernous nerve (CN) injury. AIM To identify potential neurotrophic factors in ADSC's secretion, test the most promising one, and identify the molecular mechanism of its neurotrophic action. METHODS Rat major pelvic ganglia (MPG) were cultured in conditioned media of ADSC and penile smooth muscle cells (PSMCs). Cytokine expression in these two media was probed with a cytokine antibody array. CXCL5 cytokine was quantified in these two media by enzyme-linked immunosorbent assay (ELISA). Activation of Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) by CXCL5 was tested in neuroblastoma cell lines BE(2)C and SH-SY5Y as well as in Schwann cell line RT4-D6P2T by Western blot. Involvement of CXCL5 and JAK/STAT in ADSC-conditioned medium's neurotrophic effects was confirmed with anti-CXCL5 antibody and JAK inhibitor AG490, respectively. MAIN OUTCOME MEASURES Neurotrophic effects of ADSC and PSMC-conditioned media were quantified by measuring neurite length in MPG cultures. Secretion of CXCL5 in these two media was quantified by ELISA. Activation of JAK/STAT by CXCL5 was quantified by densitometry on Western blots for STAT1 and STAT3 phosphorylation. RESULTS MPG neurite length was significantly longer in ADSC than in PSMC-conditioned medium. CXCL5 was secreted eight times higher in ADSC than in PSMC-conditioned medium. Anti-CXCL5 antibody blocked the neurotrophic effects of ADSC-conditioned medium. CXCL5 activated JAK/STAT concentration-dependently from 0 to 50 ng/mL in RT4-D6P2T Schwann cells. At 50 ng/mL, CXCL5 activated JAK/STAT time-dependently, peaking at 45 minutes. AG490 blocked these activities as well as the neurotrophic effects of ADSC-conditioned medium. CONCLUSIONS CXCL5 was secreted by ADSC at a high level, promoted MPG neurite growth, and activated JAK/STAT in Schwann cells. CXCL5 may contribute to ADSC's therapeutic efficacy on CN injury-induced ED.
Collapse
Affiliation(s)
- Haiyang Zhang
- Knuppe Molecular Urology Laboratory-Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hu W, Cheng B, Liu T, Li S, Tian Y. Erectile Function Restoration After Repair of Excised Cavernous Nerves by Autologous Vein Graft in Rats. J Sex Med 2010; 7:3365-72. [DOI: 10.1111/j.1743-6109.2010.01730.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Tsai VF, Chang HC, Liu SP, Kuo YC, Chen JH, Jaw FS, Hsieh JT. Determination of Human Penile Electrical Resistance and Implication on Safety for Electrosurgery of Penis. J Sex Med 2010; 7:2891-8. [DOI: 10.1111/j.1743-6109.2010.01856.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Lee CH, Shin JH, Ahn GJ, Kang KK, Ahn BO, Yoo M. Udenafil enhances the recovery of erectile function and ameliorates the pathophysiological consequences of cavernous nerve resection. J Sex Med 2010; 7:2564-71. [PMID: 20524975 DOI: 10.1111/j.1743-6109.2010.01858.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Radical prostatectomy is the treatment of choice for prostate cancer patients. Despite the introduction of nerve-sparing surgical techniques, its success is not entirely guaranteed and the majority of patients report compromised erectile function following surgical procedures. AIM This study was performed to investigate the effect of repeated dosing of udenafil, a novel phosphodiesterase type 5 inhibitor, on penile hypoxia and fibrosis induced by bilateral cavernous nerve resection (BCNR) in rats. METHODS Thirty male Sprague-Dawley rats (300-320 g) were used in this study. The animals were divided into three groups; group I consisted of sham-operated animals (N = 10), animals in group II underwent BCNR alone (N = 10), and animals in group III were orally treated with 10 mg/kg udenafil b.i.d. for 8 weeks following BCNR (N = 10). MAIN OUTCOME MEASURES The expression of transforming growth factor-beta1, hypoxia-inducible factor-1 alpha, endothelial nitric oxide synthase, neuronal nitric oxide synthase, and endothelin B receptor in penile tissue was examined at gene level. Additionally, erectile function, measured by intracavernous pressure (ICP), and pathological changes in the corpus cavernosum were examined. RESULTS While fibrosis, apoptosis, and the expression of TGF-beta1, HIF-1 alpha, and ET(B) were significantly increased, and the expression of eNOS and nNOS were significantly decreased in group II, compared with the sham-operated animals, repeated dosing of udenafil significantly ameliorated these changes. Erectile function was profoundly impaired in animals that underwent BCNR alone, and udenafil treatment significantly attenuated this impairment as measured by ICP. CONCLUSIONS These results demonstrate that long-term administration of udenafil ameliorates penile hypoxia and fibrosis induced by cavernous nerve resection. This study also suggests the potential beneficial role of repeated dosing of udenafil in the recovery of erectile function in patients with neuronal erectile dysfunction.
Collapse
Affiliation(s)
- Chan-Ho Lee
- Research Laboratory, Dong-A Pharmaceutical Company, Giheung, Yongin, Gyeonggi 446-905, Korea
| | | | | | | | | | | |
Collapse
|