1
|
Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 2016; 68:83-107. [PMID: 26399242 DOI: 10.1007/s00251-015-0868-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
Our knowledge of the lagomorph immune system remains largely based upon studies of the European rabbit (Oryctolagus cuniculus), a major model for studies of immunology. Two important and devastating viral diseases, rabbit hemorrhagic disease and myxomatosis, are affecting European rabbit populations. In this context, we discuss the genetic diversity of the European rabbit immune system and extend to available information about other lagomorphs. Regarding innate immunity, we review the most recent advances in identifying interleukins, chemokines and chemokine receptors, Toll-like receptors, antiviral proteins (RIG-I and Trim5), and the genes encoding fucosyltransferases that are utilized by rabbit hemorrhagic disease virus as a portal for invading host respiratory and gut epithelial cells. Evolutionary studies showed that several genes of innate immunity are evolving by strong natural selection. Studies of the leporid CCR5 gene revealed a very dramatic change unique in mammals at the second extracellular loop of CCR5 resulting from a gene conversion event with the paralogous CCR2. For the adaptive immune system, we review genetic diversity at the loci encoding antibody variable and constant regions, the major histocompatibility complex (RLA) and T cells. Studies of IGHV and IGKC genes expressed in leporids are two of the few examples of trans-species polymorphism observed outside of the major histocompatibility complex. In addition, we review some endogenous viruses of lagomorph genomes, the importance of the European rabbit as a model for human disease studies, and the anticipated role of next-generation sequencing in extending knowledge of lagomorph immune systems and their evolution.
Collapse
Affiliation(s)
- Ana Pinheiro
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- SaBio-IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Fabiana Neves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Lemos de Matos
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joana Abrantes
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Wessel van der Loo
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Rose Mage
- NIAID, NIH, Bethesda, MD, 20892, USA
| | - Pedro José Esteves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
- CITS-Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|
2
|
Magalhães V, Abrantes J, Munõz-Pajares AJ, Esteves PJ. Genetic diversity comparison of the DQA gene in European rabbit (Oryctolagus cuniculus) populations. Immunogenetics 2015; 67:579-90. [PMID: 26307416 DOI: 10.1007/s00251-015-0866-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
The European rabbit (Oryctolagus cuniculus) natural populations within the species native region, the Iberian Peninsula, are considered a reservoir of genetic diversity. Indeed, the Iberia was a Pleistocene refuge to the species and currently two subspecies are found in the peninsula (Oryctolagus cuniculus cuniculus and Oryctolagus cuniculus algirus). The genes of the major histocompatibility complex (MHC) have been substantially studied in wild populations due to their exceptional variability, believed to be pathogen driven. They play an important function as part of the adaptive immune system affecting the individual fitness and population viability. In this study, the MHC variability was assessed by analysing the exon 2 of the DQA gene in several European rabbit populations from Portugal, Spain and France and in domestic breeds. Twenty-eight DQA alleles were detected, among which 18 are described for the first time. The Iberian rabbit populations are well differentiated from the French population and domestic breeds. The Iberian populations retained the higher allelic diversity with the domestic breeds harbouring the lowest; in contrast, the DQA nucleotide diversity was higher in the French population. Signatures of positive selection were detected in four codons which are putative peptide-binding sites and have been previously detected in other mammals. The evolutionary relationships showed instances of trans-species polymorphism. Overall, our results suggest that the DQA in European rabbits is evolving under selection and genetic drift.
Collapse
Affiliation(s)
- Vanessa Magalhães
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Joana Abrantes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Antonio Jesús Munõz-Pajares
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Pedro J Esteves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal. .,Centro de Investigação em Tecnologias da Saúde (CITS), ISPN, CESPU, Gandra, Portugal.
| |
Collapse
|
3
|
Pinheiro A, Almeida T, Esteves PJ. Survey of genetic diversity of IgG in wild and domestic rabbits. Int J Immunogenet 2015. [DOI: 10.1111/iji.12222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A. Pinheiro
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology; Universidade do Porto; Campus de Vairão; Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Porto; Portugal
- SaBio IREC (CSIC-UCLM-JCCM); Ciudad Real; Spain
| | - T. Almeida
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology; Universidade do Porto; Campus de Vairão; Vairão Portugal
| | - P. J. Esteves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology; Universidade do Porto; Campus de Vairão; Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Porto; Portugal
- CESPU; Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde; Gandra PRD; Portugal
| |
Collapse
|
4
|
Pinheiro A, Woof JM, Almeida T, Abrantes J, Alves PC, Gortázar C, Esteves PJ. Leporid immunoglobulin G shows evidence of strong selective pressure on the hinge and CH3 domains. Open Biol 2015; 4:140088. [PMID: 25185680 PMCID: PMC4185434 DOI: 10.1098/rsob.140088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Immunoglobulin G (IgG) is the predominant serum immunoglobulin and has the longest serum half-life of all the antibody classes. The European rabbit IgG has been of significant importance in immunological research, and is therefore well characterized. However, the IgG of other leporids has been disregarded. To evaluate the evolution of this gene in leporids, we sequenced the complete IGHG for six other genera: Bunolagus, Brachylagus, Lepus, Pentalagus, Romerolagus and Sylvilagus. The newly sequenced leporid IGHG gene has an organization and structure similar to that of the European rabbit IgG. A gradient in leporid IgG constant domain diversity was observed, with the CH1 being the most conserved and the CH3 the most variable domain. Positive selection was found to be acting on all constant domains, but with a greater incidence in the CH3 domain, where a cluster of three positively selected sites was identified. In the hinge region, only three polymorphic positions were observed. The same hinge length was observed for all leporids. Unlike the variation observed for the European rabbit, all 11 Lepus species studied share exactly the same hinge motif, suggesting its maintenance as a result of an advantageous structure or conformation.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal SaBio IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real 13071, Spain
| | - Jenny M Woof
- Division of Cancer Research, Medical Research Institute, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Tereza Almeida
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Joana Abrantes
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Paulo C Alves
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT 59812, USA
| | - Christian Gortázar
- SaBio IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real 13071, Spain
| | - Pedro J Esteves
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal
| |
Collapse
|
5
|
Lavazza A, Cavadini P, Barbieri I, Tizzani P, Pinheiro A, Abrantes J, Esteves PJ, Grilli G, Gioia E, Zanoni M, Meneguz P, Guitton JS, Marchandeau S, Chiari M, Capucci L. Field and experimental data indicate that the eastern cottontail (Sylvilagus floridanus) is susceptible to infection with European brown hare syndrome (EBHS) virus and not with rabbit haemorrhagic disease (RHD) virus. Vet Res 2015; 46:13. [PMID: 25828691 PMCID: PMC4337088 DOI: 10.1186/s13567-015-0149-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/14/2015] [Indexed: 12/29/2022] Open
Abstract
The eastern cottontail (Sylvilagus floridanus) is an American lagomorph. In 1966, it was introduced to Italy, where it is currently widespread. Its ecological niche is similar to those of native rabbits and hares and increasing overlap in distribution brings these species into ever closer contact. Therefore, cottontails are at risk of infection with the two lagoviruses endemically present in Italy: Rabbit Haemorrhagic Disease virus (RHDV) and European Brown Hare Syndrome Virus (EBHSV). To verify the susceptibility of Sylvilagus to these viruses, we analyzed 471 sera and 108 individuals from cottontail populations in 9 provinces of north-central Italy from 1999 to 2012. In total, 15–20% of the cottontails tested seropositive for EBHSV; most titres were low, but some were as high as 1/1280. All the cottontails virologically tested for RHDV and EBHSV were negative with the exception of one individual found dead with hares during a natural EBHS outbreak in December 2009. The cottontail and the hares showed typical EBHS lesions, and the EBHSV strain identified was the same in both species (99.9% identity). To experimentally confirm the diagnosis, we performed two trials in which we infected cottontails with both EBHSV and RHDV. One out of four cottontails infected with EBHSV died of an EBHS-like disease, and the three surviving animals developed high EBHSV antibody titres. In contrast, neither mortality nor seroconversion was detected after infection with RHDV. Taken together, these results suggest that Sylvilagus is susceptible to EBHSV infection, which occasionally evolves to EBHS-like disease; the eastern cottontail could therefore be considered a “spill over” or “dead end” host for EBHSV unless further evidence is found to confirm that it plays an active role in the epidemiology of EBHSV.
Collapse
|
6
|
Pinheiro A, Woof JM, Abi-Rached L, Parham P, Esteves PJ. Computational analyses of an evolutionary arms race between mammalian immunity mediated by immunoglobulin A and its subversion by bacterial pathogens. PLoS One 2013; 8:e73934. [PMID: 24019941 PMCID: PMC3760800 DOI: 10.1371/journal.pone.0073934] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 07/26/2013] [Indexed: 12/19/2022] Open
Abstract
IgA is the predominant immunoglobulin isotype in mucosal tissues and external secretions, playing important roles both in defense against pathogens and in maintenance of commensal microbiota. Considering the complexity of its interactions with the surrounding environment, IgA is a likely target for diversifying or positive selection. To investigate this possibility, the action of natural selection on IgA was examined in depth with six different methods: CODEML from the PAML package and the SLAC, FEL, REL, MEME and FUBAR methods implemented in the Datamonkey webserver. In considering just primate IgA, these analyses show that diversifying selection targeted five positions of the Cα1 and Cα2 domains of IgA. Extending the analysis to include other mammals identified 18 positively selected sites: ten in Cα1, five in Cα2 and three in Cα3. All but one of these positions display variation in polarity and charge. Their structural locations suggest they indirectly influence the conformation of sites on IgA that are critical for interaction with host IgA receptors and also with proteins produced by mucosal pathogens that prevent their elimination by IgA-mediated effector mechanisms. Demonstrating the plasticity of IgA in the evolution of different groups of mammals, only two of the eighteen selected positions in all mammals are included in the five selected positions in primates. That IgA residues subject to positive selection impact sites targeted both by host receptors and subversive pathogen ligands highlights the evolutionary arms race playing out between mammals and pathogens, and further emphasizes the importance of IgA in protection against mucosal pathogens.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos/InBio Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- SaBio - Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Jenny M. Woof
- Division of Cancer Research, Medical Research Institute, University of Dundee Medical School, Ninewells Hospital, Dundee, United Kingdom
| | - Laurent Abi-Rached
- Centre National de la Recherche Scientifique, Laboratoire d’Analyse, Topologie, Probabilités - Unité Mixte de Recherche 7353, Equipe ATIP, Aix-Marseille Université, Marseille, France
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Pedro J. Esteves
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos/InBio Laboratório Associado, Universidade do Porto, Vairão, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal
- * E-mail:
| |
Collapse
|
7
|
Accuracy and coverage assessment of Oryctolagus cuniculus (rabbit) genes encoding immunoglobulins in the whole genome sequence assembly (OryCun2.0) and localization of the IGH locus to chromosome 20. Immunogenetics 2013; 65:749-62. [PMID: 23925440 DOI: 10.1007/s00251-013-0722-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
We report on the analyses of genes encoding immunoglobulin heavy and light chains in the rabbit 6.51× whole genome assembly. This OryCun2.0 assembly confirms previous mapping of the duplicated IGK1 and IGK2 loci to chromosome 2 and the IGL lambda light chain locus to chromosome 21. The most frequently rearranged and expressed IGHV1 that is closest to IG DH and IGHJ genes encodes rabbit VHa allotypes. The partially inbred Thorbecke strain rabbit used for whole-genome sequencing was homozygous at the IGK but heterozygous with the IGHV1a1 allele in one of 79 IGHV-containing unplaced scaffolds and IGHV1a2, IGHM, IGHG, and IGHE sequences in another. Some IGKV, IGLV, and IGHA genes are also in other unplaced scaffolds. By fluorescence in situ hybridization, we assigned the previously unmapped IGH locus to the q-telomeric region of rabbit chromosome 20. An approximately 3-Mb segment of human chromosome 14 including IGH genes predicted to map to this telomeric region based on synteny analysis could not be located on assembled chromosome 20. Unplaced scaffold chrUn0053 contains some of the genes that comparative mapping predicts to be missing. We identified discrepancies between previous targeted studies and the OryCun2.0 assembly and some new BAC clones with IGH sequences that can guide other studies to further sequence and improve the OryCun2.0 assembly. Complete knowledge of gene sequences encoding variable regions of rabbit heavy, kappa, and lambda chains will lead to better understanding of how and why rabbits produce antibodies of high specificity and affinity through gene conversion and somatic hypermutation.
Collapse
|
8
|
Molecular bases of genetic diversity and evolution of the immunoglobulin heavy chain variable region (IGHV) gene locus in leporids. Immunogenetics 2011; 63:397-408. [PMID: 21594770 DOI: 10.1007/s00251-011-0533-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
The rabbit has long been a model for studies of the immune system. Work using rabbits contributed both to the battle against infectious diseases such as rabies and syphilis, and to our knowledge, of antibodies' structure, function, and regulated expression. With the description of rabbit Ig allotypes, the discovery of different gene segments encoding immunoglobulins became possible. This challenged the "one gene-one protein" dogma. The observation that rabbit allotypic specificities of the variable regions were present on IgM and IgG molecules also led to the hypothesis of Ig class switching. Rabbit allotypes contributed to the documentation of phenomena such as allelic exclusion and imbalance in production of allelic gene products. During the last 30 years, the rabbit Ig allotypes revealed a number of unique features, setting them apart from mice, humans, and other mammals. Here, we review the most relevant findings concerning the rabbit IGHV. Among these are the preferential usage of one VH gene in VDJ rearrangements, the existence of trans-species polymorphism in the IGHV locus revealed by serology and confirmed by sequencing IGHV genes in Lepus, the unusually large genetic distances between allelic lineages and the fact that the antibody repertoire is diversified in this species only after birth. The whole genome sequence of a rabbit, plus re-sequencing of additional strains and related genera, will allow further evolutionary investigations of antibody variation. Continued research will help define the roles that genetic, allelic, and population diversity at antibody loci may play in host-parasite interactions.
Collapse
|
9
|
Chung HY. Effects of SNPs using differentially expressed serum proteins at growth stages on average daily gain in pig. Mol Biol Rep 2010; 38:3777-85. [DOI: 10.1007/s11033-010-0493-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 11/10/2010] [Indexed: 12/01/2022]
|
10
|
Wang W, Xu R, Li J. Production of native bispecific antibodies in rabbits. PLoS One 2010; 5:e10879. [PMID: 20559427 PMCID: PMC2885417 DOI: 10.1371/journal.pone.0010879] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 05/07/2010] [Indexed: 12/24/2022] Open
Abstract
Background A natural bispecific antibody, which can be produced by exchanging Fab arms of two IgG4 molecules, was first described in allergic patients receiving therapeutic injections with two distinct allergens. However, no information has been published on the production of natural bispecific antibody in animals. Even more important, establishment of an animal model is a useful approach to investigate and characterize the naturally occurring antibody. Methodology/Principal Findings We demonstrated that a natural bispecific antibody can also be generated in New Zealand white rabbits by immunization with synthesized conjugates. These antibodies showed bispecificity to the components that were simultaneously used to immunize the animals. We observed a trend in our test animals that female rabbits exhibited stronger bispecific antibody responses than males. The bispecific antibody was monomeric and primarily belonged to immunoglobulin (Ig) G. Moreover, bispecific antibodies were demonstrated by mixing 2 purified monospecific antibodies in vivo and in vitro. Conclusions/Significance Our results extend the context of natural bispecific antibodies on the basis of bispecific IgG4, and may provide insights into the exploration of native bispecific antibodies in immunological diseases.
Collapse
Affiliation(s)
- Wei Wang
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China
| | - Ruihuan Xu
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
11
|
Puliyath N, Ray S, Milton J, Mage RG. Genetic contributions to the autoantibody profile in a rabbit model of Systemic Lupus Erythematosus (SLE). Vet Immunol Immunopathol 2008; 125:251-67. [PMID: 18602165 DOI: 10.1016/j.vetimm.2008.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/16/2008] [Accepted: 05/19/2008] [Indexed: 12/29/2022]
Abstract
For the development of rabbit models of Systemic Lupus Erythematosus (SLE), immunoglobulin allotype-defined pedigreed rabbits from the National Institute of Allergy and Infectious Diseases rabbit resource more closely approximate human populations due to their non-inbred pedigreed structure. In an initial study from this laboratory, peptides (SM and GR) from the spliceosomal Smith (Sm) and the NMDA glutamate receptor NR2b, on branched polylysine backbones (BB) elicited antinuclear and anti-dsDNA autoantibodies typical of SLE, as well as seizures and nystagmus sometimes observed as neurological manifestations in SLE patients. This suggested the feasibility of further selective breeding to develop a more reproducible rabbit model for investigations of SLE. Here we report the results of GR-MAP-8 and control BB immunization on autoantibody responses in a group of 24 rabbits specifically bred and developed from parents and ancestors tested for autoantibody responses. The changes in hematological profile and blood chemistry in the experimental rabbits were evaluated along with autoantibody responses. Elevations of total white blood cell (WBC), monocyte, eosinophil and basophil counts that developed following immunizations were moderately influenced by litter and presence of the antibody heavy chain allotype VH1a1. Autoantibody development followed a sequential pattern with anti-nuclear antibodies (ANA) followed by anti-dsDNA and subsequently anti-Sm and anti-RNP similar to SLE patients. High autoantibody levels to one autoantigen were not always associated with antibody response to another. Female rabbits had higher prevalence and levels of autoantibodies similar to human SLE. Higher autoantibody levels of anti-dsDNA and -ANA were observed among some full sibs and the presence of high responder ancestors in the pedigree was associated the augmented responses. We observed significant association between highest antibody responses to GR-MAP-8 and highest anti-dsDNA levels. Naturally occurring autoantibodies were found in some pre-immune sera and some unique ANA fluorescent staining patterns within the experimental group were observed. Background immunofluorescence in pre-immune sera, distinct patterns of programmed autoantibody responses unique among individual rabbits may have been modulated by genetic constitution, gender and environmental factors including exposure to antigens. The high incidence and intensity of autoantibody responses among descendants of high responders suggest that there may be an additive mode of inheritance with high heritability. It is conceivable that further rigorous pedigree selection for autoantibody responses could lead to development of rabbit models with spontaneous occurrence of SLE like serology and disease phenotypes.
Collapse
Affiliation(s)
- Nandakumar Puliyath
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | | | | | |
Collapse
|