1
|
Crkvenac Gregorek A, Gornik KC, Polancec DS, Dabelic S. Association of 1166A>C AT1R, -1562C>T MMP-9, ACE I/D, and CCR5Δ32 Polymorphisms with Abdominal Aortic Aneurysm in Croatian Patients. Genet Test Mol Biomarkers 2016; 20:616-623. [DOI: 10.1089/gtmb.2016.0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrea Crkvenac Gregorek
- Division of Vascular Surgery, Clinical Department of Surgery, University Hospital Center Zagreb, Zagreb, Croatia
| | - Kristina Crkvenac Gornik
- Division of Cytogenetics, Clinical Department for Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | | | - Sanja Dabelic
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Bradley DT, Badger SA, McFarland M, Hughes AE. Abdominal Aortic Aneurysm Genetic Associations: Mostly False? A Systematic Review and Meta-analysis. Eur J Vasc Endovasc Surg 2015; 51:64-75. [PMID: 26460285 DOI: 10.1016/j.ejvs.2015.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/07/2015] [Indexed: 01/27/2023]
Abstract
OBJECTIVE/BACKGROUND Many associations between abdominal aortic aneurysm (AAA) and genetic polymorphisms have been reported. It is unclear which are genuine and which may be caused by type 1 errors, biases, and flexible study design. The objectives of the study were to identify associations supported by current evidence and to investigate the effect of study design on reporting associations. METHODS Data sources were MEDLINE, Embase, and Web of Science. Reports were dual-reviewed for relevance and inclusion against predefined criteria (studies of genetic polymorphisms and AAA risk). Study characteristics and data were extracted using an agreed tool and reports assessed for quality. Heterogeneity was assessed using I(2) and fixed- and random-effects meta-analyses were conducted for variants that were reported at least twice, if any had reported an association. Strength of evidence was assessed using a standard guideline. RESULTS Searches identified 467 unique articles, of which 97 were included. Of 97 studies, 63 reported at least one association. Of 92 studies that conducted multiple tests, only 27% corrected their analyses. In total, 263 genes were investigated, and associations were reported in polymorphisms in 87 genes. Associations in CDKN2BAS, SORT1, LRP1, IL6R, MMP3, AGTR1, ACE, and APOA1 were supported by meta-analyses. CONCLUSION Uncorrected multiple testing and flexible study design (particularly testing many inheritance models and subgroups, and failure to check for Hardy-Weinberg equilibrium) contributed to apparently false associations being reported. Heterogeneity, possibly due to the case mix, geographical, temporal, and environmental variation between different studies, was evident. Polymorphisms in nine genes had strong or moderate support on the basis of the literature at this time. Suggestions are made for improving AAA genetics study design and conduct.
Collapse
Affiliation(s)
- D T Bradley
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Institute of Clinical Sciences, Block B, Royal Victoria Hospital, Belfast BT12 6BA, UK.
| | - S A Badger
- Mater Misericordiae University Hospital, Eccles Street, Dublin, Ireland
| | - M McFarland
- Department of Pathology, Institute of Pathology Building, Royal Victoria Hospital, Belfast Health and Social Care Trust, Grosvenor Road, Belfast BT12 6BL, UK
| | - A E Hughes
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Institute of Clinical Sciences, Block B, Royal Victoria Hospital, Belfast BT12 6BA, UK
| |
Collapse
|
5
|
Marinković G, Hibender S, Hoogenboezem M, van Broekhoven A, Girigorie AF, Bleeker N, Hamers AA, Stap J, van Buul JD, de Vries CJ, de Waard V. Immunosuppressive Drug Azathioprine Reduces Aneurysm Progression Through Inhibition of Rac1 and c-Jun-Terminal-N-Kinase in Endothelial Cells. Arterioscler Thromb Vasc Biol 2013; 33:2380-8. [DOI: 10.1161/atvbaha.113.301394] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Goran Marinković
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Stijntje Hibender
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Mark Hoogenboezem
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Amber van Broekhoven
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Arginell F. Girigorie
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Natascha Bleeker
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Anouk A.J. Hamers
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jan Stap
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jaap D. van Buul
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Carlie J.M. de Vries
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Vivian de Waard
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
6
|
Iida Y, Xu B, Xuan H, Glover KJ, Tanaka H, Hu X, Fujimura N, Wang W, Schultz JR, Turner CR, Dalman RL. Peptide inhibitor of CXCL4-CCL5 heterodimer formation, MKEY, inhibits experimental aortic aneurysm initiation and progression. Arterioscler Thromb Vasc Biol 2013; 33:718-26. [PMID: 23288157 DOI: 10.1161/atvbaha.112.300329] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Macrophages are critical contributors to abdominal aortic aneurysm (AAA) disease. We examined the ability of MKEY, a peptide inhibitor of CXCL4-CCL5 interaction, to influence AAA progression in murine models. APPROACH AND RESULTS AAAs were created in 10-week-old male C57BL/6J mice by transient infrarenal aortic porcine pancreatic elastase infusion. Mice were treated with MKEY via intravenous injection either (1) before porcine pancreatic elastase infusion or (2) after aneurysm initiation. Immunostaining demonstrated CCL5 and CCR5 expression on aneurysmal aortae and mural monocytes/macrophages, respectively. MKEY treatment partially inhibited migration of adaptively transferred leukocytes into aneurysmal aortae in recipient mice. Although all vehicle-pretreated mice developed AAAs, aneurysms formed in only 60% (3/5) and 14% (1/7) of mice pretreated with MKEY at 10 and 20 mg/kg, respectively. MKEY pretreatment reduced aortic diameter enlargement, preserved medial elastin fibers and smooth muscle cells, and attenuated mural macrophage infiltration, angiogenesis, and aortic metalloproteinase 2 and 9 expression after porcine pancreatic elastase infusion. MKEY initiated after porcine pancreatic elastase infusion also stabilized or reduced enlargement of existing AAAs. Finally, MKEY treatment was effective in limiting AAA formation after angiotensin II infusion in apolipoprotein E-deficient mice. CONCLUSIONS MKEY suppresses AAA formation and progression in 2 complementary experimental models. Peptide inhibition of CXCL4-CCL5 interactions may represent a viable translational strategy to limit progression of human AAA disease.
Collapse
Affiliation(s)
- Yasunori Iida
- Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA 94305-5102, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bradley DT, Badger SA, Bown MJ, Sayers RD, Hughes AE. Coding polymorphisms in the genes of the alternative complement pathway and abdominal aortic aneurysm. Int J Immunogenet 2011; 38:243-8. [PMID: 21352499 DOI: 10.1111/j.1744-313x.2011.01002.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Variants in the genes of the alternative complement pathway are associated with risk of numerous inflammatory diseases. Abdominal aortic aneurysm is associated with inflammation and is a common cause of illness and death among European populations. This study tested 49 single nucleotide polymorphisms, including common putatively functional polymorphisms, in the genes of the alternative complement cascade (CFH, CFB, CFD, CFI, properdin, CR1, CR1L, CR2, CD46, vitronectin, C3, C5, C6, C7, C8A, C8B, C8G and C9). The study group were 434 cases with infra-renal aortic diameter ≥30 mm and 378 disease-free controls from two UK centres, all with self-reported European ancestry. There was no evidence for significant association with presence or size of aneurysm following correction for multiple testing. This study suggests that variation in the genes of the alternative pathway is not an important cause of abdominal aortic aneurysm development.
Collapse
Affiliation(s)
- D T Bradley
- Centre for Public Health, Institute of Clinical Sciences, Queen's University Belfast, Royal Victoria Hospital, Grosvenor Road, Belfast, UK.
| | | | | | | | | |
Collapse
|
9
|
Abstract
Abdominal aortic aneurysm (AAA) is a multifactorial disease with a strong genetic component. Since the first candidate gene studies were published 20 years ago, approximately 100 genetic association studies using single nucleotide polymorphisms (SNPs) in biologically relevant genes have been reported on AAA. These studies investigated SNPs in genes of the extracellular matrix, the cardiovascular system, the immune system, and signaling pathways. Very few studies were large enough to draw firm conclusions and very few results could be replicated in another sample set. The more recent unbiased approaches are family-based DNA linkage studies and genome-wide genetic association studies, which have the potential of identifying the genetic basis for AAA, only when appropriately powered and well-characterized large AAA cohorts are used. SNPs associated with AAA have already been identified in these large multicenter studies. One significant association was of a variant in a gene called contactin-3, which is located on chromosome 3p12.3. However, two follow-up studies could not replicate this association. Two other SNPs, which are located on chromosome 9p21 and 9q33, were replicated in other samples. The two genes with the strongest supporting evidence of contribution to the genetic risk for AAA are the CDKN2BAS gene, also known as ANRIL, which encodes an antisense ribonucleic acid that regulates expression of the cyclin-dependent kinase inhibitors CDKN2A and CDKN2B, and DAB2IP, which encodes an inhibitor of cell growth and survival. Functional studies are now needed to establish the mechanisms by which these genes contribute toward AAA pathogenesis.
Collapse
|
10
|
Saratzis A, Abbas AA, Kiskinis D, Melas N, Saratzis N, Kitas GD. Abdominal aortic aneurysm: a review of the genetic basis. Angiology 2010; 62:18-32. [PMID: 20566578 DOI: 10.1177/0003319710373092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a complex disease with a largely unknown pathophysiological background and a strong genetic component. Various studies have tried to link specific genetic variants with AAA. METHODS Systematic review of the literature (1947-2009). RESULTS A total of 249 studies were identified, 89 of which were eventually deemed relevant to this review. Genetic variants (polymorphisms) in a wide variety of genes, most of which encode proteolytic enzymes and inflammatory molecules, have been associated with AAA development and progression. CONCLUSION The genetic basis of AAA remains unknown, and most results from ''candidate-gene'' association studies are contradictory. Further analyses in appropriately powered studies in large, phenotypically well-characterized populations, including genome-wide association studies, are necessary to elucidate the exact genetic contribution to the pathophysiology of AAA.
Collapse
Affiliation(s)
- Athanasios Saratzis
- Russell's Hall Hospital, Dudley Group of Hospitals NHS Foundation Trust, Dudley, West Midlands, UK.
| | | | | | | | | | | |
Collapse
|