1
|
Dehnavi S, Sadeghi M, Johnston TP, Barreto G, Shohan M, Sahebkar A. The role of protein SUMOylation in rheumatoid arthritis. J Autoimmun 2019; 102:1-7. [PMID: 31078376 DOI: 10.1016/j.jaut.2019.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 01/09/2023]
Abstract
Small ubiquitin-like modifier (SUMO) proteins, as a subgroup of post-translational modifiers, act to change the function of proteins. Through their interactions with different targets, immune pathways, and the responses they elicit, can be affected by these SUMO conjugations. Thus, both a change to protein function and involvement in immune pathways has the potential to promote an efficient immune response to either a pathogenic challenge, or the development of an imbalance that could lead to an autoimmune-based disease. Also, a variety of changes such as mutations and polymorphisms can interfere with common functions of these modifications and move an effective immune response in the direction of an autoimmune disease. The present review discusses the general characteristics of SUMO proteins and focuses on their involvement in rheumatoid arthritis as an autoimmune disease.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - George Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Mojtaba Shohan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Chatzikyriakidou A, Voulgari PV, Lambropoulos A, Drosos AA. Genetics in rheumatoid arthritis beyond HLA genes: what meta-analyses have shown? Semin Arthritis Rheum 2013; 43:29-38. [PMID: 23768941 DOI: 10.1016/j.semarthrit.2012.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a complex disorder with many genetic and environmental factors to account for disease susceptibility. Individual genetic association studies usually suffer from small sample size leading to biased results of polymorphisms association with RA liability. Therefore, meta-analyses seem to resolve this limitation, up to a point, increasing the power of statistical analyses. In this review, we summarize the current knowledge of non-HLA genetic factors contributing to RA predisposition based on meta-analyses. METHODS Using the key words: rheumatoid arthritis, meta-analysis, and polymorphism, we searched the PubMed database for the associated articles. Up to the middle of November 2012, seventy-nine articles fulfilled the criteria and highlighted the current findings on the genetic factors contributing to RA susceptibility. RESULTS The association with RA was confirmed for 32 gene polymorphisms, being population specific in some cases. However, meta-analyses did not confirm an association in case of 16 gene variants, previously studied in individual studies for their association with RA. CONCLUSIONS The use of bioinformatics tools and functional studies of the summarized implicated genes in RA pathogenesis could shed light on the molecular pathways related to the disorder, helping to the development of new drug targets for a better treatment of RA.
Collapse
Affiliation(s)
- Anthoula Chatzikyriakidou
- Laboratory of General Biology and Genetics, Medical School, Aristotle University of Thessaloniki, Greece
| | | | | | | |
Collapse
|
3
|
Song GG, Choi SJ, Ji JD, Lee YH. Association between the SUMO4 M55V (A163G) polymorphism and susceptibility to type 1 diabetes: a meta-analysis. Hum Immunol 2012; 73:1055-9. [PMID: 22884980 DOI: 10.1016/j.humimm.2012.07.341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/17/2012] [Accepted: 07/30/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether the SUMO4 M55V (A163G) polymorphism confers susceptibility to type 1 diabetes (T1D). METHODS A meta-analysis was conducted on the association between the SUMO4 M55V polymorphism and T1D using; (1) allelic contrast (G vs. A), and the (2) recessive (GG vs. GA+AA), (3) dominant (GG+GA vs. AA), and (4) additive models (GG vs. AA). RESULTS Thirteen separate studies were considered in the meta-analysis, which in total included 5915 patients and 6660 controls, and five European and eight Asian sample populations. Europeans had a higher prevalence of the G allele than Asians (50.4% vs. 30.2%). Meta-analysis of the SUMO4 M55V polymorphism showed an association between T1D and the SUMO4 G allele in all study subjects (OR=1.236, 95% CI=1.112-1.373, p=7.9×10(-6)), and stratification by ethnicity indicated a highly significant association between the SUMO4 G allele and T1D in Asians (OR=1.303, 95% CI=1.169-1.452, p=1.78×10(-7)) and a marginal association with T1D in Europeans (OR=1.177, 95% CI=1.000-1.386, p=0.050). Furthermore, significant associations were found between the SUMO4 M55V polymorphism and T1D and all study subjects, Europeans, and Asians using the dominant model (OR=1.239, 95% CI=1.144-1.342, p=1.4×10(-8); OR=1.156, 95% CI=1.051-1.271, p=0.003; OR=1.461, 95% CI=1.262-1.691, p=3.8×10(-8), respectively). CONCLUSIONS This meta-analysis indicates that the SUMO4 M55V polymorphism confers susceptibility to T1D in Asians and Europeans.
Collapse
Affiliation(s)
- Gwan Gyu Song
- Division of Rheumatology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | | | | | | |
Collapse
|
4
|
Coppola A, Tomasello L, Pizzolanti G, Pucci-Minafra I, Albanese N, Di Cara G, Cancemi P, Pitrone M, Bommarito A, Carissimi E, Zito G, Criscimanna A, Galluzzo A, Giordano C. In vitro phenotypic, genomic and proteomic characterization of a cytokine-resistant murine β-TC3 cell line. PLoS One 2012; 7:e32109. [PMID: 22393382 PMCID: PMC3290556 DOI: 10.1371/journal.pone.0032109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/23/2012] [Indexed: 11/19/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is caused by the selective destruction of insulin-producing β-cells. This process is mediated by cells of the immune system through release of nitric oxide, free radicals and pro-inflammatory cytokines, which induce a complex network of intracellular signalling cascades, eventually affecting the expression of genes involved in β-cell survival. The aim of our study was to investigate possible mechanisms of resistance to cytokine-induced β-cell death. To this purpose, we created a cytokine-resistant β-cell line (β-TC3R) by chronically treating the β-TC3 murine insulinoma cell line with IL-1β + IFN-γ. β-TC3R cells exhibited higher proliferation rate and resistance to cytokine-mediated cell death in comparison to the parental line. Interestingly, they maintained expression of β-cell specific markers, such as PDX1, NKX6.1, GLUT2 and insulin. The analysis of the secretory function showed that β-TC3R cells have impaired glucose-induced c-peptide release, which however was only moderately reduced after incubation with KCl and tolbutamide. Gene expression analysis showed that β-TC3R cells were characterized by downregulation of IL-1β and IFN-γ receptors and upregulation of SOCS3, the classical negative regulator of cytokines signaling. Comparative proteomic analysis showed specific upregulation of 35 proteins, mainly involved in cell death, stress response and folding. Among them, SUMO4, a negative feedback regulator in NF-kB and JAK/STAT signaling pathways, resulted hyper-expressed. Silencing of SUMO4 was able to restore sensitivity to cytokine-induced cell death in β-TC3R cells, suggesting it may play a key role in acquired cytokine resistance by blocking JAK/STAT and NF-kB lethal signaling. In conclusion, our study represents the first extensive proteomic characterization of a murine cytokine-resistant β-cell line, which might represent a useful tool for studying the mechanisms involved in resistance to cytokine-mediated β-cell death. This knowledge may be of potential benefit for patients with T1DM. In particular, SUMO4 could be used as a therapeutical target.
Collapse
Affiliation(s)
- Antonina Coppola
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Laura Tomasello
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Giuseppe Pizzolanti
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Ida Pucci-Minafra
- Centro di Oncobiologia Sperimentale (COBS), University of Palermo, Palermo, Italy
| | - Nadia Albanese
- Department of Physics, Centro di Oncobiologia Sperimentale (COBS), University of Palermo, Palermo, Italy
| | - Gianluca Di Cara
- Centro di Oncobiologia Sperimentale (COBS), University of Palermo, Palermo, Italy
| | - Patrizia Cancemi
- Section of Experimental Oncology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Maria Pitrone
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Alessandra Bommarito
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Elvira Carissimi
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Giovanni Zito
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Angela Criscimanna
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Aldo Galluzzo
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Carla Giordano
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology “A. Monroy” (CNR – IBIM), Palermo, Italy
- * E-mail:
| |
Collapse
|
5
|
Ji Z, Dai Z, Huang Y, Martins HA, Xu Y. Association of SUMO4 Met55Val variation with increased insulin resistance in newly diagnosed type 2 diabetes in a Chinese population. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2011; 31:306-311. [PMID: 21671169 DOI: 10.1007/s11596-011-0372-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Indexed: 02/06/2023]
Abstract
SUMO4 Met55Val variation was shown to be related to type 2 diabetes susceptibility and the vascular complications in Asian people. To further examine the related mechanisms, this study was designed to evaluate the association of SUMO4 Met55Val polymorphism with insulin resistance and β cell function in newly diagnosed type 2 diabetic patients in a Chinese population. Four hundred and twenty seven newly diagnosed type 2 diabetic patients were selected for SUMO4 Met55Val polymorphism genotype analysis. All subjects underwent a 75-g oral glucose tolerance test (OGTT) to estimate the insulin sensitivity and β cell function. Anthropometrics and a metabolic profile were used for phenotyping analysis. The results showed that the SUMO4 Met55Val polymorphism was associated with higher insulin resistance (P<0.001) and lower insulin sensitivity (P<0.001). Patients with GG genotype had higher levels of plasma glucose, insulin and C peptide. Insulin sensitivity index (ISI) was closely correlated with body mass index (BMI) in patients with GG genotype in comparison to the counterparts with AG or AA genotype (r= -0.504 vs. r= -0.430 vs. r= -0.340). Multiple regression linear analysis showed that SUMO4 Met55Val polymorphism was an independent determinant for insulin sensitivity (P=0.001), which, along with triglyceride, BMI and sex, could account for 20.1% of the variation in ISI. The result remained the same after adjusting for BMI and sex. No association was found between SUMO4 Met55Val polymorphism and β cell function (all P>0.05). It was concluded that SUMO4 Met55Val variant was associated with increased insulin resistance in Chinese patients with newly diagnosed type 2 diabetes.
Collapse
Affiliation(s)
- Zhenzhong Ji
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yan Huang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hedson Alves Martins
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|