1
|
Lukacs M, Nymo IH, Madslien K, Våge J, Veiberg V, Rolandsen CM, Bøe CA, Sundaram AYM, Grimholt U. Functional immune diversity in reindeer reveals a high Arctic population at risk. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1058674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Climate changes the geographic range of both species as well as pathogens, causing a potential increase in the vulnerability of populations or species with limited genetic diversity. With advances in high throughput sequencing (HTS) technologies, we can now define functional expressed genetic diversity of wild species at a larger scale and identify populations at risk. Previous studies have used genomic DNA to define major histocompatibility complex (MHC) class II diversity in reindeer. Varying numbers of expressed genes found in many ungulates strongly argues for using cDNA in MHC typing strategies to ensure that diversity estimates relate to functional genes. We have used available reindeer genomes to identify candidate genes and established an HTS approach to define expressed MHC class I and class II diversity. To capture a broad diversity we included samples from wild reindeer from Southern Norway, semi-domesticated reindeer from Northern Norway and reindeer from the high Artic archipelago Svalbard. Our data show a medium MHC diversity in semi-domesticated and wild Norwegian mainland reindeer, and low MHC diversity reindeer in Svalbard reindeer. The low immune diversity in Svalbard reindeer provides a potential risk if the pathogenic pressure changes in response to altered environmental conditions due to climate change, or increased human-related activity.
Collapse
|
2
|
Selection and demography drive range-wide patterns of MHC-DRB variation in mule deer. BMC Ecol Evol 2022; 22:42. [PMID: 35387584 PMCID: PMC8988406 DOI: 10.1186/s12862-022-01998-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Standing genetic variation is important especially in immune response-related genes because of threats to wild populations like the emergence of novel pathogens. Genetic variation at the major histocompatibility complex (MHC), which is crucial in activating the adaptive immune response, is influenced by both natural selection and historical population demography, and their relative roles can be difficult to disentangle. To provide insight into the influences of natural selection and demography on MHC evolution in large populations, we analyzed geographic patterns of variation at the MHC class II DRB exon 2 locus in mule deer (Odocoileus hemionus) using sequence data collected across their entire broad range. RESULTS We identified 31 new MHC-DRB alleles which were phylogenetically similar to other cervid MHC alleles, and one allele that was shared with white-tailed deer (Odocoileus virginianus). We found evidence for selection on the MHC including high dN/dS ratios, positive neutrality tests, deviations from Hardy-Weinberg Equilibrium (HWE) and a stronger pattern of isolation-by-distance (IBD) than expected under neutrality. Historical demography also shaped variation at the MHC, as indicated by similar spatial patterns of variation between MHC and microsatellite loci and a lack of association between genetic variation at either locus type and environmental variables. CONCLUSIONS Our results show that both natural selection and historical demography are important drivers in the evolution of the MHC in mule deer and work together to shape functional variation and the evolution of the adaptive immune response in large, well-connected populations.
Collapse
|
3
|
Gagnon M, Yannic G, Boyer F, Côté SD. Adult survival in migratory caribou is negatively associated with MHC functional diversity. Heredity (Edinb) 2020; 125:290-303. [PMID: 32728043 DOI: 10.1038/s41437-020-0347-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 11/09/2022] Open
Abstract
Genes of the major histocompatibility complex (MHC) are involved in acquired immunity in vertebrates. Only a few studies have investigated the fitness consequences of MHC gene diversity in wild populations. Here, we looked at the association between annual survival and body mass and MHC-DRB exon 2 (MHC-DRB) genetic diversity, obtained from high-throughput sequencing, in two declining migratory caribou (Rangifer tarandus) herds. To disentangle the potential direct and general effects of MHC-DRB genetic diversity, we compared different indices of diversity that were either based on DNA-sequence variation or on physicochemical divergence of the translated peptides, thereby covering a gradient of allelic-to-functional diversity. We found that (1) body mass was not related to MHC-DRB diversity or genotype, and (2) adult survival probability was negatively associated with point accepted mutation distance, a corrected distance that considers the likelihood of each amino acid substitution to be accepted by natural selection. In addition, we found no evidence of fluctuating selection over time on MHC-DRB diversity. We concluded that direct effects were involved in the negative relationship between MHC functional diversity and survival, although the mechanism underlying this result remains unclear. A possible explanation could be that individuals with higher MHC diversity suffer higher costs of immunity (immunopathology). Our results suggest that genetic diversity is not always beneficial even in genes that are likely to be strongly shaped by balancing selection.
Collapse
Affiliation(s)
- Marianne Gagnon
- Département de Biologie, Caribou Ungava and Centre d'Études Nordiques, Université Laval, 1045 avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Glenn Yannic
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Frédéric Boyer
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Steeve D Côté
- Département de Biologie, Caribou Ungava and Centre d'Études Nordiques, Université Laval, 1045 avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
4
|
Pérez-Espona S, Goodall-Copestake WP, Savirina A, Bobovikova J, Molina-Rubio C, Pérez-Barbería FJ. First assessment of MHC diversity in wild Scottish red deer populations. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1254-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Tarasyan KK, Sorokin PA, Kashinina NV, Kholodova MV. High Allelic Diversity of the DRB3 Gene (MHC Class II) in Saiga (Saiga tatarica) L., 1766), Obtained by Next Generation Sequencing Method. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Molecular polymorphism of MHC-DRB gene and genetic diversity analysis of captive forest musk deer (Moschus berezovskii). BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Lack of Spatial Immunogenetic Structure among Wolverine (Gulo gulo) Populations Suggestive of Broad Scale Balancing Selection. PLoS One 2015; 10:e0140170. [PMID: 26448462 PMCID: PMC4598017 DOI: 10.1371/journal.pone.0140170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Elucidating the adaptive genetic potential of wildlife populations to environmental selective pressures is fundamental for species conservation. Genes of the major histocompatibility complex (MHC) are highly polymorphic, and play a key role in the adaptive immune response against pathogens. MHC polymorphism has been linked to balancing selection or heterogeneous selection promoting local adaptation. However, spatial patterns of MHC polymorphism are also influenced by gene flow and drift. Wolverines are highly vagile, inhabiting varied ecoregions that include boreal forest, taiga, tundra, and high alpine ecosystems. Here, we investigated the immunogenetic variation of wolverines in Canada as a surrogate for identifying local adaptation by contrasting the genetic structure at MHC relative to the structure at 11 neutral microsatellites to account for gene flow and drift. Evidence of historical positive selection was detected at MHC using maximum likelihood codon-based methods. Bayesian and multivariate cluster analyses revealed weaker population genetic differentiation at MHC relative to the increasing microsatellite genetic structure towards the eastern wolverine distribution. Mantel correlations of MHC against geographical distances showed no pattern of isolation by distance (IBD: r = -0.03, p = 0.9), whereas for microsatellites we found a relatively strong and significant IBD (r = 0.54, p = 0.01). Moreover, we found a significant correlation between microsatellite allelic richness and the mean number of MHC alleles, but we did not observe low MHC diversity in small populations. Overall these results suggest that MHC polymorphism has been influenced primarily by balancing selection and to a lesser extent by neutral processes such as genetic drift, with no clear evidence for local adaptation. This study contributes to our understanding of how vulnerable populations of wolverines may respond to selective pressures across their range.
Collapse
|
8
|
Yao G, Zhu Y, Wan QH, Fang SG. Major histocompatibility complex class II genetic variation in forest musk deer (Moschus berezovskii) in China. Anim Genet 2015; 46:535-43. [PMID: 26370614 DOI: 10.1111/age.12336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2015] [Indexed: 01/18/2023]
Abstract
The major histocompatibility complex (MHC) plays an important role in the immune system of vertebrates. We used the second exon of four MHC class II genes (DRA, DQA1, DQA2 and DRB3) to assess the overall MHC variation in forest musk deer (Moschus berezovskii). We also compared the MHC variation in captive and wild populations. We observed 22 alleles at four loci (four at DRA, four at DQA1, four at DQA2 and 10 at DRB3), 15 of which were newly identified alleles. Results suggest that forest musk deer maintain relatively high MHC variation, which may result from balancing selection. Moreover, considerable diversity was observed at the DRA locus. We found a high frequency of Mobe-DRA*02, Mobe-DQA1*01 and Mobe-DQA2*05 alleles, which may be important for pathogen resistance. A Ewens-Watterson test showed that the DRB3 locus in the wild population had experienced recent balancing selection. We detected a small divergence at the DRA locus, suggesting the effect of weak positive selection on the DRA gene. Alternatively, this locus may be young and not yet adapted a wide spectrum of alleles for pathogen resistance. The significant heterozygosity deficit observed at the DQA1 and DRB3 loci in the captive population and at all four loci in the wild population may be the result of a population bottleneck. Additionally, MHC genetic diversity was higher in the wild population than in the captive, suggesting that the wild population may have the ability to respond to a wider range of pathogens.
Collapse
Affiliation(s)
- Gang Yao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiu-Hong Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Guo Fang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Dehkordi HS, Zamani P. New mutations in DQA2 exon 2 and their associations with some production traits and serum parameters of sheep. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Taylor SS, Jenkins DA, Arcese P. Loss of MHC and neutral variation in Peary caribou: genetic drift is not mitigated by balancing selection or exacerbated by MHC allele distributions. PLoS One 2012; 7:e36748. [PMID: 22655029 PMCID: PMC3360046 DOI: 10.1371/journal.pone.0036748] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/09/2012] [Indexed: 11/18/2022] Open
Abstract
Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks.
Collapse
Affiliation(s)
- Sabrina S Taylor
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, Louisiana, United States of America.
| | | | | |
Collapse
|
11
|
Shafer ABA, Fan CW, Cote SD, Coltman DW. (Lack of) Genetic Diversity in Immune Genes Predates Glacial Isolation in the North American Mountain Goat (Oreamnos americanus). J Hered 2012; 103:371-9. [DOI: 10.1093/jhered/esr138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
12
|
Hou Q, Huang J, Ju Z, Li Q, Li L, Wang C, Sun T, Wang L, Hou M, Hang S, Zhong J. Identification of splice variants, targeted microRNAs and functional single nucleotide polymorphisms of the BOLA-DQA2 gene in dairy cattle. DNA Cell Biol 2011; 31:739-44. [PMID: 22084936 DOI: 10.1089/dna.2011.1402] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Major histocompatibility complex, class II, DQ alpha 2, also named BOLA-DQA2, belongs to the Bovine Leukocyte Antigen (BOLA) class II genes which are involved in the immune response. To explore the variability of the BOLA-DQA2 gene and resistance to mastitis in cows, the splice variants (SV), targeted microRNAs (miRNAs), and single nucleotide polymorphisms (SNPs) were identified in this study. A new SV (BOLA-DQA2-SV1) lacking part of exon 3 (195 bp) and two 3'-untranslated regions (UTR) (52 bp+167 bp) of the BOLA-DQA2 gene was found in the healthy and mastitis-infected mammary gland tissues. Four of 13 new SNPs and multiple nucleotide polymorphisms resulted in amino acid changes in the protein and SNP (c. +1283 C>T) may affect the binding to the seed sequence of bta-miR-2318. Further, we detected the relative expressions of two BOLA-DQA2 transcripts and five candidated microRNAs binding to the 3'-UTR of two transcripts in the mammary gland tissues in dairy cattle by using the quantitative real-time polymerase chain reaction. The result showed that expression of the BOLA-DQA2-SV1 mRNA was significantly upregulated 2.67-fold (p<0.05) in mastitis-infected mammary tissues (n = 5) compared with the healthy mammary gland mammary tissues (n = 5). Except for bta-miR-1777a, miRNA expression (bta-miR-296, miR-2430, and miR-671) was upregulated 1.75 to 2.59-fold (p<0.05), whereas miR-2318 was downregulated in the mastitis cows. Our findings reveal that BOLA-DQA2-SV1 may play an important role in the mastitis resistance in dairy cattle. Whether the SNPs affect the structure of the BOLA-DQA2 gene or association with mastitis resistance is unknown and warrants further investigation.
Collapse
Affiliation(s)
- Qinlei Hou
- Laboratory of Molecular Genetics and Breeding, Center of Dairy Cattle Research, Shandong Academy of Agricultural Sciences, Jinan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Strand TM, Höglund J. Genotyping of black grouse MHC class II B using reference Strand-Mediated Conformational Analysis (RSCA). BMC Res Notes 2011; 4:183. [PMID: 21672220 PMCID: PMC3141517 DOI: 10.1186/1756-0500-4-183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) is a cluster of genes involved in the vertebrate immune system and includes loci with an extraordinary number of alleles. Due to the complex evolution of MHC genes, alleles from different loci within the same MHC class can be very similar and therefore difficult to assign to separate loci. Consequently, single locus amplification of MHC genes is hard to carry out in species with recently duplicated genes in the same MHC class, and multiple MHC loci have to be genotyped simultaneously. Since amplified alleles have the same length, accurate genotyping is difficult. Reference Strand-Mediated Conformational Analysis (RSCA), which is increasingly used in studies of natural populations with multiple MHC genes, is a genotyping method capable to provide high resolution and accuracy in such cases. FINDINGS We adapted the RSCA method to genotype multiple MHC class II B (BLB) genes in black grouse (Tetrao tetrix), a non-model galliform bird species, using a 96-Capillary Array Electrophoresis, the MegaBACE™ 1000 DNA Analysing System (GE Healthcare). In this study we used fluorescently labelled reference strands from both black grouse and hazel grouse and observed good agreement between RSCA and cloning/sequencing since 71 alleles were observed by cloning/sequencing and 76 alleles by RSCA among the 24 individuals included in the comparison. At the individual level however, there was a trend towards more alleles scored with RSCA (1-6 per individual) than cloning/sequencing (1-4 per individual). In 63% of the pair-wise comparison, the identical allele was scored in RSCA as in cloning/sequencing. Nine out of 24 individuals had the same number of alleles in RSCA as in cloning/sequencing. Our RSCA protocol allows a faster RSCA genotyping than presented in many other RSCA studies. CONCLUSIONS In this study, we have developed the RSCA typing method further to work on a 96-Capillary Array Electrophoresis (MegaBACE™ 1000). Our RSCA protocol can be applied to fast and reliable screening of MHC class II B diversity of black grouse populations. This will facilitate future large-scale population studies of black grouse and other galliformes species with multiple inseparable MHC loci.
Collapse
Affiliation(s)
- Tanja M Strand
- Population Biology and Conservation Biology, Dept. of Ecology & Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Jacob Höglund
- Population Biology and Conservation Biology, Dept. of Ecology & Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|