1
|
Cun Y, Shi L, Kulski JK, Liu S, Yang J, Tao Y, Zhang X, Shi L, Yao Y. Haplotypic Associations and Differentiation of MHC Class II Polymorphic Alu Insertions at Five Loci With HLA-DRB1 Alleles in 12 Minority Ethnic Populations in China. Front Genet 2021; 12:636236. [PMID: 34305999 PMCID: PMC8292818 DOI: 10.3389/fgene.2021.636236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/08/2021] [Indexed: 01/11/2023] Open
Abstract
The analysis of polymorphic variations in the human major histocompatibility complex (MHC) class II genomic region on the short-arm of chromosome 6 is a scientific enquiry to better understand the diversity in population structure and the effects of evolutionary processes such as recombination, mutation, genetic drift, demographic history, and natural selection. In order to investigate associations between the polymorphisms of HLA-DRB1 gene and recent Alu insertions (POALINs) in the HLA class II region, we genotyped HLA-DRB1 and five Alu loci (AluDPB2, AluDQA2, AluDQA1, AluDRB1, AluORF10), and determined their allele frequencies and haplotypic associations in 12 minority ethnic populations in China. There were 42 different HLA-DRB1 alleles for ethnic Chinese ranging from 12 alleles in the Jinuo to 28 in the Yugur with only DRB1∗08:03, DRB1∗09:01, DRB1∗12:02, DRB1∗14:01, DRB1∗15:01, and DRB1∗15:02 present in all ethnic groups. The POALINs varied in frequency between 0.279 and 0.514 for AluDPB2, 0 and 0.127 for AluDQA2, 0.777 and 0.995 for AluDQA1, 0.1 and 0.455 for AluDRB1 and 0.084 and 0.368 for AluORF10. By comparing the data of the five-loci POALIN in 13 Chinese ethnic populations (including Han-Yunnan published data) against Japanese and Caucasian published data, marked differences were observed between the populations at the allelic or haplotypic levels. Five POALIN loci were in significant linkage disequilibrium with HLA-DRB1 in different populations and AluDQA1 had the highest percentage association with most of the HLA-DRB1 alleles, whereas the nearby AluDRB1 indel was strongly haplotypic for only DRB1∗01, DRB1∗10, DRB1∗15 and DRB1∗16. There were 30 five-locus POALIN haplotypes inferred in all populations with H5 (no Alu insertions except for AluDQA1) and H21 (only AluDPB2 and AluDQA1 insertions) as the two predominant haplotypes. Neighbor joining trees and principal component analyses of the Alu and HLA-DRB1 polymorphisms showed that genetic diversity of these genomic markers is associated strongly with the population characteristics of language family, migration and sociality. This comparative study of HLA-DRB1 alleles and multilocus, lineage POALIN frequencies of Chinese ethnic populations confirmed that POALINs whether investigated alone or together with the HLA class II alleles are informative genetic and evolutionary markers for the identification of allele and haplotype lineages and genetic variations within the same and/or different populations.
Collapse
Affiliation(s)
- Yina Cun
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Lei Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jerzy K Kulski
- Faculty of Health and Medical Sciences, University of Western Australia Medical School, Crawley, WA, Australia
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jia Yang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yufen Tao
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xinwen Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Li Shi
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
2
|
Abeid SN, Motrane M, Farhane H, Harich N. Alu elements within the human major histocompatibility class I region in the Comoros Islands: genetic variation and population relationships. Ann Hum Biol 2019; 46:169-174. [PMID: 31116034 DOI: 10.1080/03014460.2019.1620854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Background: Alu elements are attractive markers for population genetics, disease, forensics and paternity analyses, due to their particular characteristics. Five polymorphic Alu insertions within the MHC class I region have been little examined in human populations. Aim: The analysis of the genetic diversity of autochthonous Comorians from the three major islands of the archipelago by these polymorphic MHC Alus and to assess their relationships together and with other populations. Subjects and methods: Two hundred and fifty-seven unrelated participants from the Comoros archipelago, Grande Comore (86), Anjouan (93) and Moheli (78), were examined for five MHC Alu insertions. The data were analysed for intra- and inter-population genetic variation. Results: All MHC Alu were polymorphic in the three samples and only one significant differentiation was observed between Anjouan and Moheli. According to the MDS and AMOVA results, the populations included in the inter-population analyses were grouped in three major clusters according to their genetic ancestry. The haplotype diversity showed by the Comorians is higher than in previously studied African populations and occupies an intermediate position between African and Asian clusters. Conclusion: MHC Alu insertions are useful markers to study micro-geographical genetic variations. Using these polymorphisms, new insights have been obtained about the biological history and evolution of the Comoros.
Collapse
Affiliation(s)
- Said Nassor Abeid
- a Equipe des Sciences Anthropogénétiques et Biotechnologies, Département de Biologie , Faculté des Sciences, Université Chouaïb Doukkali , El Jadida , Morocco
| | - Majida Motrane
- a Equipe des Sciences Anthropogénétiques et Biotechnologies, Département de Biologie , Faculté des Sciences, Université Chouaïb Doukkali , El Jadida , Morocco
| | - Hamid Farhane
- a Equipe des Sciences Anthropogénétiques et Biotechnologies, Département de Biologie , Faculté des Sciences, Université Chouaïb Doukkali , El Jadida , Morocco
| | - Nourdin Harich
- a Equipe des Sciences Anthropogénétiques et Biotechnologies, Département de Biologie , Faculté des Sciences, Université Chouaïb Doukkali , El Jadida , Morocco
| |
Collapse
|
3
|
Kulski JK, Mawart A, Marie K, Tay GK, AlSafar HS. MHC class I polymorphic Alu insertion (POALIN) allele and haplotype frequencies in the Arabs of the United Arab Emirates and other world populations. Int J Immunogenet 2019; 46:247-262. [PMID: 31021060 DOI: 10.1111/iji.12426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 01/02/2023]
Abstract
Polymorphic Alu insertions (POALINs) are found throughout the human genome and have been used in various studies to infer geographic origin of human populations. The main aim of this study was to determine the allele and haplotype frequencies of five POALINs, AluHF, AluHG, AluHJ, AluTF and AluMICB, within the major histocompatibility complex (MHC) class I region of 95 UAE Arabs, and correlate their frequencies to those of the HLA-A, HLA-C and HLA-B class I allele lineages. Evolutionary relationships between the POALINs of the Arabs and those previously studied in populations of African, Asian and European descent were compared. At each of the five Alu loci (AluHF, AluHG, AluHJ, AluTF and AluMICB), Alu insertion was designated as Alu(locus)*02 and absence was Alu(locus)*01. The AluHG insertion (AluHG*02) had the highest frequency (0.332), followed by AluHF*02 (0.300), AluHJ*02 (0.263), AluMICB*02 (0.111) and AluTF*02 (0.058). Of the 270 Alu-HLA haplotypes pairs in the UAE Arabs, 110 had no Alu insertion, and 54 had an Alu insertion at >50% per haplotype. An Alu insertion >75% per haplotype was found between AluMICB*02 and HLA-B*14, HLA-B*22, HLA-B*44, HLA-B*55, HLA-B*57 and HLA-B*73, and with HLA-C*01 and HLA-C*18; AluHJ*02 with HLA-A*01, HLA-A*19, HLA-A*24 and HLA-A*32; AluHG*02 with HLA-A*02 and HLA-B*18; and AluHF*02 with HLA-A*10. The genotyped allele and haplotype frequencies of the MHC POALINs in UAE Arabs were compared with the results of 30 previously published Asian, European, American and African populations. Phylogenetic and multidimensional scaling (MDS) analysis of the relative MHC POALINs allele and haplotype frequencies revealed that the UAE Arabs have a similar lineage to Caucasians and the most distant genetic relationship to the Waorani native American population of Ecuador. The structure of both the phylogenetic tree and the MDS analysis supports the Out of Africa theory of human evolution. The nature of the clusters suggests the Arabian Middle East represents a crossroads from which human populations migrated towards Asia in the east and Europe to the north-west.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Aurelie Mawart
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kirsten Marie
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Guan K Tay
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Western Australia, Australia.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba S AlSafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Singh G, Sandhu HS, Sharma R, Srinivas Y, Matharoo K, Singh M, Bhanwer AJS. Genetic variation and population structure of five ethnic groups from Punjab, North-West India: Analysis of MHC class I polymorphic Alu insertions (POALINs). Gene 2019; 701:173-178. [PMID: 30935920 DOI: 10.1016/j.gene.2019.03.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 01/31/2023]
Abstract
Genetic variation and differentiation of five ethnic groups from Punjab, North-West India was characterized by analyzing data on polymorphic Alu insertions (POALINs) within the class I genomic region of major histocompatibility complex (MHC), which is completely non-existent in Indian population. The haplotype frequency, distribution and heterozygosity among these groups and their potential implications in molecular anthropology and evolutionary studies were also determined. A total of 479 unrelated healthy individuals representing five different ethnic groups: Banias, Brahmins, Khatri, Jat Sikhs and Scheduled Castes were genotyped for five MHC Alu elements (AluHG, AluMICB, AluHJ, AluTF and AluHF) using polymerase chain reaction (PCR). All the loci were found to be polymorphic among the studied populations. No significant deviation from Hardy-Weinberg equilibrium was observed, except for the AluHJ locus in Brahmins. The POALINs varied in allele frequency between 0.0260 and 0.4427. The average heterozygosity among the studied groups ranged from 0.1937 in Banias to 0.2666 in Jat Sikhs. The genetic differentiation among the studied groups was observed to be of the order of 0.01302. Single POALIN haplotypes were found to be more frequent than multiple POALIN haplotypes. The results of inter-population differentiations, haplotype frequencies, genetic distances, multidimensional scaling, phylogenetic and structure analyses indicated close genetic relationships between the five ethnic groups of Punjab, North-West India. Analyses of polymorphic Alu loci of MHC genomic region may represent reliable information about the ancestry, demographic history and geographic origins of the various human populations, facilitating better understanding of the evolutionary, forensic and epidemiological prospective.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Anthropology, Panjab University, Chandigarh 160014, India; Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Harkirat Singh Sandhu
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 1470 Madison Avenue, New York, NY 10029, USA
| | - Rubina Sharma
- Department of Surgery-Transplant, Regenerative Medicine, DRC-II, University of Nebraska Medical Center, Omaha, NE 68198-5965, USA
| | | | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manroop Singh
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - A J S Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
5
|
Kulski JK, Shigenari A, Inoko H. Variation and linkage disequilibrium between a structurally polymorphic Alu located near the OR12D2 gene of the extended major histocompatibility complex class I region and HLA-A alleles. Int J Immunogenet 2014; 41:250-61. [PMID: 24305111 DOI: 10.1111/iji.12102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/28/2013] [Accepted: 10/31/2013] [Indexed: 02/02/2023]
Abstract
We investigated the genetic structure and population frequency of an Alu repeat dimorphism (absence or presence) located near the OR12D2 gene within the olfactory receptor gene region telomeric of the alpha HLA class I region (HLA-J, -A, -G, -F). The structurally polymorphic Alu insertion (POALIN) locus rs33972478 that we designated as AluOR and its allele and haplotype frequencies and association with HLA-A and six other structurally polymorphic retroelements (3 Alu, 2 SVA and an HERVK9) were determined in 100 Japanese, 174 Caucasians and 100 African American DNA samples. The AluOR insertion varied in population frequency between 14.4% and 31.5% with significant differences between the Japanese and Caucasians, but not between the Caucasian and African Americans. Although AluOR is located 600 kb from the HLA-A gene, there was a significant linkage disequilibrium between the two loci and a high percentage association of the AluOR insertion with HLA-A29 (79%) in Caucasians and HLA-A31 (69.4%) in Japanese. Inferred haplotypes among three-locus to eight-locus haplotype structures showed maximum differences between the populations with the eight-locus haplotypes. The most frequent multilocus haplotype shared between the populations was the HLA-A2 allele in combination with the AluHG insertion. The AluOR whether investigated alone or together with the HLA class I alleles and other dimorphic retroelements is an informative ancestral marker for the identification of lineages and variations within the same and/or different populations and for examining the linkage and crossing-over between the HLA and OR genomic regions in the extended MHC.
Collapse
Affiliation(s)
- J K Kulski
- Centre for Forensic Science, The University of Western Australia, Western Australia, Australia; Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Shimokasuya, Isehara, Kanagawa, Japan
| | | | | |
Collapse
|
6
|
Gómez-Pérez L, Alfonso-Sánchez MA, Dipierri JE, Sánchez D, Espinosa I, De Pancorbo MM, Peña JA. Young Alu insertions within the MHC class I region in native American populations: insights into the origin of the MHC-Alu repeats. Am J Hum Biol 2013; 25:359-65. [PMID: 23564323 DOI: 10.1002/ajhb.22377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/17/2012] [Accepted: 01/07/2013] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Genetic heterogeneity of two Amerindian populations (Jujuy province, Argentina, and Waorani tribe, Ecuador) was characterized by analyzing data on polymorphic Alu insertions within the human major histocompatibility complex (MHC) class I region (6p21.31), which are completely nonexistent in Native Americans. We further evaluated the haplotype distribution and genetic diversity among continental ancestry groups and their potential implications for the dating of the origin of MHC-Alus. METHODS Five MHC-Alu elements (AluMicB, AluTF, AluHJ, AluHG, and AluHF) were typed in samples from Jujuy (N = 108) and Waorani (N = 36). Allele and haplotype frequency data on worldwide populations were compiled to explore spatial structuring of the MHC-Alu diversity through AMOVA tests. We utilized the median-joining network approach to illustrate the continental distribution of the MHC-Alu haplotypes and their phylogenetic relationships. RESULTS Allele and haplotype distributions differed significantly between Jujuy and Waorani. The Waorani featured a low average heterozygosity attributable to strong population isolation. Overall, Alu markers showed great genetic heterogeneity both within and among populations. The haplotype distribution was distinctive of each continental ancestry group. Contrary to expectations, Africans showed the lowest MHC-Alu diversity. CONCLUSIONS Genetic drift mainly associated to population bottlenecks seems to be reflected in the low MHC-Alu diversity of the Amerindians, mainly in Waorani. Geographical structuring of the haplotype distribution supports the efficiency of the MHC-Alu loci as lineage (ancestry) markers. The markedly low Alu diversity of African populations relative to other continental clusters suggests that these MHC-Alus might have arisen after the anatomically modern humans expanded out of Africa.
Collapse
Affiliation(s)
- Luis Gómez-Pérez
- Departamento de Genética y Antropología Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
García-Obregón S, Alfonso-Sánchez MA, Pérez-Miranda AM, Gómez-Pérez L, de Parcorbo MM, Peña JA. Ancestry markers from the human chromosome 6: Alu repeats from the MHC in autochthonous Basques. Hum Immunol 2012; 73:720-5. [PMID: 22537750 DOI: 10.1016/j.humimm.2012.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/27/2012] [Accepted: 04/16/2012] [Indexed: 11/30/2022]
Abstract
Polymorphic Alu insertions from the MHC class I region were analyzed in 215 autochthonous Basques from Guipuzcoa and Navarre provinces, with the aim of contributing new MHC Alu data in European ancestry populations. We also seek to assess both the genetic position of native Basques among worldwide samples and the efficiency of the MHC Alu elements as ancestry informative markers (AIMs). According to the MDS and AMOVA results, worldwide populations included in the comparative analyses were grouped in three major clusters defined by genetic ancestry (Africans, Asians and Europeans). The δ values (differences in weighted allele frequencies) among ancestry groups indicated that Alu elements within the alpha-block (AluHF, AluHJ and AluHG) showed an adequate resolving power to discriminate appropriately between some of the major ancestry groups. Alpha block Alu were also revealing of the exceptionality of Basques, as they allowed for the detection of genetic heterogeneity even between Basques and the other Iberian collection considered in the analysis (Valencia). Thus, analysis of the Alu loci within the alpha-block may represent a reliable, informative and cost-effective method to explore the ancestry, geographic origins and demographic history of human populations, which can be very helpful for studies into epidemiological, forensic or evolutionary perspectives.
Collapse
Affiliation(s)
- Susana García-Obregón
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco, EHU, Bilbao, Spain
| | | | | | | | | | | |
Collapse
|