1
|
Yuan W, Luo Q, Wu N. Investigating the shared genetic basis of inflammatory bowel disease and systemic lupus erythematosus using genetic overlap analysis. BMC Genomics 2024; 25:868. [PMID: 39285290 PMCID: PMC11406968 DOI: 10.1186/s12864-024-10787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) and systemic lupus erythematosus (SLE) are autoimmune diseases that often coexist clinically. This phenomenon might be due to shared genetic components. METHODS Genome-wide association study (GWAS) data for IBD and SLE were analyzed to determine both global and local genetic correlations using three methodologies: linkage disequilibrium score regression (LDSC), genetic covariance analyzer (GNOVA), and SUPERGNOVA. The genetic overlap and risk loci were subsequently examined using the conditional/conjunctional false discovery rate (cond/conjFDR) statistical framework. Furthermore, a multi-trait analysis of MTAG was employed to validate the loci, followed by an LDSC analysis focusing on tissue-specific gene expression. RESULTS GWAS findings demonstrated a marked global genetic correlation between IBD (including Crohn's disease and ulcerative colitis) and SLE. Locally, SLE showed a strong association with IBD and Crohn's disease on chromosomes 10, 19, and 22. ConjFDR analysis confirmed the genetic overlap and identified relevant genetic risk loci. MTAG further validated several shared susceptibility genes. Additionally, the LDSC-SEG analysis results indicate that IBD (including CD and UC) and SLE are jointly enriched in the tissues of Spleen and Whole Blood. CONCLUSION This study confirms a genetic overlap between IBD and SLE, identifying marked comorbid genes and offering new insights for treating these diseases.
Collapse
Affiliation(s)
- Weichao Yuan
- Department of Anorectal Surgery, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Qinghua Luo
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Na Wu
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang, China.
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China.
| |
Collapse
|
2
|
Shah RJ, Banerjee S, Raychaudhuri S, Raychaudhuri SP. JAK-STAT inhibitors in Immune mediated diseases: An Overview. Indian J Dermatol Venereol Leprol 2023; 89:691-699. [PMID: 37609730 DOI: 10.25259/ijdvl_1152_2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/28/2023] [Indexed: 08/24/2023]
Abstract
For any biological response, transmission of extracellular signals to the nucleus is required for DNA transcription and gene expression. In that respect, cytokines/chemokines are well-known inflammatory agents which play a critical role in signalling pathways by activating the Janus kinase-signal transducers and activators of transcription (JAK-STAT) signalling proteins (Janus kinase-signal transducers and activators of transcription) which are a group of intracellular kinase molecules. Cytokines are a category of small proteins (∼5-25 kDa) that play a major role in cell signalling and are major drivers of an autoimmune response. Here we will discuss the role of Janus kinase-signal transducers and activators of transcription kinase cascades in the inflammatory-proliferative cascades of autoimmune disease and about the recent progress in the development of oral synthetic Janus kinase inhibitors (JAKi) and their therapeutic efficacies in dermatologic and systemic autoimmune diseases. Therapeutic efficacy of Janus kinase inhibitors is now well established in the treatment of array of autoimmune and inflammatory disease: spondylarthritis with a special focus on psoriatic arthritis (PsA) and its dermatologic manifestations (psoriasis) and ankylosing spondylitis (AS), atopic dermatitis (AD), alopecia areata (AA), rheumatoid arthritis (RA) and inflammatory bowel disease (IBD). In addition to the first-generation Janus kinase inhibitors several new-generation Janus kinase inhibitors are currently being evaluated. It is expected that these Janus kinase inhibitors likely have higher potency and less adverse effects as compared to their predecessors. Here we have discussed: (1) the functional significance of the Janus kinase-signal transducers and activators of transcription kinase cascades in the inflammatory-proliferative processes of autoimmune diseases and its cellular/molecular mechanisms and (2) progress in the development of oral synthetic Janus kinase inhibitors and their therapeutic efficacies in several systemic and cutaneous autoimmune diseases.
Collapse
Affiliation(s)
- Ruchi Jayesh Shah
- Department of Medicine, School of Medicine, University of California Davis, USA
| | - Sneha Banerjee
- Department of Veterans Affairs, VA Sacramento Medical Center, Northern California Health Care, California, CA, USA
| | - Smriti Raychaudhuri
- Department of Veterans Affairs, VA Sacramento Medical Center, Northern California Health Care, California, CA, USA
| | - Siba P Raychaudhuri
- Department of Medicine, School of Medicine, University of California Davis, USA
| |
Collapse
|
3
|
Sauer M, Scheffel J, Frischbutter S, Mahnke N, Maurer M, Burmeister T, Krause K, Metz M. STAT3 gain-of-function is not responsible for low total IgE levels in patients with autoimmune chronic spontaneous urticaria. Front Immunol 2022; 13:902652. [PMID: 35928809 PMCID: PMC9345496 DOI: 10.3389/fimmu.2022.902652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe pathogenesis of chronic spontaneous urticaria (CSU) has not been clarified entirely. Type IIb autoimmune chronic spontaneous urticaria (CSUaiTIIb) is a distinct subtype of CSU that is often difficult to treat and is connected to low levels of total IgE. Previous findings indicate that an enhanced signal transducer and activator of transcription 3 (STAT3) may be responsible for reduced IgE serum levels.ObjectiveOur aim was to investigate a possible underlying gain-of-function mutation or activating polymorphism in STAT3 that could be responsible for the low levels of IgE in patients with CSUaiTIIb.MethodsWe included 10 patients with CSUaiTIIb and low levels of IgE and sequenced selected single nucleotide polymorphisms (SNP) in STAT3 associated with common autoimmune diseases. Exon sequencing was performed for the most relevant exons of STAT3. To test for a gain-of-function of STAT3, we performed a phospho-specific flow cytometry analysis of STAT3 in peripheral blood mononuclear cells before and after stimulation with interleukin-6.ResultsNo differences were found in the prevalence of the tested SNPs between our patients and a control population. Moreover, we could not find any mutations or variants on the tested exons of STAT3. The function of STAT3 was also not altered in our patients.ConclusionIn total, we could not find any evidence for our hypothesis that low IgE in patients with CSUaiTIIb is linked to mutations in STAT3 or altered activity of STAT3. Thus, it remains to be discovered what causes the low serum levels of IgE in patients with CSUaiTIIb.
Collapse
Affiliation(s)
- Merle Sauer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Stefan Frischbutter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Niklas Mahnke
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Thomas Burmeister
- Department of Hematology, Oncology and Tumor Immunology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karoline Krause
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
- *Correspondence: Martin Metz,
| |
Collapse
|
4
|
Zhou J, Yang Y, Wang YL, Zhao Y, Ye WJ, Deng SY, Lang JY, Lu S. Enhancer of zeste homolog 2 contributes to apoptosis by inactivating janus kinase 2/ signal transducer and activator of transcription signaling in inflammatory bowel disease. World J Gastroenterol 2021; 27:3073-3084. [PMID: 34168409 PMCID: PMC8192283 DOI: 10.3748/wjg.v27.i22.3073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/09/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a prevalent worldwide health problem featured by relapsing, chronic gastrointestinal inflammation. Enhancer of zeste homolog 2 (EZH2) is a critical epigenetic regulator in different pathological models, such as cancer and inflammation. However, the role of EZH2 in the IBD development is still obscure.
AIM To explore the effect of EZH2 on IBD progression and the underlying mechanism.
METHODS The IBD mouse model was conducted by adding dextran sodium sulfate (DSS), and the effect of EZH2 on DSS-induced colitis was assessed in the model. The function of EZH2 in regulating apoptosis and permeability was evaluated by Annexin V-FITC Apoptosis Detection Kit, transepithelial electrical resistance analysis, and Western blot analysis of related markers, including Zona occludens 1, claudin-5, and occludin, in NCM460 and fetal human colon (FHC) cells. The mechanical investigation was performed by quantitative reverse transcription-polymerase chain reaction, Western blot analysis, and chromatin immunoprecipitation assays.
RESULTS The colon length was inhibited in the DSS-treated mice and was enhanced by the EZH2 depletion in the system. DSS treatment caused a decreased histological score in the mice, which was reversed by EZH2 depletion. The inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6, and interleukin-1β, were induced in the DSS-treated mice, in which the depletion of EZH2 could reverse this effect. Moreover, the tumor necrosis factor-α treatment induced the apoptosis of NCM460 and FHC cells, in which EZH2 depletion could reverse this effect in the cells. Moreover, the depletion of EZH2 attenuated permeability of colonic epithelial cells. Mechanically, the depletion of EZH2 or EZH2 inhibitor GSK343 was able to enhance the expression and the phosphorylation of janus kinase 2 (JK2) and signal transducer and activator of transcription in the NCM460 and FHC cells. Specifically, EZH2 inactivated JAK2 expression by regulating histone H3K27me3. JAK2 inhibitor TG101348 was able to reverse EZH2 knockdown-mediated colonic epithelial cell permeability and apoptosis.
CONCLUSION Thus, we concluded that EZH2 contributed to apoptosis and inflammatory response by inactivating JAK2/ signal transducer and activator of transcription signaling in IBD. EZH2 may be applied as a potential target for IBD therapy.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
| | - Yang Yang
- Department of Oncology, The Third People's Hospital of Chengdu, Chengdu 255415, Sichuan Province, China
| | - Yi-Ling Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
| | - Yue Zhao
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
| | - Wen-Jing Ye
- Department of School of Medicine, University of Electronic Science and Technology of China, Chengdu 397992, Sichuan Province, China
| | - Si-Yao Deng
- Department of School of Medicine, University of Electronic Science and Technology of China, Chengdu 397992, Sichuan Province, China
| | - Jin-Yi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
- Department of Radiological Protection, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 229717, Sichuan Province, China
| | - Shun Lu
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
- Department of Radiological Protection, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 229717, Sichuan Province, China
| |
Collapse
|
5
|
Aleknonytė-Resch M, Freitag-Wolf S, Schreiber S, Krawczak M, Dempfle A. Case-only analysis of gene-gene interactions in inflammatory bowel disease. Scand J Gastroenterol 2020; 55:897-906. [PMID: 32649238 DOI: 10.1080/00365521.2020.1790646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gene-gene interactions (G × G) potentially play a role in the etiology of complex human diseases, including inflammatory bowel disease (IBD), and may partially explain their 'missing heritability'. METHODS Using the largest genotype dataset available for IBD (16,636 Crohn's disease (CD) and 12,888 ulcerative colitis (UC) cases) we analyzed G × G with the powerful case-only (CO) design. We studied 169 single nucleotide polymorphisms (SNPs) for CD (156 for UC), previously shown to be associated with the respective diseases. To ensure the validity of the CO design, we confined our analysis to pairs of unlinked SNPs. We used principal component analysis at the center level to adjust for possible causes of genotypic association other than G × G, such as population stratification and genotyping batch effects. Results from center-wise logistic regression analyses were combined by a random effects meta-analysis. RESULTS A number of nominally significant (p < .05) G × G interactions were observed, but none of these withstood the Bonferroni multiple testing correction. However, one SNP pair, comprising rs26528 in the IL27 gene and rs9297145 in the KPNA7 gene region was characterized by an interaction odds ratio of 1.18 (95% CI: 1.10-1.27) for CD and a p-value of 7.75 × 10-6. Owing to the concurrent role of the IL27 and KPNA7 genes in NF-κB signaling, a master regulator of pro- and anti-inflammatory processes in IBD, the observed interaction also has biological plausibility. CONCLUSIONS We were able to exemplify the utility of the CO design for analyzing G × G, but had to recognize that such interactions are probably scarce for IBD.
Collapse
Affiliation(s)
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | | | - Stefan Schreiber
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| |
Collapse
|
6
|
Bakhtiarizadeh MR, Mirzaei S, Norouzi M, Sheybani N, Vafaei Sadi MS. Identification of Gene Modules and Hub Genes Involved in Mastitis Development Using a Systems Biology Approach. Front Genet 2020; 11:722. [PMID: 32754201 PMCID: PMC7371005 DOI: 10.3389/fgene.2020.00722] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Objective Mastitis is defined as the inflammation of the mammary gland, which impact directly on the production performance and welfare of dairy cattle. Since, mastitis is a multifactorial complex disease and the molecular pathways underlying this disorder have not been clearly understood yet, a system biology approach was used in this study to a better understanding of the molecular mechanisms behind mastitis. Methods Publicly available RNA-Seq data containing samples from milk of five infected and five healthy Holstein cows at five time points were retrieved. Gene Co-expression network analysis (WGCNA) approach and functional enrichment analysis were then applied with the aim to find the non-preserved module of genes that their connectivity were altered under infected condition. Hub genes were identified in the non-preserved modules and were subjected to protein-protein interactions (PPI) network construction. Results Among the 25 modules identified, eight modules were non-preserved and were also biologically associated with inflammation, immune response and mastitis development. Interestingly most of the hub genes in the eight modules were also densely connected in the PPI network. Of the hub genes, 250 genes were hubs in both co-expression and PPI networks and most of them were reported to play important roles in immune response or inflammatory pathways. The blue module was highly enriched in inflammatory responses and STAT1 was suggested to play an important role in mastitis development by regulating the immune related genes in this module. Moreover, a set of highly connected genes were identified such as BIRC3, PSMA6, FYN, F11R, NFKBIZ, NFKBIA, GRO1, PHB, CD3E, IL16, GSN, SOCS2, HCK, VAV1 and TLR6, which have been established to be critical for mastitis pathogenesis. Conclusion This study improved the understanding of the mechanisms underlying bovine mastitis and suggested eight non-preserved modules along with several most important genes with promising potential in etiology of mastitis.
Collapse
Affiliation(s)
| | - Shabnam Mirzaei
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Milad Norouzi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | | |
Collapse
|
7
|
Tsuge K, Inazumi T, Shimamoto A, Sugimoto Y. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. Int Immunol 2020; 31:597-606. [PMID: 30926983 DOI: 10.1093/intimm/dxz021] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/18/2019] [Indexed: 01/12/2023] Open
Abstract
Prostaglandins (PGs) are the major lipid mediators in animals and which are biosynthesized from arachidonic acid by the cyclooxygenases (COX-1 or COX-2) as the rate-limiting enzymes. Prostaglandin E2 (PGE2), which is the most abundantly detected PG in various tissues, exerts versatile physiological and pathological actions via four receptor subtypes (EP1-4). Non-steroidal anti-inflammatory drugs, such as aspirin and indomethacin, exert potent anti-inflammatory actions by the inhibition of COX activity and the resulting suppression of PG production. Therefore, PGE2 has been shown to exacerbate several inflammatory responses and immune diseases. Recently, studies using mice deficient in each PG receptor subtype have clarified the detailed mechanisms underlying PGE2-associated inflammation and autoimmune diseases involving each EP receptor. Here, we review the recent advances in our understanding of the roles of PGE2 receptors in the progression of acute and chronic inflammation and autoimmune diseases. PGE2 induces acute inflammation through mast cell activation via the EP3 receptor. PGE2 also induces chronic inflammation and various autoimmune diseases through T helper 1 (Th1)-cell differentiation, Th17-cell proliferation and IL-22 production from Th22 cells via the EP2 and EP4 receptors. The possibility of EP receptor-targeted drug development for the treatment of immune diseases is also discussed.
Collapse
Affiliation(s)
- Kyoshiro Tsuge
- Department of Regenerative Medicine Research, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan
| | - Akira Shimamoto
- Department of Regenerative Medicine Research, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
8
|
Asadzadeh-Aghdaei H, Mashayekhi K, Koushki K, Azimzadeh P, Rostami-Nejad M, Amani D, Chaleshi V, Haftcheshmeh SM, Sahebkar A, Zali MR. V617F-independent upregulation of JAK2 gene expression in patients with inflammatory bowel disease. J Cell Biochem 2019; 120:15746-15755. [PMID: 31069840 DOI: 10.1002/jcb.28844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/12/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is one of the most important immune-mediated disorders of the gastrointestinal tract. Besides, IBD is associated with numerous extraintestinal complications such as venous thromboembolism (VTE), an important risk factor for vascular complications, which results in the increased morbidity and mortality. The JAK2 (Janus kinase 2) V617F mutation is a well-known point mutation which is involved in the pathogenesis of IBD, and VTE. Therefore, the aims of this study were to evaluate expression of JAK2 and association of V617F mutation in JAK2 of Iranian patients with IBD. METHODS Two hundred and forty-six patients with IBD (209 UC and 37 CD) and 206 healthy controls were enrolled in this study. The genomic DNA and total RNA were extracted from peripheral blood mononuclear cells (PBMCs). Then, the JAK2 V617F mutation detection was performed using the restriction fragment length polymorphism (RFLP) method. In addition, the JAK2 mRNA expression was evaluated using a quantitative polymerase chain reaction (q-PCR) using the SYBR Green assay. RESULTS There was no association of V61F mutation in patients with IBD with or without thrombosis compared with healthy control. However, the relative mRNA expression of JAK2 was significantly upregulated in patients with IBD in comparison with healthy control (P < 0.0001). In addition, the JAK2 mRNA expression was significantly decreased in patients with IBD having thrombosis compared with those without thrombosis ( P < 0.0001). CONCLUSIONS Taken together our findings suggested that JAK2 V61F-independent upregulation of JAK2 mRNA expression in patients with IBD. Moreover, despite the absence of JAK2 V617F mutation in patients with IBD, the increased gene expression of JAK2 can be explained by another molecular mechanism such as regulation of gene expression at the transcriptional level which may play crucial roles in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Mashayekhi
- Immuno-Biochemistry Lab, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Koushki
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pedram Azimzadeh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davar Amani
- Immunology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadian Haftcheshmeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Immunology, Nanotechnology Research Center, BuAli Research Institute, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Pike KA, Tremblay ML. Protein Tyrosine Phosphatases: Regulators of CD4 T Cells in Inflammatory Bowel Disease. Front Immunol 2018; 9:2504. [PMID: 30429852 PMCID: PMC6220082 DOI: 10.3389/fimmu.2018.02504] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) play a critical role in co-ordinating the signaling networks that maintain lymphocyte homeostasis and direct lymphocyte activation. By dephosphorylating tyrosine residues, PTPs have been shown to modulate enzyme activity and both mediate and disrupt protein-protein interactions. Through these molecular mechanisms, PTPs ultimately impact lymphocyte responses to environmental cues such as inflammatory cytokines and chemokines, as well as antigenic stimulation. Mouse models of acute and chronic intestinal inflammation have been shown to be exacerbated in the absence of PTPs such as PTPN2 and PTPN22. This increase in disease severity is due in part to hyper-activation of lymphocytes in the absence of PTP activity. In accordance, human PTPs have been linked to intestinal inflammation. Genome wide association studies (GWAS) identified several PTPs within risk loci for inflammatory bowel disease (IBD). Therapeutically targeting PTP substrates and their associated signaling pathways, such as those implicated in CD4+ T cell responses, has demonstrated clinical efficacy. The current review focuses on the role of PTPs in controlling CD4+ T cell activity in the intestinal mucosa and how disruption of PTP activity in CD4+ T cells can contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Inception Sciences Canada, Montréal, QC, Canada
| | - Michel L Tremblay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada.,Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
10
|
The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection. Cell Mol Immunol 2017; 15:216-225. [PMID: 29176747 DOI: 10.1038/cmi.2017.128] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/14/2017] [Accepted: 10/15/2017] [Indexed: 12/19/2022] Open
Abstract
Interleukin-17 (IL-17), IL-21, IL-22 and IL-23 can be grouped as T helper 17 (Th17)-related cytokines because they are either produced by Th17/Th22 cells or involved in their development. Here, we review Th17-related cytokines/Th17-like cells, networks/signals and their roles in immune responses or immunity against Mycobacterium tuberculosis (Mtb) infection. Published studies suggest that Th17-related cytokine pathways may be manipulated by Mtb microorganisms for their survival benefits in primary tuberculosis (TB). In addition, there is evidence that immune responses of the signal transducer and activator of transcription 3 (STAT3) signal pathway and Th17-like T-cell subsets are dysregulated or destroyed in patients with TB. Furthermore, Mtb infection can impact upstream cytokines in the STAT3 pathway of Th17-like responses. Based on these findings, we discuss the need for future studies and the rationale for targeting Th17-related cytokines/signals as a potential adjunctive treatment.
Collapse
|
11
|
Shen H, Gu J, Xiao H, Liang S, Yang E, Yang R, Huang D, Chen C, Wang F, Shen L, Chen ZW. Selective Destruction of Interleukin 23-Induced Expansion of a Major Antigen-Specific γδ T-Cell Subset in Patients With Tuberculosis. J Infect Dis 2017; 215:420-430. [PMID: 27789724 DOI: 10.1093/infdis/jiw511] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 10/14/2016] [Indexed: 01/03/2023] Open
Abstract
A loss of antigen-specific T-cell responses due to defective cytokine signaling during infections has not been reported. We hypothesize that tuberculosis can destroy signaling effects of selective cytokine(s) and induce exhaustion of antigen-specific T cells. To test this hypothesis, mechanistic studies were performed to examine whether and how tuberculosis blocked interleukin 23 (IL-23) and interleukin 2 (IL-2) signaling effects on a major human γδ T-cell subpopulation, phosphoantigen HMBPP-specific Vγ2Vδ2 T cells. IL-23 and IL-2 significantly expanded HMBPP-stimulated Vγ2Vδ2 T cells from subjects with latent tuberculosis infection, and IL-2 synergized the effect of IL-23. IL-23-induced expansion of Vγ2Vδ2 T cells involved STAT3. Surprisingly, patients with tuberculosis exhibited a selective destruction of IL-23-induced expansion of these cells. The tuberculosis-driven destruction of IL-23 signaling coincided with decreases of expression and phosphorylation of STAT3. Interestingly, impairing of STAT3 was linked to marked increases in the microRNAs (miRNAs) hsa-miR-337-3p and hsa-miR-125b-5p in Vγ2Vδ2 T cells from patients with tuberculosis. Downregulation of hsa-miR-337-3p and hsa-miR-125b-5p by miRNA sponges improved IL-23-mediated expansion of Vγ2Vδ2 T cells and restored the ability of these cells to produce anti-tuberculosis cytokines. These results support our hypothesis that tuberculosis can selectively impair a cytokine effect while sparing another and can induce exhaustion of T cells in response to the respective cytokine.
Collapse
Affiliation(s)
- Hongbo Shen
- Unit of Antituberculosis Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Jin Gu
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine
| | - Heping Xiao
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine
| | - Shanshan Liang
- Unit of Antituberculosis Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Enzhuo Yang
- Unit of Antituberculosis Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Rui Yang
- Unit of Antituberculosis Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Dan Huang
- Department of Microbiology and Immunology.,Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago
| | - Crystal Chen
- Department of Microbiology and Immunology.,Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago
| | - Feifei Wang
- Department of Medical Microbiology and Parasitology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Shen
- Department of Microbiology and Immunology.,Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago
| | - Zheng W Chen
- Department of Microbiology and Immunology.,Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago.,Institut Pasteur of Shanghai, China
| |
Collapse
|
12
|
Li Y, Chen P, Sun J, Huang J, Tie H, Li L, Li H, Ren G. Meta-analysis of associations between DLG5 R30Q and P1371Q polymorphisms and susceptibility to inflammatory bowel disease. Sci Rep 2016; 6:33550. [PMID: 27633114 PMCID: PMC5025715 DOI: 10.1038/srep33550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/30/2016] [Indexed: 01/01/2023] Open
Abstract
Growing evidence from recent studies has demonstrated an association between inflammatory bowel disease (IBD) susceptibility and two polymorphisms of DLG5 R30Q (rs1248696) and P1371Q (rs2289310), but the results remain controversial. We conducted a meta-analysis including a total of 22 studies with 10,878 IBD patients and 7917 healthy controls for R30Q and 5277 IBD cases and 4367 controls for P1371Q in order to systematically assess their association with the disease. The results indicated that R30Q was significantly associated with reduced susceptibility to IBD in Europeans by allelic and dominant comparisons, but not in overall population. No significant association was found between R30Q and Crohn's disease (CD) or ulcerative colitis (UC). P1371Q was associated with increased risk of IBD in Europeans and Americans. On the contrary, a decreased risk of IBD was observed in Asian population for P1371Q. In disease subgroup analysis, we found that P1371Q was also significantly associated with CD, but this relationship was not present for UC. In conclusion, our results strongly suggest that the both polymorphisms of DLG5 are correlated with IBD susceptibility in an ethnic-specific manner. Additional well-designed studies with large and diverse cohorts are needed to further strengthen our findings.
Collapse
Affiliation(s)
- Yunhai Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Chen
- Department of Rheumatology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongtao Tie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangliang Li
- Department of Rheumatology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Lochmatter C, Fischer R, Charles PD, Yu Z, Powrie F, Kessler BM. Integrative Phosphoproteomics Links IL-23R Signaling with Metabolic Adaptation in Lymphocytes. Sci Rep 2016; 6:24491. [PMID: 27080861 PMCID: PMC4832251 DOI: 10.1038/srep24491] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/30/2016] [Indexed: 12/15/2022] Open
Abstract
Interleukin (IL)-23 mediated signal transduction represents a major molecular mechanism underlying the pathology of inflammatory bowel disease, Crohn's disease and ulcerative colitis. In addition, emerging evidence supports the role of IL-23-driven Th17 cells in inflammation. Components of the IL-23 signaling pathway, such as IL-23R, JAK2 and STAT3, have been characterized, but elements unique to this network as compared to other interleukins have not been readily explored. In this study, we have undertaken an integrative phosphoproteomics approach to better characterise downstream signaling events. To this end, we performed and compared phosphopeptide and phosphoprotein enrichment methodologies after activation of T lymphocytes by IL-23. We demonstrate the complementary nature of the two phosphoenrichment approaches by maximizing the capture of phosphorylation events. A total of 8202 unique phosphopeptides, and 4317 unique proteins were identified, amongst which STAT3, PKM2, CDK6 and LASP-1 showed induction of specific phosphorylation not readily observed after IL-2 stimulation. Interestingly, quantitative analysis revealed predominant phosphorylation of pre-existing STAT3 nuclear subsets in addition to translocation of phosphorylated STAT3 within 30 min after IL-23 stimulation. After IL-23R activation, a small subset of PKM2 also translocates to the nucleus and may contribute to STAT3 phosphorylation, suggesting multiple cellular responses including metabolic adaptation.
Collapse
Affiliation(s)
- Corinne Lochmatter
- Kennedy Institute, Nuffield Department of Orthopedics Research Medical Science, Roosevelt Drive, Oxford OX3 7LF, UK
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Roman Fischer
- Kennedy Institute, Nuffield Department of Orthopedics Research Medical Science, Roosevelt Drive, Oxford OX3 7LF, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Philip D. Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Zhanru Yu
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Fiona Powrie
- Kennedy Institute, Nuffield Department of Orthopedics Research Medical Science, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Benedikt M. Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| |
Collapse
|
14
|
FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice. Nat Commun 2016; 7:11314. [PMID: 27066907 PMCID: PMC4832079 DOI: 10.1038/ncomms11314] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/11/2016] [Indexed: 02/07/2023] Open
Abstract
FNDC4 is a secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in several mouse models of inflammation as well as in human inflammatory conditions. Specifically, FNDC4 levels are increased locally at inflamed sites of the intestine of inflammatory bowel disease patients. Interestingly, administration of recombinant FNDC4 in the mouse model of induced colitis markedly reduces disease severity compared with mice injected with a control protein. Conversely, mice lacking Fndc4 develop more severe colitis. Analysis of binding of FNDC4 to different immune cell types reveals strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro results in reduced phagocytosis, increased cell survival and reduced proinflammatory chemokine expression. Hence, treatment with FNDC4 results in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized FNDC4 as a factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases. FDNC4 is a poorly characterized homologue of FNDC5/irisin, a myokine induced by exercise. Here the authors show that FDNC4 increases macrophage survival in growth factor deprivation, inhibits phagocytosis and transcriptional responses to M1 and M2 polarizing stimuli, and protects mice from DSS-induced colitis.
Collapse
|
15
|
Interaction between STAT3 gene polymorphisms and smoking on Crohn’s disease susceptibility: a case–control study in a Chinese Han population. Inflamm Res 2016; 65:573-8. [DOI: 10.1007/s00011-016-0941-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 12/31/2022] Open
|
16
|
Liu XX, Fan H, Tang Q, Shou ZX, Tao L, Zhang LJ, Zuo DM. Intravenous administration of mesenchymal stem cells overexpressing CXCR4 protects against experimental colitis in rats. Shijie Huaren Xiaohua Zazhi 2016; 24:1233-1240. [DOI: 10.11569/wcjd.v24.i8.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of SDF-1α/CXCR4 axis in the therapeutic effects of lentivirus-preconditioned bone mesenchymal stem cells (BMSCs) for 2,4,6-trinitrobenzene sulfonic acid (TNBS)- induced colitis in rats.
METHODS: BMSCs were isolated from Sprague-Dawley (SD) rats and identified by flow cytometry. Lentivirus transfection was applied to over-express CXCR4/GFP (Ad-CXCR4-BMSCs) or null/GFP (Ad-GFP-BMSCs) in BMSCs. Thirty-two SD rats were randomly divided into four groups (n = 8): a control group, a model group, an Ad-GFP-BMSCs group and an Ad-CXCR4-BMSCs group. The rats were grouped to receive various treatments by tail vein injections. On day 1, colitis was induced by the TNBS administration. On day 12, animals were anesthetized and submitted to a laparotomy under sterile conditions. The distal colon was then opened longitudinally, slightly cleaned in physiological saline for faecal residue removal, and tissue samples were harvested and analyzed for various studies.
RESULTS: One week after intravenous administration, Ad-GFP-BMSCs failed to colonize in the inflamed colon and had no beneficial effect in TNBS-induced colitis. Instead, Ad-CXCR4-BMSCs signally ameliorated both clinical and microanatomical severity of colitis. Immunofluorescence and Western blot showed that Ad-CXCR4-BMSCs migrated toward inflamed colon was more efficient than Ad-GFP-BMSCs. The therapeutic effect of Ad-CXCR4-BMSCs was mediated by the suppression of pro-inflammatory cytokines and STAT3 phosphorylation in injured colon.
CONCLUSION: Our data indicate that over-expression of CXCR4 promotes the in vivo mobilization and engraftment of BMSCs into inflamed colon where these cells can function as an anti-inflammatory and immunomodulatory component of the immune system in TNBS-induced colitis.
Collapse
|
17
|
Zhang JX, Song J, Wang J, Dong WG. JAK2 rs10758669 polymorphisms and susceptibility to ulcerative colitis and Crohn's disease: a meta-analysis. Inflammation 2015; 37:793-800. [PMID: 24385239 DOI: 10.1007/s10753-013-9798-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this meta-analysis, we aimed to clarify the impact of Janus kinase 2 (JAK2) rs10758669 polymorphisms on ulcerative colitis (UC) and Crohn's disease (CD) risk. Data were extracted, and pooled odd ratios (ORs) as well as 95% confidence intervals (95%CIs) were calculated. Eleven studies with 7009 CD patients, 7929 UC patients, and 19235 controls were included. The results showed that JAK2 rs10758669 polymorphism was associated with CD (AC vs. AA, OR = 1.16, 95%CI, 1.08-1.24; CC vs. AA, OR = 1.29, 95%CI, 1.17-1.43; AC + CC vs. AA, OR = 1.19, 95%CI, 1.11-1.27; CC vs. AA + AC, OR = 1.19, 95%CI, 1.09-1.31; C vs. A, OR = 1.14, 95%CI, 1.09-1.20) and UC susceptibility (AC vs. AA, OR = 1.14, 95%CI, 1.06-1.22; CC vs. AA, OR = 1.33, 95%CI, 1.20-1.47; AC + CC vs. AA, OR = 1.18, 95%CI, 1.10-1.27; CC vs. AA + AC, OR = 1.24, 95%CI, 1.12-1.36; C vs. A, OR = 1.15, 95%CI, 1.10-1.21). But no significant association was found between JAK2 rs10758669 polymorphism with CD in Asian. Either in adult-onset group or multi-age group, hospital-based group or population-based group, JAK2 rs10758669 polymorphism was associated with CD and UC susceptibility. This meta-analysis indicated that JAK2 rs10758669 polymorphism was a risk factor both for CD and UC, especially in Caucasian. The differences in age of onset and study design did not influence the associations obviously. Gene-gene and gene-environment interactions should be investigated in the future.
Collapse
Affiliation(s)
- Ji-Xiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | | | | | | |
Collapse
|
18
|
Li C, Iness A, Yoon J, Grider JR, Murthy KS, Kellum JM, Kuemmerle JF. Noncanonical STAT3 activation regulates excess TGF-β1 and collagen I expression in muscle of stricturing Crohn's disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:3422-31. [PMID: 25740948 PMCID: PMC4369432 DOI: 10.4049/jimmunol.1401779] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increased TGF-β1 and TGF-β1-dependent Collagen I production in intestinal mesenchymal cells result in fibrosis in patients with Montreal B2 fibrostenotic Crohn's disease. Numerous cytokines, including IL-6, are produced by activated mesenchymal cells themselves and activate STAT3. The aim of the current study was to determine the mechanisms by which STAT-3 activation might result in intestinal fibrosis. Cytokine levels were measured by ELISA. STAT3 and suppressor of cytokine signaling 3 protein levels were measured by immunoblot, STAT3-TGFB1 DNA-binding activity by chromatin immunoprecipitation, and TGFB1 transcriptional activity by luciferase reporter assay. TGF-β1 (TGFB1), Collagen1α1, and connective tissue growth factor (CTGF) gene expression was measured by quantitative RT-PCR. The role of STAT3 activation was determined using STAT3 inhibitor, Stattic, and by transfection of STAT3 mutants. Autocrine production of cytokines was increased in muscle cells of B2 phenotype patients from strictures and normal intestine in the same patient and compared with other Crohn's phenotypes, ulcerative colitis, and non-Crohn's patients. A unique pattern of STAT3 phosphorylation emerged: high STAT3(S727) and low STAT3(Y705) in strictures and the opposite in unaffected intestine. TGFB1 transcriptional activity was regulated by phospho-STAT3(S727) and was decreased by Stattic or dominant-negative STAT3(S727A). TGF-β1, COL1A1, and CTGF expression was inhibited by Stattic or dominant-negative STAT3(S727A). Treatment of normal muscle cells with IL-6 or expression of constitutively active STAT3(S727E) phenocopied muscle cells from strictured intestine. Neutralization of autocrine IL-6 reversed STAT3 phosphorylation and normalized expression of TGF-β1 in strictured intestinal muscle. The ability of Stattic to improve development of fibrosis was confirmed in mice with 2,4,6-trinitrobenzenesulfonic acid-induced colitis. We observed a unique phospho-STAT3(S727) response in patients with Montreal B2 Crohn's disease, particularly in response to IL-6 leading to increased TGF-β1, collagen, and CTGF production in ileal strictures.
Collapse
Affiliation(s)
- Chao Li
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - Audra Iness
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - Jennifer Yoon
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - John R Grider
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; VCU Program in Enteric Neuromuscular Sciences, Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; and
| | - Karnam S Murthy
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; VCU Program in Enteric Neuromuscular Sciences, Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; and
| | - John M Kellum
- Department of Surgery, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - John F Kuemmerle
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; VCU Program in Enteric Neuromuscular Sciences, Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; and
| |
Collapse
|
19
|
Yang L, Yan Y. Protein kinases are potential targets to treat inflammatory bowel disease. World J Gastrointest Pharmacol Ther 2014; 5:209-217. [PMID: 25374761 PMCID: PMC4218950 DOI: 10.4292/wjgpt.v5.i4.209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/05/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Protein kinases play a crucial role in the pathogenesis of inflammatory bowel disease (IBD), the two main forms of which are ulcerative colitis and Crohn’s disease. In this article, we will review the mechanisms of involvement of protein kinases in the pathogenesis of and intervention against IBD, in terms of their effects on genetics, microbiota, mucous layer and tight junction, and the potential of protein kinases as therapeutic targets against IBD.
Collapse
|
20
|
Zhang J, Wu J, Peng X, Song J, Wang J, Dong W. Associations between STAT3 rs744166 polymorphisms and susceptibility to ulcerative colitis and Crohn's disease: a meta-analysis. PLoS One 2014; 9:e109625. [PMID: 25286337 PMCID: PMC4186844 DOI: 10.1371/journal.pone.0109625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 09/09/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Many studies have investigated the associations between the signal transducer and activator of transcription 3 (STAT3) in the susceptibility to ulcerative colitis (UC) and Crohn's disease (CD). However, the results remain inconsistent. This meta-analysis determined the risk of STAT3 rs744166 polymorphism-conferred UC and CD susceptibility. MATERIALS AND METHODS Electronic databases, including PubMed, EMBASE and the Cochrane Library, were searched for all eligible studies that evaluated the association between STAT3 rs744166 polymorphisms with UC and CD risk up to August 21, 2014. The pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using fixed- or random-effects models. RESULTS Twelve studies containing 10298 patients with CD, 4244 patients with UC and 11191 controls were included in this meta-analysis. The results indicated that the STAT3 rs744166 polymorphism was associated with CD and UC susceptibility (CD: GA+AA vs. GG, OR = 1.20, 95%CI, 1.11-1.30, I2 = 0%, Punadjusted<0.00001, PBonferroni<0.00005, PFDR<0.00001; UC: GA+AA vs. GG, OR = 1.21, 95%CI, 1.08-1.36, I2 = 1%, Punadjusted = 0.001, PBonferroni = 0.005, PFDR = 0.00125). In subgroup analyses by ethnicity, the significant association was found only among Caucasians. However, when grouped by age of onset, positive associations were found both among adults and children. In addition, when stratified by study design and genotyping methods, the risk of CD was significantly associated with the STAT3 rs744166 polymorphism in hospital-based and population-based groups and in SNP Array and SNPlex groups. For UC, significant associations were also found in population-based, PCR-RFLP and SNPlex groups. Moreover, these findings were sufficiently robust to withstand the Bonferroni correction and false discovery rate (FDR). CONCLUSION This meta-analysis indicates that carriers of the STAT3 rs744166 'A' allele have a significantly greater risk of CD and UC, especially among Caucasians.
Collapse
Affiliation(s)
- Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jianhong Wu
- Wuhan medical treatment center, Wuhan, Hubei Province, China
| | - Xiulan Peng
- Department of Oncology, The Fifth Hospital of Wuhan, Wuhan, Hubei Province, China
| | - Jia Song
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jun Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
21
|
Identification of possible pathogenic pathways in Behçet's disease using genome-wide association study data from two different populations. Eur J Hum Genet 2014; 23:678-87. [PMID: 25227143 DOI: 10.1038/ejhg.2014.158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/25/2022] Open
Abstract
Behçet's disease (BD) is a multi-system inflammatory disorder of unknown etiology. Two recent genome-wide association studies (GWASs) of BD confirmed a strong association with the MHC class I region and identified two non-HLA common genetic variations. In complex diseases, multiple factors may target different sets of genes in the same pathway and thus may cause the same disease phenotype. We therefore hypothesized that identification of disease-associated pathways is critical to elucidate mechanisms underlying BD, and those pathways may be conserved within and across populations. To identify the disease-associated pathways, we developed a novel methodology that combines nominally significant evidence of genetic association with current knowledge of biochemical pathways, protein-protein interaction networks, and functional information of selected SNPs. Using this methodology, we searched for the disease-related pathways in two BD GWASs in Turkish and Japanese case-control groups. We found that 6 of the top 10 identified pathways in both populations were overlapping, even though there were few significantly conserved SNPs/genes within and between populations. The probability of random occurrence of such an event was 2.24E-39. These shared pathways were focal adhesion, MAPK signaling, TGF-β signaling, ECM-receptor interaction, complement and coagulation cascades, and proteasome pathways. Even though each individual has a unique combination of factors involved in their disease development, the targeted pathways are expected to be mostly the same. Hence, the identification of shared pathways between the Turkish and the Japanese patients using GWAS data may help further elucidate the inflammatory mechanisms in BD pathogenesis.
Collapse
|
22
|
Genetic effects of single nucleotide polymorphisms in JAK2 and STAT5A genes on susceptibility of Chinese Holsteins to mastitis. Mol Biol Rep 2014; 41:8293-301. [PMID: 25205126 DOI: 10.1007/s11033-014-3730-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/03/2014] [Indexed: 02/06/2023]
Abstract
The JAK-STAT pathway plays a key role in host immunity. The present study was designed to evaluate the effects of single nucleotide polymorphisms (SNPs) in STAT5A and JAK2 genes on some serum cytokines, mastitis and milk production traits. Two SNPs (SNP1 43046497A/C and SNP2 43047829G/A) in STAT5A, and four SNPs in JAK2 (SNP3 39652267A/G, SNP4 39630048C/T, SNP5 39631044G/A, and SNP6 39631175T/C) were revealed and genotyped in 268 Chinese Holstein cattle. Fixed model was used to analyze the association of SNPs with phenotypes by general linear model procedure of SAS 9.1. SNP1 and SNP4 were significantly associated with IL-6 and IL-17 (P < 0.05), respectively. In JAK2 gene, SNP3 was highly significant (P < 0.01) and SNP5 was significant (P < 0.05) in association with SCC, whereas, the association of SNP6 was found significant (P < 0.05) with both SCC and SCS. Combination genotype analysis revealed that SNPs in JAK2 gene significantly associated with SCC and SCS were associated significantly with the corresponding phenotypes in combinations as well. The GG genotype of SNP3 individually and in any combination genotypes showed lowest SCC. The dominant effect of SNP1, SNP5 and SNP6 was found highly significant (P < 0.01) on the corresponding phenotypes (IL-6, SCC and SCS). As for haplotype analysis, two haplotypes were revealed between the two SNPs of STAT5A gene and four haplotypes amongst four SNPs in JAK2 gene; strong linkage disequilibrium (D' > 0.9) was observed between all these haplotypes. The results imply that the identified SNPs could be powerful markers to select dairy cattle with improved genetic resistance against mastitis.
Collapse
|
23
|
Sarlos P, Kovesdi E, Magyari L, Banfai Z, Szabo A, Javorhazy A, Melegh B. Genetic update on inflammatory factors in ulcerative colitis: Review of the current literature. World J Gastrointest Pathophysiol 2014; 5:304-21. [PMID: 25133031 PMCID: PMC4133528 DOI: 10.4291/wjgp.v5.i3.304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/19/2014] [Accepted: 07/12/2014] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is one of the main types of inflammatory bowel disease, which is caused by dysregulated immune responses in genetically predisposed individuals. Several genetic factors, including interleukin and interleukin receptor gene polymorphisms and other inflammation-related genes play central role in mediating and modulating the inflammation in the human body, thereby these can be the main cause of development of the disease. It is clear these data are very important for understanding the base of the disease, especially in terms of clinical utility and validity, but summarized literature is exiguous for challenge health specialist that can used in the clinical practice nowadays. This review summarizes the current literature on inflammation-related genetic polymorphisms which are associated with UC. We performed an electronic search of Pubmed Database among publications of the last 10 years, using the following medical subject heading terms: UC, ulcerative colitis, inflammation, genes, polymorphisms, and susceptibility.
Collapse
|
24
|
Wang Z, Xu B, Zhang H, Fan R, Zhou J, Zhong J. Association between STAT3 gene polymorphisms and Crohn's disease susceptibility: a case-control study in a Chinese Han population. Diagn Pathol 2014; 9:104. [PMID: 24885273 PMCID: PMC4047544 DOI: 10.1186/1746-1596-9-104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 05/11/2014] [Indexed: 01/05/2023] Open
Abstract
Background Crohn’s disease (CD) is an immune-related disease with genetic
predisposition. This study aimed to investigate the association of three
polymorphisms in the signal transducer and activator of transcription 3
(STAT3) gene with CD risk in a Chinese population. Methods We conducted a hospital-based case–control study involving 232 CD
patients and 272 controls. Genotyping was performed using polymerase chain
reaction with sequence-specific primer method. Statistical analyses were
conducted using logistic regression and genotype risk scoring. Results Significant differences were found between patients and controls in
allele/genotype distributions of rs744166
(Pallele = 0.0008;
Pgenotype = 0.003) and allele distributions of
rs4796793 (P = 0.03). The risk for CD associated with
the rs744166-A mutant allele decreased by 37% [95% confidence interval (CI):
0.48–0.83] under the additive model, 39% (95% CI: 0.43–0.81)
under the dominant model and 57% (95% CI: 0.24–0.77) under the
recessive model. Carriers of the rs4796793-G mutant allele exhibited 25%
(95% CI: 0.58–0.98; P = 0.03) and 47% (95% CI:
0.30–0.95) decreased risks of developing CD under the additive and
recessive models, respectively. Conclusions STAT3 rs744166 and rs4796793 polymorphisms may be associated with CD
occurrence and used as a predictive factor of CD in Chinese Han
populations. Virtual Slides The virtual slide(s) for this article can be found here:
http://diagnosticpathology.slidepath.com/webViewer.php?snapshotId=1297687014
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China.
| |
Collapse
|
25
|
Liu X, Zuo D, Fan H, Tang Q, Shou Z, Cao D, Zou Z. Over-expression of CXCR4 on mesenchymal stem cells protect against experimental colitis via immunomodulatory functions in impaired tissue. J Mol Histol 2013; 45:181-93. [PMID: 24122226 DOI: 10.1007/s10735-013-9541-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 09/20/2013] [Indexed: 12/13/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are attractive candidates for tissue regeneration and immunoregulation in inflammatory bowel disease. However, their in vivo reparative capability is limited owing to barren efficiency of BMSCs to injury region. Stromal cell-derived factor (SDF-1) plays an important role in chemotaxis and stem cell homing through interaction with its specific receptor CXC chemokine receptor 4 (CXCR4). The present study was designed to investigate the role of SDF-1α/CXCR4 axis in the therapeutic effects of lentivirus-preconditioned BMSCs for 2,4,6-trinitrobenzene sulfonic acid (TNBS)-colitis rats. BMSCs were isolated from female Sprague-Dawley rats and identified by flow cytometry. Lentiviral transduction was applied to over-express CXCR4/GFP (Ad-CXCR4-BMSCs) or null/GFP (Ad-GFP-BMSCs). Efficacy of engraftment was determined by the presence of enhanced green fluorescent protein (GFP) positive cells. One week after intravenous administration, Ad-GFP-BMSCs failed to colonize in the inflamed colon and had no beneficial effect in TNBS-induced colitis. Instead, Ad-CXCR4-BMSCs signally ameliorated both clinical and microanatomical severity of colitis. Immunofluorescence and western blotting showed that Ad-CXCR4-BMSCs migrated toward inflamed colon was more efficient than Ad-GFP-BMSCs. The therapeutic effect of Ad-CXCR4-BMSCs was mediated by the suppression of pro-inflammatory cytokines and STAT3 phosphorylation in injured colon. Collectively, our data indicated that over-expression CXCR4 led to enhance in vivo mobilization and engraftment of BMSCs into inflamed colon where these cells can function as an anti-inflammatory and immunomodulatory component of the immune system in TNBS-induced colitis.
Collapse
Affiliation(s)
- Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Association of single-nucleotide polymorphisms in the STAT3 gene with autoimmune thyroid disease in Chinese individuals. Funct Integr Genomics 2013; 13:455-61. [PMID: 24081513 PMCID: PMC3824579 DOI: 10.1007/s10142-013-0337-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/19/2013] [Accepted: 09/10/2013] [Indexed: 01/05/2023]
Abstract
The aim of this study was to investigate the association between signal transducer and activator of transcription 3 (STAT3) polymorphisms and autoimmune thyroid diseases and clinical features. We genotyped six single-nucleotide polymorphisms (SNPs) rs1053005, rs2293152, rs744166, rs17593222, rs2291281, and rs2291282 of STAT3 gene in 667 patients with autoimmune thyroid disease (417 Graves’ disease (GD) and 250 Hashimoto’s thyroiditis (HT)) and 301 healthy controls. The allele A from rs1053005 was significantly less frequent in both GD and HT patients (P = 0.0024, OR = 0.6958, 95%CI = 0.5508–0.8788; P = 0.0091, OR = 0.7013, 95%CI = 0.5397–0.9112, respectively). The AA genotype of rs1053005 was less in GD and HT patients too (P = 0.0025,OR = 0.6278, 95%CI = 0.466–0.847) and (P = 0.0036,OR = 0.601, 95%CI = 0.428–0.843). The allele G from rs17593222 increased the susceptibility to the ophthalmopathy development both in autoimmune thyroid disease (AITD) and GD patients (P = 0.0007, OR = 3.980, 95%CI = 1.871–8.464; P = 0.0081, OR = 3.378, 95%CI = 1.441–7.919, respectively). The allele A and AA genotype of SNP rs1053005 may protect individuals from the susceptibility to AITD and their frequency decreased in AITD patients. In addition, the allele G of rs17593222 may increase the ophthalmopathy risk in AITD patients. Our findings suggest the existence of association between STAT3 gene and AITD, thus adding STAT3 gene to the list of the predisposing genes to AITD.
Collapse
|
27
|
Zhu H, Lei X, Liu Q, Wang Y. Interleukin-10-1082A/G polymorphism and inflammatory bowel disease susceptibility: a meta-analysis based on 17,585 subjects. Cytokine 2012; 61:146-53. [PMID: 23046617 DOI: 10.1016/j.cyto.2012.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 12/19/2022]
Abstract
A large number of studies have shown that the interleukin-10 (IL-10)-1082A/G polymorphism is implicated in susceptibility to inflammatory bowel disease (IBD). However, the results are inconsistent. We performed this meta-analysis to estimate the association between -1082A/G polymorphism in the IL-10 gene and IBD susceptibility. A total number of 18 case-control studies including 17,585 subjects were identified. No association was found between -1082A/G polymorphism and ulcerative colitis (UC) susceptibility. However, increased risk of Crohn's disease (CD) was associated with -1082A/G polymorphism in the dominant genetic model (GG+GA vs. AA: OR=1.22, 95% CI: 1.02-1.46, P=0.028) and the heterozygote comparison (GA vs. AA: OR=1.28, 95% CI: 1.05-1.55, P=0.015). The results of this meta-analysis provide evidence for the association between IL-10-1082A/G polymorphism and susceptibility of CD. Due to several limitations in the present study, well-designed epidemiological studies with large sample size among different ethnicities should be performed in the future.
Collapse
Affiliation(s)
- Hang Zhu
- Maternal and Child Hygiene Department, School of Public Health and Management, Chongqing Medical University, China
| | | | | | | |
Collapse
|