1
|
Li R, Han Z, Yin Q, Li M, Zhang M, Li Z, Wang P, Jiang L, Ow DW. Target Lines for in Planta Gene Stacking in Japonica Rice. Int J Mol Sci 2022; 23:ijms23169385. [PMID: 36012650 PMCID: PMC9409015 DOI: 10.3390/ijms23169385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
The clustering of transgenes at a chromosome location minimizes the number of segregating loci that needs to be introgressed to field cultivars. Transgenes could be efficiently stacked through site-specific recombination and a recombinase-mediated in planta gene stacking process was described previously in tobacco based on the Mycobacteriophage Bxb1 site-specific integration system. Since this process requires a recombination site in the genome, this work describes the generation of target sites in the Japonica rice genome. Agrobacterium-mediated gene transfer yielded ~4000 random-insertion lines. Seven lines met the criteria of being single copy, not close to a centromere, not inserted within or close to a known gene or repetitive DNA, having precise recombination site sequences on both ends, and able to express the reporter gene. Each target line tested was able to accept the site-specific integration of a new gfp-containing plasmid and in three of those lines, we regenerated fertile plants. These target lines could be used as foundation lines for stacking new traits into Japonica rice.
Collapse
Affiliation(s)
- Ruyu Li
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Correspondence: (R.L.); (D.W.O.)
| | - Zhiguo Han
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qian Yin
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Meiru Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhenzhen Li
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ping Wang
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Li Jiang
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - David W. Ow
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Correspondence: (R.L.); (D.W.O.)
| |
Collapse
|
2
|
Efficient targeted transgenesis of large donor DNA into multiple mouse genetic backgrounds using bacteriophage Bxb1 integrase. Sci Rep 2022; 12:5424. [PMID: 35361849 PMCID: PMC8971409 DOI: 10.1038/s41598-022-09445-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
The development of mouse models of human disease and synthetic biology research by targeted transgenesis of large DNA constructs represent a significant genetic engineering hurdle. We developed an efficient, precise, single-copy integration of large transgenes directly into zygotes using multiple mouse genetic backgrounds. We used in vivo Bxb1 mediated recombinase-mediated cassette exchange (RMCE) with a transgene “landing pad” composed of dual heterologous Bxb1 attachment (att) sites in cis, within the Gt(ROSA)26Sor safe harbor locus. RMCE of donor was achieved by microinjection of vector DNA carrying cognate attachment sites flanking the donor transgene with Bxb1-integrase mRNA. This approach achieves perfect vector-free integration of donor constructs at efficiencies > 40% with up to ~ 43 kb transgenes. Coupled with a nanopore-based Cas9-targeted sequencing (nCATS), complete verification of precise insertion sequence was achieved. As a proof-of-concept we describe the development of C57BL/6J and NSG Krt18-ACE2 models for SARS-CoV2 research with verified heterozygous N1 animals within ~ 4 months. Additionally, we created a series of mice with diverse backgrounds carrying a single att site including FVB/NJ, PWK/PhJ, NOD/ShiLtJ, CAST/EiJ and DBA/2J allowing for rapid transgene insertion. Combined, this system enables predictable, rapid development with simplified characterization of precisely targeted transgenic animals across multiple genetic backgrounds.
Collapse
|
3
|
Flavell RB. Perspective: 50 years of plant chromosome biology. PLANT PHYSIOLOGY 2021; 185:731-753. [PMID: 33604616 PMCID: PMC8133586 DOI: 10.1093/plphys/kiaa108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The past 50 years has been the greatest era of plant science discovery, and most of the discoveries have emerged from or been facilitated by our knowledge of plant chromosomes. At last we have descriptive and mechanistic outlines of the information in chromosomes that programs plant life. We had almost no such information 50 years ago when few had isolated DNA from any plant species. The important features of genes have been revealed through whole genome comparative genomics and testing of variants using transgenesis. Progress has been enabled by the development of technologies that had to be invented and then become widely available. Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have played extraordinary roles as model species. Unexpected evolutionary dramas were uncovered when learning that chromosomes have to manage constantly the vast numbers of potentially mutagenic families of transposons and other repeated sequences. The chromatin-based transcriptional and epigenetic mechanisms that co-evolved to manage the evolutionary drama as well as gene expression and 3-D nuclear architecture have been elucidated these past 20 years. This perspective traces some of the major developments with which I have become particularly familiar while seeking ways to improve crop plants. I draw some conclusions from this look-back over 50 years during which the scientific community has (i) exposed how chromosomes guard, readout, control, recombine, and transmit information that programs plant species, large and small, weed and crop, and (ii) modified the information in chromosomes for the purposes of genetic, physiological, and developmental analyses and plant improvement.
Collapse
Affiliation(s)
- Richard B Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| |
Collapse
|
4
|
Kumar S, Rymarquis LA, Ezura H, Nekrasov V. Editorial: CRISPR-Cas in Agriculture: Opportunities and Challenges. FRONTIERS IN PLANT SCIENCE 2021; 12:672329. [PMID: 33841487 PMCID: PMC8034289 DOI: 10.3389/fpls.2021.672329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 05/29/2023]
Affiliation(s)
| | | | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Japan
| | - Vladimir Nekrasov
- Plant Sciences Department, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
5
|
TECHNOLOGIES OF GENETIC MATERIAL USE RESTRICTION: TYPES, MOLECULAR-GENETIC BASE AND ETHICAL ANALYSIS OF THEIR APPLICATION. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to save money, some farms use the seed obtained in the process of cultivation not only for sale, but also for sowing, which has not found supporters among companies engaged in the production of genetically modified seed. To protect their rights, the latter have created technologies to limit the use of genetic material, which are intended to be used for protection the intellectual rights to reproduce plants with a changed genotype. However, these technologies contain also a commercial component and violate a number of moral principles and international acts. Aim. To describe the types of terminator technologies, their genetic and molecular basis and purpose. To assess a correspondence of their compliance with the international documents and norms. Method. Terminator technologies types, genetic bases and application and their analysis from the standpoint of international norms were studied. To achieve the goal, the methods of fact analysis, comparison and generalization were used. Results. There are two types of terminator technologies (variety- and trait-specific), which are based on the interaction of three genes, which leads to the implementation of certain phenotypic manifestations. It was found that the technologies for limiting the use of genetic material are both contradictory and consistent with a number of international legal acts, which did not make it possible to determine clearly the appropriateness of their use in agriculture. Conclusions. Terminator technologies application is still a controversial fact since they are based on the duality principle: to carry simultaneously a positive and a negative manifestation for people.
Collapse
|
6
|
Pathak B, Srivastava V. Recombinase-mediated integration of a multigene cassette in rice leads to stable expression and inheritance of the stacked locus. PLANT DIRECT 2020; 4:e00236. [PMID: 32760877 PMCID: PMC7391932 DOI: 10.1002/pld3.236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 05/03/2023]
Abstract
Efficient methods for multigene transformation are important for developing novel crop varieties. Methods based on random integrations of multiple genes have been successfully used for metabolic engineering in plants. However, efficiency of co-integration and co-expression of the genes could present a bottleneck. Recombinase-mediated integration into the engineered target sites is arguably a more efficient method of targeted integration that leads to the generation of stable transgenic lines at a high rate. This method has the potential to streamline multigene transformation for metabolic engineering and trait stacking in plants. Therefore, empirical testing of transgene(s) stability from the multigene site-specific integration locus is needed. Here, the recombinase technology based on Cre-lox recombination was evaluated for developing multigenic lines harboring constitutively-expressed and inducible genes. Targeted integration of a five genes cassette in the rice genome generated a precise full-length integration of the cassette at a high rate, and the resulting multigenic lines expressed each gene reliably as defined by their promoter activity. The stable constitutive or inducible expression was faithfully transmitted to the progeny, indicating inheritance-stability of the multigene locus. Co-localization of two distinctly inducible genes by heat or cold with the strongly constitutive genes did not appear to interfere with each other's expression pattern. In summary, high rate of co-integration and co-expression of the multigene cassette installed by the recombinase technology in rice shows that this approach is appropriate for multigene transformation and introduction of co-segregating traits. SIGNIFICANCE STATEMENT Recombinase-mediated site-specific integration approach was found to be highly efficacious in multigene transformation of rice showing proper regulation of each gene driven by constitutive or inducible promoter. This approach holds promise for streamlining gene stacking in crops and expressing complex multigenic traits.
Collapse
Affiliation(s)
- Bhuvan Pathak
- Department of Crop, Soil & Environmental SciencesUniversity of ArkansasFayettevilleARUSA
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental SciencesUniversity of ArkansasFayettevilleARUSA
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
- Department of HorticultureUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
7
|
Gao H, Mutti J, Young JK, Yang M, Schroder M, Lenderts B, Wang L, Peterson D, St. Clair G, Jones S, Feigenbutz L, Marsh W, Zeng M, Wagner S, Farrell J, Snopek K, Scelonge C, Sopko X, Sander JD, Betts S, Cigan AM, Chilcoat ND. Complex Trait Loci in Maize Enabled by CRISPR-Cas9 Mediated Gene Insertion. FRONTIERS IN PLANT SCIENCE 2020; 11:535. [PMID: 32431725 PMCID: PMC7214728 DOI: 10.3389/fpls.2020.00535] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/08/2020] [Indexed: 05/03/2023]
Abstract
Modern maize hybrids often contain biotech and native traits. To-date all biotech traits have been randomly inserted in the genome. Consequently, developing hybrids with multiple traits is expensive, time-consuming, and complex. Here we report using CRISPR-Cas9 to generate a complex trait locus (CTL) to facilitate trait stacking. A CTL consists of multiple preselected sites positioned within a small well-characterized chromosomal region where trait genes are inserted. We generated individual lines, each carrying a site-specific insertion landing pad (SSILP) that was targeted to a preselected site and capable of efficiently receiving a transgene via recombinase-mediated cassette exchange. The selected sites supported consistent transgene expression and the SSILP insertion had no effect on grain yield. We demonstrated that two traits residing at different sites within a CTL can be combined via genetic recombination. CTL technology is a major step forward in the development of multi-trait maize hybrids.
Collapse
Affiliation(s)
- Huirong Gao
- Research and Development, Corteva Agriscience, Johnston, IA, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bernabé-Orts JM, Quijano-Rubio A, Vazquez-Vilar M, Mancheño-Bonillo J, Moles-Casas V, Selma S, Gianoglio S, Granell A, Orzaez D. A memory switch for plant synthetic biology based on the phage ϕC31 integration system. Nucleic Acids Res 2020; 48:3379-3394. [PMID: 32083668 PMCID: PMC7102980 DOI: 10.1093/nar/gkaa104] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic biology has advanced from the setup of basic genetic devices to the design of increasingly complex gene circuits to provide organisms with new functions. While many bacterial, fungal and mammalian unicellular chassis have been extensively engineered, this progress has been delayed in plants due to the lack of reliable DNA parts and devices that enable precise control over these new synthetic functions. In particular, memory switches based on DNA site-specific recombination have been the tool of choice to build long-term and stable synthetic memory in other organisms, because they enable a shift between two alternative states registering the information at the DNA level. Here we report a memory switch for whole plants based on the bacteriophage ϕC31 site-specific integrase. The switch was built as a modular device made of standard DNA parts, designed to control the transcriptional state (on or off) of two genes of interest by alternative inversion of a central DNA regulatory element. The state of the switch can be externally operated by action of the ϕC31 integrase (Int), and its recombination directionality factor (RDF). The kinetics, memory, and reversibility of the switch were extensively characterized in Nicotiana benthamiana plants.
Collapse
Affiliation(s)
- Joan Miquel Bernabé-Orts
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Alfredo Quijano-Rubio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Javier Mancheño-Bonillo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Victor Moles-Casas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara Selma
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Silvia Gianoglio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
9
|
Birchler JA, Swyers NC. Engineered minichromosomes in plants. Exp Cell Res 2020; 388:111852. [PMID: 31972219 DOI: 10.1016/j.yexcr.2020.111852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022]
Abstract
Artificial chromosome platforms are described in plants. Because the function of centromeres is largely epigenetic, attempts to produce artificial chromosomes with plant centromere DNA have failed. The removal of the centromeric sequences from the cell strips off the centromeric histone that is the apparent biochemical marker of centromere activity. Thus, engineered minichromosomes have been produced by telomere mediated chromosomal truncation. The introduction of telomere repeats will cleave the chromosome at the site of insertion and attach the accompanying transgenes in the process. Such truncation events have been documented in maize, Arabidopsis, barley, rice, Brassica and wheat. Truncation of the nonvital supernumerary B chromosome of maize is a favorite target but engineered minichromosomes derived from the normal A chromosomes have also been recovered. Transmission through mitosis of small chromosomes is apparently normal but there is loss during meiosis. Potential solutions to address this issue are discussed. With procedures now well established to produce the foundation for artificial chromosomes in plants, current efforts are directed at building them up to specification using gene stacking methods and editing techniques.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO, 65211-7400, USA.
| | - Nathan C Swyers
- Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO, 65211-7400, USA
| |
Collapse
|
10
|
Zhu Q, Wang B, Tan J, Liu T, Li L, Liu YG. Plant Synthetic Metabolic Engineering for Enhancing Crop Nutritional Quality. PLANT COMMUNICATIONS 2020; 1:100017. [PMID: 33404538 PMCID: PMC7747972 DOI: 10.1016/j.xplc.2019.100017] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 05/08/2023]
Abstract
Nutrient deficiencies in crops are a serious threat to human health, especially for populations in poor areas. To overcome this problem, the development of crops with nutrient-enhanced traits is imperative. Biofortification of crops to improve nutritional quality helps combat nutrient deficiencies by increasing the levels of specific nutrient components. Compared with agronomic practices and conventional plant breeding, plant metabolic engineering and synthetic biology strategies are more effective and accurate in synthesizing specific micronutrients, phytonutrients, and/or bioactive components in crops. In this review, we discuss recent progress in the field of plant synthetic metabolic engineering, specifically in terms of research strategies of multigene stacking tools and engineering complex metabolic pathways, with a focus on improving traits related to micronutrients, phytonutrients, and bioactive components. Advances and innovations in plant synthetic metabolic engineering would facilitate the development of nutrient-enriched crops to meet the nutritional needs of humans.
Collapse
Affiliation(s)
- Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14850, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Corresponding author
| |
Collapse
|
11
|
Zhu Q, Yu S, Zeng D, Liu H, Wang H, Yang Z, Xie X, Shen R, Tan J, Li H, Zhao X, Zhang Q, Chen Y, Guo J, Chen L, Liu YG. Development of "Purple Endosperm Rice" by Engineering Anthocyanin Biosynthesis in the Endosperm with a High-Efficiency Transgene Stacking System. MOLECULAR PLANT 2017; 10:918-929. [PMID: 28666688 DOI: 10.1016/j.molp.2017.05.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 05/25/2023]
Abstract
Anthocyanins have high antioxidant activities, and engineering of anthocyanin biosynthesis in staple crops, such as rice (Oryza sativa L.), could provide health-promoting foods for improving human health. However, engineering metabolic pathways for biofortification remains difficult, and previous attempts to engineer anthocyanin production in rice endosperm failed because of the sophisticated genetic regulatory network of its biosynthetic pathway. In this study, we developed a high-efficiency vector system for transgene stacking and used it to engineer anthocyanin biosynthesis in rice endosperm. We made a construct containing eight anthocyanin-related genes (two regulatory genes from maize and six structural genes from Coleus) driven by the endosperm-specific promoters,plus a selectable marker and a gene for marker excision. Transformation of rice with this construct generated a novel biofortified germplasm "Purple Endosperm Rice" (called "Zijingmi" in Chinese), which has high anthocyanin contents and antioxidant activity in the endosperm. This anthocyanin production results from expression of the transgenes and the resulting activation (or enhancement) of expression of 13 endogenous anthocyanin biosynthesis genes that are silenced or expressed at low levels in wild-type rice endosperm. This study provides an efficient, versatile toolkit for transgene stacking and demonstrates its use for successful engineering of a sophisticated biological pathway, suggesting the potential utility of this toolkit for synthetic biology and improvement of agronomic traits in plants.
Collapse
Affiliation(s)
- Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology, Guangdong Provincial Higher Education Institutions, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Suize Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology, Guangdong Provincial Higher Education Institutions, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dongchang Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology, Guangdong Provincial Higher Education Institutions, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongmei Liu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; School of Biology and Engineering, Guizhou Medical University, Guangzhou 510642, China
| | - Huicong Wang
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhongfang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology, Guangdong Provincial Higher Education Institutions, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology, Guangdong Provincial Higher Education Institutions, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology, Guangdong Provincial Higher Education Institutions, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology, Guangdong Provincial Higher Education Institutions, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Heying Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology, Guangdong Provincial Higher Education Institutions, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiucai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology, Guangdong Provincial Higher Education Institutions, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qunyu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology, Guangdong Provincial Higher Education Institutions, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yuanling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology, Guangdong Provincial Higher Education Institutions, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingxing Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology, Guangdong Provincial Higher Education Institutions, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology, Guangdong Provincial Higher Education Institutions, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Cardi T, Neal Stewart C. Progress of targeted genome modification approaches in higher plants. PLANT CELL REPORTS 2016; 35:1401-16. [PMID: 27025856 DOI: 10.1007/s00299-016-1975-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/21/2016] [Indexed: 05/07/2023]
Abstract
Transgene integration in plants is based on illegitimate recombination between non-homologous sequences. The low control of integration site and number of (trans/cis)gene copies might have negative consequences on the expression of transferred genes and their insertion within endogenous coding sequences. The first experiments conducted to use precise homologous recombination for gene integration commenced soon after the first demonstration that transgenic plants could be produced. Modern transgene targeting categories used in plant biology are: (a) homologous recombination-dependent gene targeting; (b) recombinase-mediated site-specific gene integration; (c) oligonucleotide-directed mutagenesis; (d) nuclease-mediated site-specific genome modifications. New tools enable precise gene replacement or stacking with exogenous sequences and targeted mutagenesis of endogeneous sequences. The possibility to engineer chimeric designer nucleases, which are able to target virtually any genomic site, and use them for inducing double-strand breaks in host DNA create new opportunities for both applied plant breeding and functional genomics. CRISPR is the most recent technology available for precise genome editing. Its rapid adoption in biological research is based on its inherent simplicity and efficacy. Its utilization, however, depends on available sequence information, especially for genome-wide analysis. We will review the approaches used for genome modification, specifically those for affecting gene integration and modification in higher plants. For each approach, the advantages and limitations will be noted. We also will speculate on how their actual commercial development and implementation in plant breeding will be affected by governmental regulations.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Orticoltura, Via Cavalleggeri 25, 84098, Pontecagnano, Italy.
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
13
|
Abstract
The fields of molecular genetics, biotechnology and synthetic biology are demanding ever more sophisticated molecular tools for programmed precise modification of cell genomic DNA and other DNA sequences. This review presents the current state of knowledge and development of one important group of DNA-modifying enzymes, the site-specific recombinases (SSRs). SSRs are Nature's 'molecular machines' for cut-and-paste editing of DNA molecules by inserting, deleting or inverting precisely defined DNA segments. We survey the SSRs that have been put to use, and the types of applications for which they are suitable. We also discuss problems associated with uses of SSRs, how these problems can be minimized, and how recombinases are being re-engineered for improved performance and novel applications.
Collapse
|
14
|
Srivastava V, Thomson J. Gene stacking by recombinases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:471-82. [PMID: 26332944 DOI: 10.1111/pbi.12459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 05/09/2023]
Abstract
Efficient methods of stacking genes into plant genomes are needed to expedite transfer of multigenic traits to crop varieties of diverse ecosystems. Over two decades of research has identified several DNA recombinases that carryout efficient cis and trans recombination between the recombination sites artificially introduced into the plant chromosome. The specificity and efficiency of recombinases make them extremely attractive for genome engineering. In plant biotechnology, recombinases have mostly been used for removing selectable marker genes and have rarely been extended to more complex applications. The reversibility of recombination, a property of the tyrosine family of recombinases, does not lend itself to gene stacking approaches that involve rounds of transformation for integrating genes into the engineered sites. However, recent developments in the field of recombinases have overcome these challenges and paved the way for gene stacking. Some of the key advancements include the application of unidirectional recombination systems, modification of recombination sites and transgene site modifications to allow repeated site-specific integrations into the selected site. Gene stacking is relevant to agriculturally important crops, many of which are difficult to transform; therefore, development of high-efficiency gene stacking systems will be important for its application on agronomically important crops, and their elite varieties. Recombinases, by virtue of their specificity and efficiency in plant cells, emerge as powerful tools for a variety of applications including gene stacking.
Collapse
Affiliation(s)
- Vibha Srivastava
- Department of Crop, Soil & Environmental Science, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
15
|
Plant minichromosomes. Curr Opin Biotechnol 2016; 37:135-142. [DOI: 10.1016/j.copbio.2015.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/06/2015] [Accepted: 11/23/2015] [Indexed: 11/23/2022]
|
16
|
Ow DW. The long road to recombinase-mediated plant transformation. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:441-7. [PMID: 26373969 DOI: 10.1111/pbi.12472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/09/2015] [Accepted: 08/12/2015] [Indexed: 05/10/2023]
Abstract
The use of site-specific recombinases to manipulate eukaryotic genomes began nearly three decades ago. Although seemingly parallel efforts were being made in animal and plant systems, the motivation for its development in plants was unique to, at least at the time, crop bioengineering issues. The impetus behind site-specific deletion in plants was to remove antibiotic resistance genes used during transformation but unnecessary in commercial products. Site-specific integration in plants was more than academic curiosity of position effects on gene expression, but a necessary step towards developing the serial stacking of DNA to the same chromosome locus - to insure that bioengineered crops can be improved over time through transgene additions without inflating the number of segregating loci. This article is not a review of the literature on site-specific recombination, but a first person account of the series of events leading to the development of a gene stacking transformation system in plants.
Collapse
Affiliation(s)
- David W Ow
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
17
|
Forsyth A, Weeks T, Richael C, Duan H. Transcription Activator-Like Effector Nucleases (TALEN)-Mediated Targeted DNA Insertion in Potato Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1572. [PMID: 27826306 PMCID: PMC5078815 DOI: 10.3389/fpls.2016.01572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/05/2016] [Indexed: 05/19/2023]
Abstract
Targeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. Specifically integrated transgenes are guaranteed to co-segregate, and expression level is more predictable, which makes downstream characterization and line selection more manageable. Because the site of DNA integration is known, the steps to deregulation of transgenic crops may be simplified. Here we describe a method that combines transcription activator-like effector nuclease (TALEN)-mediated induction of double strand breaks (DSBs) and non-autonomous marker selection to insert a transgene into a pre-selected, transcriptionally active region in the potato genome. In our experiment, TALEN was designed to create a DSB in the genome sequence following an endogenous constitutive promoter. A cytokinin vector was utilized for TALENs expression and prevention of stable integration of the nucleases. The donor vector contained a gene of interest cassette and a promoter-less plant-derived herbicide resistant gene positioned near the T-DNA left border which was used to select desired transgenic events. Our results indicated that TALEN induced T-DNA integration occurred with high frequency and resulting events have consistent expression of the gene of interest. Interestingly, it was found that, in most lines integration took place through one sided homology directed repair despite the minimal homologous sequence at the right border. An efficient transient assay for TALEN activity verification is also described.
Collapse
|
18
|
Nandy S, Zhao S, Pathak BP, Manoharan M, Srivastava V. Gene stacking in plant cell using recombinases for gene integration and nucleases for marker gene deletion. BMC Biotechnol 2015; 15:93. [PMID: 26452472 PMCID: PMC4600305 DOI: 10.1186/s12896-015-0212-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/01/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Practical approaches for multigene transformation and gene stacking are extremely important for engineering complex traits and adding new traits in transgenic crops. Trait deployment by gene stacking would greatly simplify downstream plant breeding and trait introgression into cultivars. Gene stacking into pre-determined genomic sites depends on mechanisms of targeted DNA integration and recycling of selectable marker genes. Targeted integrations into chromosomal breaks, created by nucleases, require large transformation efforts. Recombinases such as Cre-lox, on the other hand, efficiently drive site-specific integrations in plants. However, the reversibility of Cre-lox recombination, due to the incorporation of two cis-positioned lox sites, presents a major bottleneck in its application in gene stacking. Here, we describe a strategy of resolving this bottleneck through excision of one of the cis-positioned lox, embedded in the marker gene, by nuclease activity. METHODS All transgenic lines were developed by particle bombardment of rice callus with plasmid constructs. Standard molecular approach was used for building the constructs. Transgene loci were analyzed by PCR, Southern hybridization, and DNA sequencing. RESULTS We developed a highly efficient gene stacking method by utilizing powerful recombinases such as Cre-lox and FLP-FRT, for site-specific gene integrations, and nucleases for marker gene excisions. We generated Cre-mediated site-specific integration locus in rice and showed excision of marker gene by I-SceI at ~20 % efficiency, seamlessly connecting genes in the locus. Next, we showed ZFN could be used for marker excision, and the locus can be targeted again by recombinases. Hence, we extended the power of recombinases to gene stacking application in plants. Finally, we show that heat-inducible I-SceI is also suitable for marker excision, and therefore could serve as an important tool in streamlining this gene stacking platform. CONCLUSIONS A practical approach for gene stacking in plant cell was developed that allows targeted gene insertions through rounds of transformation, a method needed for introducing new traits into transgenic lines for their rapid deployment in the field. By using Cre-lox, a powerful site-specific recombination system, this method greatly improves gene stacking efficiency, and through the application of nucleases develops marker-free, seamless stack of genes at pre-determined chromosomal sites.
Collapse
Affiliation(s)
- Soumen Nandy
- Department of Crop, Soil & Environmental Science, 115 Plant Science Building, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Shan Zhao
- Department of Crop, Soil & Environmental Science, 115 Plant Science Building, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Bhuvan P Pathak
- Department of Crop, Soil & Environmental Science, 115 Plant Science Building, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Muthusamy Manoharan
- Department of Agriculture, 144 Woodard Hall, University of Arkansas at Pine Bluff, Pine Bluff, AR, 71601, USA.
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental Science, 115 Plant Science Building, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
19
|
Promises and pitfalls of synthetic chromosomes in plants. Trends Biotechnol 2015; 33:189-94. [DOI: 10.1016/j.tibtech.2014.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/21/2014] [Accepted: 12/30/2014] [Indexed: 12/28/2022]
|
20
|
|
21
|
Hou L, Yau YY, Wei J, Han Z, Dong Z, Ow DW. An open-source system for in planta gene stacking by Bxb1 and Cre recombinases. MOLECULAR PLANT 2014; 7:1756-65. [PMID: 25281665 DOI: 10.1093/mp/ssu107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The rapid development of crops with multiple transgenic traits arouses the need for an efficient system for creating stacked cultivars. Most major crops rely on classical breeding to introgress the transgene from a laboratory variety to the numerous cultivars adapted to different growing regions. Even with vegetative propagated crops, genetic crosses are conducted during varietal improvement prior to vegetative cloning. The probability to assort the 'x' number of transgenic loci into a single genome may seem trivial, (¼) (x) for a diploid species, but given the 'y' number of other nontransgenic traits that breeders also need to assemble into the same genome, the (¼) (x+y) probability for a 'breeding stack' could quickly make the line conversion process unmanageable. Adding new transgenes onto existing transgenic varieties without creating a new segregating locus would require site-specific integration of new DNA at the existing transgenic locus. Here, we tested a recombinase-mediated gene-stacking scheme in tobacco. Sequential site-specific integration was mediated by the mycobacteriophage Bxb1 integrase-catalyzed recombination between attP and attB sites. Transgenic DNA no longer needed after integration was excised by Cre recombinase-mediated recombination of lox sites. Site-specific integration occurred in ~10% of the integration events, with half of those events usable as substrates for a next round of gene stacking. Among the site-specific integrants, however, a third experienced gene silencing. Overall, precise structure and reproducible expression of the sequentially added triple traits were obtained at an overall rate of ~3% of the transformed clones--a workable frequency for the development of commercial cultivars. Moreover, since neither the Bxb1-att nor the Cre-lox system is under patent, there is freedom to operate.
Collapse
Affiliation(s)
- Lili Hou
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yuan-Yeu Yau
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China Former Affiliation, Plant Gene Expression Center, USDA-ARS & Plant & Microbial Biology, University of California-Berkeley, 800 Buchanan St., Albany, CA 94710, USA
| | - Junjie Wei
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhiguo Han
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China
| | - Zhicheng Dong
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China
| | - David W Ow
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China Former Affiliation, Plant Gene Expression Center, USDA-ARS & Plant & Microbial Biology, University of California-Berkeley, 800 Buchanan St., Albany, CA 94710, USA
| |
Collapse
|
22
|
Birchler JA. Engineered minichromosomes in plants. CURRENT OPINION IN PLANT BIOLOGY 2014; 19:76-80. [PMID: 24906050 DOI: 10.1016/j.pbi.2014.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/23/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Platforms for the development of synthetic chromosomes in plants have been produced in several species using telomere mediated chromosomal truncation with the simultaneous inclusion of sites that facilitate further additions to the newly generated minichromosome. By utilizing truncated supernumerary or B chromosomes, the output of the genes on the minichromosome can be amplified. Proof of concept experiments have been successful illustrating that minichromosome platforms can be modified in vivo. Engineered minichromosomes can likely be combined with haploid breeding if they are incorporated into inducer lines given that the observations that basically inert chromosomes from haploid inducer lines can be recovered at workable frequencies in otherwise haploid plants. Future needs of synthetic chromosome development are discussed.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
23
|
Chrispeels MJ. Yes indeed, most Americans do eat GMOs every day! JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:4-6. [PMID: 24345232 DOI: 10.1111/jipb.12147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
|
24
|
De Paepe A, De Buck S, Nolf J, Van Lerberge E, Depicker A. Site-specific T-DNA integration in Arabidopsis thaliana mediated by the combined action of CRE recombinase and ϕC31 integrase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:172-184. [PMID: 23574114 DOI: 10.1111/tpj.12202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Random T-DNA integration into the plant host genome can be problematic for a variety of reasons, including potentially variable transgene expression as a result of different integration positions and multiple T-DNA copies, the risk of mutating the host genome and the difficulty of stacking well-defined traits. Therefore, recombination systems have been proposed to integrate the T-DNA at a pre-selected site in the host genome. Here, we demonstrate the capacity of the ϕC31 integrase (INT) for efficient targeted T-DNA integration. Moreover, we show that the iterative site-specific integration system (ISSI), which combines the activities of the CRE recombinase and INT, enables the targeting of genes to a pre-selected site with the concomitant removal of the resident selectable marker. To begin, plants expressing both the CRE and INT recombinase and containing the target attP site were constructed. These plants were supertransformed with a T-DNA vector harboring the loxP site, the attB sites, a selectable marker and an expression cassette encoding a reporter protein. Three out of the 35 transformants obtained (9%) showed transgenerational site-specific integration (SSI) of this T-DNA and removal of the resident selectable marker, as demonstrated by PCR, Southern blot and segregation analysis. In conclusion, our results show the applicability of the ISSI system for precise and targeted Agrobacterium-mediated integration, allowing the serial integration of transgenic DNA sequences in plants.
Collapse
Affiliation(s)
- Annelies De Paepe
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Sylvie De Buck
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jonah Nolf
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Els Van Lerberge
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
25
|
Recombinase-mediated cassette exchange (RMCE) — A rapidly-expanding toolbox for targeted genomic modifications. Gene 2013. [DOI: 10.1016/j.gene.2012.11.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Cui J, He P, Liu F, Tan J, Chen L, Fenn J. 60 years of development of the journal of integrative plant biology. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:682-702. [PMID: 22966769 DOI: 10.1111/j.1744-7909.2012.01163.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In celebration of JIPB's 60(th) anniversary, this paper summarizes and reviews the development process of the journal. To start, we offer our heartfelt thanks to JIPB's pioneer Editors-in-Chief who helped get the journal off the ground and make it successful. Academic achievement is the soul of academic journals, and this paper summarizes JIPB's course of academic development by analyzing it in four stages: the first two stages are mostly qualitative analyses, and the latter two stages are dedicated to quantitative analyses. Most-cited papers were statistically analyzed. Improvements in editing, publication, distribution and online accessibility--which are detailed in this paper--contribute to JIPB's sustainable development. In addition, JIPB's evaluation index and awards are provided with accompanying pictures. At the end of the paper, JIPB's milestones are listed chronologically. We believe that JIPB's development, from a national journal to an international one, parallels the development of the Chinese plant sciences.
Collapse
|
27
|
Nandy S, Srivastava V. Marker-free site-specific gene integration in rice based on the use of two recombination systems. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:904-12. [PMID: 22686401 DOI: 10.1111/j.1467-7652.2012.00715.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Transgene integration mediated by heterologous site-specific recombination (SSR) systems into the dedicated genomic sites has been demonstrated in a few different plant species. This approach of plant transformation generates a precise site-specific integration (SSI) structure consisting of a single copy of the transgene construct. As a result, stable transgene expression correlated with promoter strength and gene copy number is observed among independent transgenic lines and faithfully transmitted through subsequent generations. Site-specific integration approaches use selectable marker genes, removal of which is necessary for the implementation of this approach as a biotechnology application. As SSR systems are also excellent tools for excising marker genes from transgene locus, a molecular strategy involving gene integration followed by marker excision, each mediated by a distinct recombination system, was earlier proposed. Experimental validation of this approach is the focus of this work. Using FLPe-FRT system for site-specific gene integration and heat-inducible Cre-lox for marker gene excision, marker-free SSI lines were developed in the first generation itself. More importantly, progeny derived from these lines inherited the marker-free locus, indicating efficient germinal transmission. Finally, as the transgene expression from SSI locus was not altered upon marker excision, this method is suitable for streamlining the production of marker-free SSI lines.
Collapse
Affiliation(s)
- Soumen Nandy
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
28
|
Kapusi E, Kempe K, Rubtsova M, Kumlehn J, Gils M. phiC31 integrase-mediated site-specific recombination in barley. PLoS One 2012; 7:e45353. [PMID: 23024817 PMCID: PMC3443236 DOI: 10.1371/journal.pone.0045353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 08/17/2012] [Indexed: 12/28/2022] Open
Abstract
The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP), which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F(1), even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity.
Collapse
Affiliation(s)
- Eszter Kapusi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Katja Kempe
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Myroslava Rubtsova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Mario Gils
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
- * E-mail:
| |
Collapse
|
29
|
Curtin SJ, Voytas DF, Stupar RM. Genome Engineering of Crops with Designer Nucleases. THE PLANT GENOME 2012; 5:42-50. [PMID: 0 DOI: 10.3835/plantgenome2012.06.0008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Shaun J. Curtin
- Dep. of Agronomy and Plant Genetics; Univ. of Minnesota; St. Paul MN 55108
| | - Daniel F. Voytas
- Dep. of Genetics, Cell Biology, and Development and Center for Genome Engineering; Univ. of Minnesota; Minneapolis MN 55455
| | - Robert M. Stupar
- Dep. of Agronomy and Plant Genetics; Univ. of Minnesota; St. Paul MN 55108
| |
Collapse
|
30
|
Gene deletor: a new tool to address gene flow and food safety concerns over transgenic crop plants. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1195-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Harwood WA. Advances and remaining challenges in the transformation of barley and wheat. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1791-8. [PMID: 22140237 DOI: 10.1093/jxb/err380] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Highly efficient and cost-effective transformation technologies are essential for studying gene function in the major cereal crops, wheat and barley. Demand for efficient transformation systems to allow over-expression, or RNAi-mediated silencing of target genes, is greatly increasing. This is due to technology advances, such as rapid genome sequencing, enhancing the rate of gene discovery and thus leading to a large number of genes requiring functional analysis through transformation pipelines. Barley can be transformed at very high efficiency but the methods are genotype-dependent. Wheat is more difficult to transform, however, recent advances are also allowing the development of high-throughput transformation systems in wheat. For many gene function studies, barley can be used as a model for wheat due to its highly efficient transformation rates and smaller, less complex genome. An ideal transformation system needs to be extremely efficient, simple to perform, inexpensive, genotype-independent, and give the required expression of the transgene. Considerable progress has been made in enhancing transformation efficiencies, controlling transgene expression and in understanding and manipulating transgene insertion. However, a number of challenges still remain, one of the key ones being the development of genotype-independent transformation systems for wheat and barley.
Collapse
Affiliation(s)
- Wendy A Harwood
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
32
|
Yang WC, Wan J. Transgenic crops: an option for future agriculture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:510-511. [PMID: 21733120 DOI: 10.1111/j.1744-7909.2011.01064.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|