1
|
Wu H, Cen Y, Lu Y, Dan P, Li Y, Dan X, Mo Z. Role of chitin synthases CHS1 and CHS2 in biosynthesis of the cyst wall of Cryptocaryon irritans. Int J Biol Macromol 2024; 280:136143. [PMID: 39357726 DOI: 10.1016/j.ijbiomac.2024.136143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Cryptocaryon irritans, a protozoan parasite that infects marine fish, is characterized by a complex life cycle that includes a cyst-forming reproductive phase. However, the composition of the cyst wall and mechanism of its formation remain unclear. In this study, we identified chitin as a key component of the cyst wall using calcofluor white and wheat germ agglutinin, with Fourier-transform infrared spectroscopy confirming its β-form structure. Two chitin synthase genes, CHS1 and CHS2, were identified as being expressed throughout the life cycle and show close phylogenetic relationships with chitin synthase from ciliates. Incubation with specific anti-CHS1 and -CHS2 antibodies significantly reduced both the thickness and chitin content of the cyst wall, highlighting the critical role of these enzymes in chitin biosynthesis. Treatment with benzoylureas, which inhibit chitin synthesis, caused thinning of the cyst wall and downregulation of CHS gene expression, resulting in an 84 % reduction in the hatching rate after treatment with 0.01 mM CuSO4 compared with control tomonts. Western blot analysis demonstrated that recombinant CHS proteins are immunogenic, and tomonts from CHS-immunized grouper exhibited reduced size. These findings bridge a crucial knowledge gap in understanding of the C. irritans cyst wall and highlight promising targets for infection prevention and control strategies.
Collapse
Affiliation(s)
- Huicheng Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yihao Cen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yipei Lu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Pengbo Dan
- International Department, Affiliated High School of South China Normal University, Guangzhou, China
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
2
|
Ren M, Lu J, Li D, Yang J, Zhang Y, Dong J, Niu Y, Zhou X, Zhang X. Identification and Functional Characterization of Two Chitin Synthases in the Black Cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:574-583. [PMID: 36757382 DOI: 10.1093/jee/toac193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 05/30/2023]
Abstract
The black cutworm, Agrotis ipsilon (Hufnagel), a seasonal migrant and a prolific generalist, can feed on nearly all vegetables and grain crops, causing considerable economic impacts on a global scale. Given its cryptic nature, A. ipsilon management has been extremely challenging. Chitin synthase (CHS), a key enzyme involved in chitin biosynthetic pathway and crucially important for the growth and development of insects, is the molecular target of chitin synthesis inhibitors, a group of broad-spectrum insecticides that is compatible with Integrated Pest Management practices. In this study, we investigated the potential of targeting chitin synthases to control A. ipsilon. As a result, two chitin synthases, AiCHS1 and AiCHS2, were identified and cloned from A. ipsilon. The temporal-spatial distribution study showed that AiCHS1 was predominantly expressed at the pupal stage and most abundant among tissues of head capsule and integument, while AiCHS2 was mainly expressed at the sixth instar larval stage and tissues of foregut and midgut. RNAi-based functional study confirmed gene silencing caused significant reduction in the expression levels of the corresponding mRNA, as well as resulted in abnormal pupation and mortality, respectively. Furthermore, under the treatment of lufenuron, a chitin synthesis inhibitor, A. ipsilon responded with an elevated expression in AiCHS1 and AiCHS2, while larvae showed difficulty in shedding old cuticle, and a cumulative mortality of 69.24% at 48 h. In summary, chitin synthases are crucial for chitin biosynthesis in A. ipsilon and can be targeted for the control (e.g., RNAi-based biopesticides) of this devastating insect pest.
Collapse
Affiliation(s)
- Meifeng Ren
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Junjiao Lu
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Daqi Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Jing Yang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Yuying Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jinming Dong
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Yanbing Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Xianhong Zhang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
3
|
Chen W, Cao P, Liu Y, Yu A, Wang D, Chen L, Sundarraj R, Yuchi Z, Gong Y, Merzendorfer H, Yang Q. Structural basis for directional chitin biosynthesis. Nature 2022; 610:402-408. [PMID: 36131020 PMCID: PMC9556331 DOI: 10.1038/s41586-022-05244-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Chitin, the most abundant aminopolysaccharide in nature, is an extracellular polymer consisting of N-acetylglucosamine (GlcNAc) units1. The key reactions of chitin biosynthesis are catalysed by chitin synthase2-4, a membrane-integrated glycosyltransferase that transfers GlcNAc from UDP-GlcNAc to a growing chitin chain. However, the precise mechanism of this process has yet to be elucidated. Here we report five cryo-electron microscopy structures of a chitin synthase from the devastating soybean root rot pathogenic oomycete Phytophthora sojae (PsChs1). They represent the apo, GlcNAc-bound, nascent chitin oligomer-bound, UDP-bound (post-synthesis) and chitin synthase inhibitor nikkomycin Z-bound states of the enzyme, providing detailed views into the multiple steps of chitin biosynthesis and its competitive inhibition. The structures reveal the chitin synthesis reaction chamber that has the substrate-binding site, the catalytic centre and the entrance to the polymer-translocating channel that allows the product polymer to be discharged. This arrangement reflects consecutive key events in chitin biosynthesis from UDP-GlcNAc binding and polymer elongation to the release of the product. We identified a swinging loop within the chitin-translocating channel, which acts as a 'gate lock' that prevents the substrate from leaving while directing the product polymer into the translocating channel for discharge to the extracellular side of the cell membrane. This work reveals the directional multistep mechanism of chitin biosynthesis and provides a structural basis for inhibition of chitin synthesis.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yuansheng Liu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ailing Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dong Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lei Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rajamanikandan Sundarraj
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yong Gong
- Center for Multi-disciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Hans Merzendorfer
- Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Siegen, Germany
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- School of Bioengineering, Dalian University of Technology, Dalian, China.
| |
Collapse
|
4
|
Kato K, Okamura K, Hiki K, Kintsu H, Nohara K, Yamagishi T, Nakajima N, Watanabe H, Yamamoto H. Potential differences in chitin synthesis ability cause different sensitivities to diflubenzuron among three strains of Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106071. [PMID: 34995867 DOI: 10.1016/j.aquatox.2021.106071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Ecotoxicity testing of crustaceans using Daphnia magna has been implemented in the chemical management systems of various countries. While the chemical sensitivity of D. magna varies depending on genetically different clonal lineages, the strain used in ecotoxicity tests, including the acute immobilization test (OECD TG202), has not been specified. We hypothesized that comprehensive gene expression profiles could provide useful information on phenotypic differences among strains, including chemical sensitivity. To test this hypothesis, we performed mRNA sequencing on three different strains (NIES, England, and Clone 5) of D. magna under culture conditions. The resulting expression profile of the NIES strain was clearly different compared to the profiles of the other two strains. Gene ontology (GO) enrichment analysis suggested that chitin metabolism was significantly enriched in the NIES strain compared to that in the England strain. Consistent with the GO analysis, evidence of high levels of chitin metabolism in the NIES strain were observed across multiple levels of biological organization, such as expression of chitin synthase genes, chitin content, and chitinase activity, which suggested that the different strains would exhibit different sensitivities to chemicals used to inhibit chitin synthesis. We found that among all strains, the NIES strain was more tolerant to diflubenzuron, a chitin synthesis inhibitor, with a 14-fold difference in the 48 h-EC50 value for the acute immobilization test compared to the England strain. The present study demonstrates that the differences among strains in chitin metabolism may lead to sensitivity difference to diflubenzuron, and serves as a case study of the usefulness of comprehensive gene expression profiles in finding sensitivity differences.
Collapse
Affiliation(s)
- Kota Kato
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan; Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kazuyuki Okamura
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kyoshiro Hiki
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hiroyuki Kintsu
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Keiko Nohara
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Takahiro Yamagishi
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan; Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Nobuyoshi Nakajima
- Biodiversity Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Haruna Watanabe
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan; Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hiroshi Yamamoto
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan; Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| |
Collapse
|
5
|
Schmid S, Song Y, Tollefsen KE. AOP Report: Inhibition of Chitin Synthase 1 Leading to Increased Mortality in Arthropods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2112-2120. [PMID: 33818824 DOI: 10.1002/etc.5058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 05/22/2023]
Abstract
Arthropods (including insects, crustaceans, and arachnids) rely on the synthesis of chitin to complete their life cycles (Merzendorfer 2011). The highly conserved chitin synthetic process and the absence of this process in vertebrates make it an exploitable target for pest management and veterinary medicines (Merzendorfer 2013; Junquera et al. 2019). Susceptible, nontarget organisms, such as insects and aquatic invertebrates, exposed to chitin synthesis inhibitors may suffer population declines, which may have a negative impact on ecosystems and associated services. Hence, it is important to properly identify, prioritize, and regulate relevant chemicals posing potential hazards to nontarget arthropods. The need for a more cost-efficient and mechanistic approach in risk assessment has been clearly evident and triggered the development of the adverse outcome pathway (AOP) framework (Ankley et al. 2010). An AOP links a molecular initiating event (MIE) through key events (KEs) to an adverse outcome. The mechanistic understanding of the underlying toxicological processes leading to a regulation-relevant adverse outcome is necessary for the utilization of new approach methodologies (NAMs) and efficient coverage of wider chemical and taxonomic domains. In the last decade, the AOP framework has gained traction and expanded within the (eco)toxicological research community. However, there exists a lack of mature invertebrate AOPs describing molting defect-associated mortality triggered by direct inhibition of relevant enzymes in the chitin biosynthetic pathway (chitin synthesis inhibitors) or interference with associated endocrine systems by environmental chemicals (endocrine disruptors). Arthropods undergo molting to grow and reproduce (Heming 2018). This process is comprised of the synthesis of a new exoskeleton, followed by the exuviation of the old exoskeleton (Reynolds 1987). The arthropod exoskeleton (cuticle) can be divided into 2 layers, the thin and nonchitinous epicuticle, which is the outermost layer of the cuticle, and the underlying chitinous procuticle. A single layer of epithelial cells is responsible for the synthesis and secretion of both cuticular layers (Neville 1975). The cuticle protects arthropods from predators and desiccation, acts as a physical barrier against pathogens, and allows for locomotion by providing support for muscular function (Vincent and Wegst 2004). Because the procuticle mainly consists of chitin microfibrils embedded in a matrix of cuticular proteins supplemented by lipids and minerals in insects (Muthukrishnan et al. 2012) and crustaceans (Cribb et al. 2009; Nagasawa 2012), chitin is a determinant factor for the appropriate composition of the cuticle and successful molting (Cohen 2001). A detailed overview of the endocrine mechanisms regulating chitin synthesis is given in Supplemental Data, Figure S1. The shedding of the old exoskeleton in insects is mediated by a sequence of distinct muscular contractions, the ecdysis motor program (EMP; Ayali 2009; Song et al. 2017a). Like the expression of chitin synthase isoform 1 (CHS-1), the expression of peptide hormones regulating the EMP is also controlled by ecdysteroids (Antoniewski et al. 1993; Gagou et al. 2002; Ayali 2009). Cuticular chitin is polymerized from uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) by the transmembrane enzyme CHS-1, which is localized in the epithelial plasma membrane in insects (Locke and Huie 1979; Binnington 1985; Merzendorfer and Zimoch 2003; Merzendorfer 2006). Because crustaceans are also dependent on the synthesis of chitin, the underlying mechanisms are believed to be similar, although less is known about different CHS isoforms and their localization (Rocha et al. 2012; Qian et al. 2014; Uddowla et al. 2014; Harðardóttir et al. 2019). Disruption of either chitin synthesis or the upstream endocrine pathways can lead to lethal molting disruption (Arakawa et al. 2008; Merzendorfer et al. 2012; Song et al. 2017a, 2017b). In the case of chitin synthesis inhibition, molting disruption can be referred to as "premature molting." If ecdysis cannot be completed because of decreased chitin synthesis, the organism may not successfully molt. Even if ecdysis can be completed on inhibition of chitin synthesis, the organism may not survive because of the poor integrity of the new cuticle. These effects are observed in arthropods following molting, which fail to survive subsequent molts (Arakawa et al. 2008; Chen et al. 2008) or animals being stuck in their exuviae (Wang et al. 2019) and ultimately dying as a result of insufficient food or oxygen intake (Camp et al. 2014; Song et al. 2017a). The term "premature molting" is used to differentiate from the term "incomplete ecdysis," which describes inhibition of ecdysis on a behavioral level, namely through reduction of the EMP (Song et al. 2017a). The present AOP describes molting-associated mortality through direct inhibition of the enzyme CHS-1. It expands the small but increasing number of invertebrate AOPs that have relevance to arthropods, the largest phylum within the animal kingdom (Bar-On et al. 2018). The development of this AOP will be useful in further research and regulatory initiatives related to assessment of CHS inhibitors and identification of critical knowledge gaps and may suggest new strategies for ecotoxicity testing efforts. Environ Toxicol Chem 2021;40:2112-2120. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Simon Schmid
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - You Song
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
| | - Knut Erik Tollefsen
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Ranganathan S, Ilavarasi AV, Palaka BK, Kuppusamy D, Ampasala DR. Cloning, functional characterization and screening of potential inhibitors for Chilo partellus chitin synthase A using in silico, in vitro and in vivo approaches. J Biomol Struct Dyn 2020; 40:1416-1429. [PMID: 33000693 DOI: 10.1080/07391102.2020.1827034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chitin synthase (CHS) is one of the crucial enzymes that play an essential role in chitin synthesis during the molting process, and it is considered to be the specific target to control insect pests. Currently, there are no potent inhibitors available in the market, which specifically target this enzyme. Pyrimidine nucleoside peptide, nikkomycin Z, binds to nucleotide-binding sites of fungal and insect CHS. But, their mode of action is still fragmentary due to the lack of a 3Dstructure of CHS. Chilo partellus is a severe pest insect of major food crops such as maize and sorghum, in an attempt to target integument expressed cuticular CpCHS. The CpChsA cDNA was cloned, and subsequently, their developmental and tissue-specific expression was studied. The 3D structure of the CHS catalytic domain was modeled, after which natural compounds were screened using a virtual screening workflow and resulted in the identification of five hit molecules. Molecular dynamics simulations were performed to investigate the dynamics and interactions of hits with CpCHS. The obtained results revealed that the compounds kasugamycin, rutin and robinin could act as potent inhibitors of CpCHS. All three molecules were observed to significantly reduce the chitin production as validated using in vitro and in vivo studies. Thus, this study aims to provide a set of novel inhibitor molecules against CpCHS for controlling the pest population. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Bhagath Kumar Palaka
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Dheebika Kuppusamy
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Dinakara Rao Ampasala
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
7
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Effects of chitin synthesis inhibitor treatment on Lepeophtheirus salmonis (Copepoda, Caligidae) larvae. PLoS One 2019; 14:e0222520. [PMID: 31545833 PMCID: PMC6756749 DOI: 10.1371/journal.pone.0222520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 01/30/2023] Open
Abstract
The salmon louse (Lepeophtheirus salmonis) is an ectoparasite infecting Atlantic salmon (Salmo salar), which causes substantial problems to the salmon aquaculture and threatens wild salmon. Chitin synthesis inhibitors (CSIs) are used to control L. salmonis in aquaculture. CSIs act by interfering with chitin formation and molting. In the present study, we investigated the action of four CSIs: diflubenzuron (DFB), hexaflumuron (HX), lufenuron (LF), and teflubenzuron (TFB) on larval molt. As the mode of action of CSIs remains unknown, we selected key enzymes in chitin metabolism and investigated if CSI treatment influenced the transcriptional level of these genes. All four CSIs interfered with the nauplius II molt to copepodids in a dose-dependent manner. The EC50 values were 93.2 nM for diflubenzuron, 1.2 nM for hexaflumuron, 22.4 nM for lufenuron, and 11.7 nM for teflubenzuron. Of the investigated genes, only the transcriptional level of L. salmonis chitin synthase 1 decreased significantly in hexaflumuron and diflubenzuron-treated larvae. All the tested CSIs affected the molt of nauplius II L. salmonis larvae but at different concentrations. The larvae were most sensitive to hexaflumuron and less sensitive to diflubenzuron. None of the CSIs applied had a strong impact on the transcriptional level of chitin synthesis or chitinases genes in L. salmonis. Further research is necessary to get more knowledge of the nature of the inhibition of CSI and may require methods such as studies of protein structure and enzymological studies.
Collapse
|
9
|
Zhai Y, Fan X, Yin Z, Yue X, Men X, Zheng L, Zhang W. Identification and Functional Analysis of Chitin Synthase A in Oriental Armyworm, Mythimna separata. Proteomics 2017; 17. [PMID: 28941069 DOI: 10.1002/pmic.201700165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/01/2017] [Indexed: 11/09/2022]
Abstract
Chitin synthases are very important enzymes for chitin synthesis in various species, which makes them a specific target of insecticides. In the present study, the function of the chitin synthase A (CHSA) gene isolated from Mythimna separate is investigated. The majority of dsMysCHSA treated larvae (89.50%) exhibit lethal phenotypes, including three phenotypes with severe cuticle deformations. The dsMysCHSA treatment in adult females affects oogenesis, and significantly reduce the ovary size and the oviposition number compared with controls. To determine how MysCHSA affects female fecundity, combined analyses of RNA-sequencing (RNA-Seq) transcriptome and TMT proteome (tandem mass tags) data in M. separata after treatment with MysCHSA-RNAi is performed. The differentially expressed proteins and genes affect fecundity-related proteins, energy metabolism, fatty acid metabolism, amino sugars, and nucleotide sugar metabolism pathways. Taken together, these results suggest that MysCHSA acts on M. separata ecdysis and fecundity, and has the potential as a target gene for pest control.
Collapse
Affiliation(s)
- Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaobin Fan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Xiangzhao Yue
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xingyuan Men
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
10
|
Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents. Eur J Med Chem 2016; 108:166-176. [DOI: 10.1016/j.ejmech.2015.11.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 11/22/2022]
|