1
|
Zhang W, Chen W, Pan H, Sanaeifar A, Hu Y, Shi W, Guo J, Ding L, Zhou J, Li X, He Y. Rapid identification of the aging time of Liupao tea using AI-multimodal fusion sensing technology combined with analysis of tea polysaccharide conjugates. Int J Biol Macromol 2024; 278:134569. [PMID: 39122062 DOI: 10.1016/j.ijbiomac.2024.134569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Identifying the aging time of Liupao Tea (LPT) presents a persistent challenge. We utilized an AI-Multimodal fusion method combining FTIR, E-nose, and E-tongue to discern LPT's aging years. Compared to single-source and two-source fusion methods, the three-source fusion significantly enhanced identifying accuracy across all four machine learning algorithms (Decision tree, Random forest, K-nearest neighbor, and Partial least squares Discriminant Analysis), achieving optimal accuracy of 98-100 %. Physicochemical analysis revealed monotonic variations in tea polysaccharide (TPS) conjugates with aging, observed through SEM imaging as a transition from lamellar to granular TPS conjugate structures. These quality changes were reflected in FTIR spectral characteristics. Two-dimensional correlation spectroscopy (2D-COS) identified sensitive wavelength regions of FTIR from LPT and TPS conjugates, indicating a high similarity in spectral changes between TPS conjugates and LPT with aging years, highlighting the significant role of TPS conjugates variation in LPT quality. Additionally, we established an index for evaluating quality of aging, which is sum of three fingerprint peaks (1029 cm-1, 1635 cm-1, 2920 cm-1) intensities. The index could effectively signify the changes in aging years on macro-scale (R2 = 0.94) and micro-scale (R2 = 0.88). These findings demonstrate FTIR's effectiveness in identifying aging time, providing robust evidence for quality assessment.
Collapse
Affiliation(s)
- Wenkai Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Hongjing Pan
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Alireza Sanaeifar
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, United States
| | - Yan Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wanghong Shi
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Guo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lejia Ding
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jihong Zhou
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Yao J, Liu H, Ma C, Pu L, Yang W, Lei Z. A Review on the Extraction, Bioactivity, and Application of Tea Polysaccharides. Molecules 2022; 27:molecules27154679. [PMID: 35897856 PMCID: PMC9329993 DOI: 10.3390/molecules27154679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Tea is a non-alcoholic drink containing various active ingredients, including tea polysaccharides (TPSs). TPSs have various biological activities, such as antioxidant, anti-tumor, hypoglycemic, and anti-cancer activities. However, TPSs have a complex composition, which significantly limits the extraction and isolation methods, thus limiting their application. This paper provides insight into the composition, methodological techniques for isolation and extraction of the components, biological activities, and functions of TPSs, as well as their application prospects.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiwei Lei
- Correspondence: ; Tel.: +86-851-83761972
| |
Collapse
|
3
|
Characterization of Acidic Tea Polysaccharides from Yellow Leaves of Wuyi Rock Tea and Their Hypoglycemic Activity via Intestinal Flora Regulation in Rats. Foods 2022; 11:foods11040617. [PMID: 35206093 PMCID: PMC8871580 DOI: 10.3390/foods11040617] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
A bioactive acidic tea polysaccharide from yellow leaves of Wuyi rock tea was successively prepared via DEAE-52 and Superdex-200 columns. Nuclear magnetic resonance (NMR) analysis showed that the main glycosidic bonds were composed of α-l-Araf-(1→, →5)-α-l-Araf-(1→, →4)-α-d-Glcp-(1→, Arap-(1→, →6)-α-d-Glcp-(1→, →2,4)-α-l-Rhap-(1→, →3,4)-α-d-Glcp-(1→, →4)-α-d-GalAp-(1→, →4)-α-d-GalAp-(1→, α-d-Galp-(1→, →6)-β-d-Galp-(1→ and →4)-β-d-Galp-(1→. The molecular weight was 3.9285 × 104 Da. The hypoglycemic effect of acidic tea polysaccharides on streptozotocin-induced type 2 diabetes mellitus rats was evaluated through histopathology and biochemistry analysis. The acidic tea polysaccharide could improve plasma and liver lipid metabolism. Moreover, 16S rRNA gene sequencing revealed that the composition of the intestinal flora changed drastically after treatment, namely, blooms of Bifidobacterium, Blautia, Dorea, and Oscillospira, and a strong reduction in Desulfovibrio and Lactobacillus. The above results illustrated that tea polysaccharides might serve as an effective ingredient to ameliorate glucose metabolism disorders and intestinal flora in hyperglycemic rats.
Collapse
|
4
|
Zhu J, Chen Z, Zhou H, Yu C, Han Z, Shao S, Hu X, Wei X, Wang Y. Effects of extraction methods on physicochemical properties and hypoglycemic activities of polysaccharides from coarse green tea. Glycoconj J 2020; 37:241-250. [DOI: 10.1007/s10719-019-09901-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
|
5
|
Chen G, Chen R, Chen D, Ye H, Hu B, Zeng X, Liu Z. Tea Polysaccharides as Potential Therapeutic Options for Metabolic Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5350-5360. [PMID: 30474370 DOI: 10.1021/acs.jafc.8b05338] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tea polysaccharides (TPS) are regarded as some of the main bioactive constituents of tea made from the leaves and buds of the tea plant ( Camellia sinensis L.). An increasing number of studies have demonstrated that TPS can reduce the risk of type 2 diabetes, obesity, and other metabolic diseases. However, the potential mechanisms responsible for antidiabetic and antiobesogenic activities of TPS remain unclear. Therefore, the cellular and physiological mechanisms that underlie the antidiabetic and antiobesogenic effects, including antioxidant and anti-inflammation effects, inhibition of digestive enzymes, prevention of macronutrient absorption, and expression of gene and protein, were summarized in this review. Furthermore, the gastrointestinal functions of TPS and the role of gut microbiota in the prevention and treatment of metabolic diseases were discussed. It is expected that the present review will be helpful for enhancing our knowledge about the health-promoting effects of TPS on metabolic diseases and stimulating further works on TPS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha , Hunan 410128 , People's Republic of China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients , Changsha , Hunan 410128 , People's Republic of China
| |
Collapse
|
6
|
Du LL, Fu QY, Xiang LP, Zheng XQ, Lu JL, Ye JH, Li QS, Polito CA, Liang YR. Tea Polysaccharides and Their Bioactivities. Molecules 2016; 21:E1449. [PMID: 27809221 PMCID: PMC6274327 DOI: 10.3390/molecules21111449] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/17/2023] Open
Abstract
Tea (Camellia sinensis) is a beverage beneficial to health and is also a source for extracting bioactive components such as theanine, tea polyphenols (TPP) and tea polysaccharides (TPS). TPS is a group of heteropolysaccharides bound with proteins. There is evidence showing that TPS not only improves immunity but also has various bioactivities, such as antioxidant, antitumor, antihyperglycemia, and anti-inflammation. However, inconsistent results concerning chemical composition and bioactivity of TPS have been published in recent years. The advances in chemical composition and bioactivities of TPS are reviewed in the present paper. The inconsistent and controversial results regarding composition and bioactivities of TPS are also discussed.
Collapse
Affiliation(s)
- Ling-Ling Du
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
- National Tea and Tea product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Qiu-Yue Fu
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Li-Ping Xiang
- National Tea and Tea product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Curt Anthony Polito
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
7
|
Chen G, Yuan Q, Saeeduddin M, Ou S, Zeng X, Ye H. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydr Polym 2016; 153:663-678. [PMID: 27561538 DOI: 10.1016/j.carbpol.2016.08.022] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 07/31/2016] [Accepted: 08/08/2016] [Indexed: 01/18/2023]
Abstract
Tea has a long history of medicinal and dietary use. Tea polysaccharide (TPS) is regarded as one of the main bioactive constituents of tea and is beneficial for health. Over the last decades, considerable efforts have been devoted to the studies on TPS: extraction, structural feature and bioactivity of TPS. However, it has been received much less attention compared with tea polyphenols. In order to provide new insight for further development of TPS in functional foods, in present review we summarize the recent literature, update the information and put forward future perspectives on TPS covering its extraction, purification, quantitative determination techniques as well as physicochemical characterization and bioactivities.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qingxia Yuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Muhammad Saeeduddin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
8
|
Cai JX, Wang YF, Xi XG, Li H, Wei XL. Using FTIR spectra and pattern recognition for discrimination of tea varieties. Int J Biol Macromol 2015; 78:439-46. [PMID: 25818932 DOI: 10.1016/j.ijbiomac.2015.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/02/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
In order to classify typical Chinese tea varieties, Fourier transform infrared spectroscopy (FTIR) of tea polysaccharides (TPS) was used as an accurate and economical method. Partial least squares (PLS) modeling method along with a self-organizing map (SOM) neural network method was utilized due to the diversity and heterozygosis between teas. FTIR spectra results of tea extracts after spectra preprocessing were used as input data for PLS and SOM multivariate statistical analyses respectively. The predicted correlation coefficient of optimization PLS model was 0.9994, and root mean square error of calibration and cross-validation (RMSECV) was 0.03285. The features of PLS can be visualized in principal component (PC) space, contributing to discover correlation between different classes of spectra samples. After that, a data matrix consisted of the scores on the selected 3PCs computed by principle component analysis (PCA) and the characteristic spectrum data was used as inputs for training of SOM neural network. Compared with the PLS linear technique's recognition rate of 67% only, the correct recognition rate of the PLS-SOM as a non-linear classification algorithm to differentiate types of tea reaches up to 100%. And the models become reliable and provide a reasonable clustering of tea varieties.
Collapse
Affiliation(s)
- Jian-xiong Cai
- Institute of Food Engineering, College of Life & Environment Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China
| | - Yuan-feng Wang
- Institute of Food Engineering, College of Life & Environment Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China.
| | - Xiong-gang Xi
- Institute of Food Engineering, College of Life & Environment Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China
| | - Hui Li
- Shanghai Yuanzu Mengguozi Ltd., 6088 Jiasong Road, Zhaoxiang Town, Shanghai 201703, PR China
| | - Xin-lin Wei
- Institute of Food Engineering, College of Life & Environment Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China.
| |
Collapse
|
9
|
Wang D, Zhao Y, Sun Y, Yang X. Protective effects of Ziyang tea polysaccharides on CCl4-induced oxidative liver damage in mice. Food Chem 2014; 143:371-8. [DOI: 10.1016/j.foodchem.2013.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/18/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
|
10
|
Lu X, Zhao Y, Sun Y, Yang S, Yang X. Characterisation of polysaccharides from green tea of Huangshan Maofeng with antioxidant and hepatoprotective effects. Food Chem 2013; 141:3415-23. [PMID: 23993501 DOI: 10.1016/j.foodchem.2013.06.058] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/10/2013] [Accepted: 06/13/2013] [Indexed: 11/28/2022]
Abstract
This study was to examine the hepatoprotective effects of polysaccharides from green tea of Huangshan Maofeng (HMTP) against CCl4-induced oxidative damage in mice. HMTP is an acidic heteropolysaccharide with galactose (35.0%, mol.%), arabinose (28.9%) and galacturonic acid (11.3%) being the main monosaccharide components. HMTP (400 and 800 mg/kg·bw) administered orally daily for 14 days before CCl4 administration significantly reduced the impact of CCl4 toxicity on the serum markers of liver damage, alanine aminotransferase, aspartate aminotransferase, total-cholesterol and triglycerides. This method of HMTP administration also markedly restrained hepatic lipid peroxidation formation of malondialdehyde and 15-F2t isoprostanes, and elevated the antioxidant levels of hepatic glutathione and superoxide dismutase. These results together with liver histopathology indicated that HMTP exhibited hepatoprotection against CCl4-induced injury, which was found to be comparable to that of biphenyldicarboxylate. The hepatoprotective effects of HMTP may be due to both the inhibition of lipid peroxidation and the increase of antioxidant activity.
Collapse
Affiliation(s)
- Xinshan Lu
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | | | | | | | | |
Collapse
|
11
|
Cai W, Xie L, Chen Y, Zhang H. Purification, characterization and anticoagulant activity of the polysaccharides from green tea. Carbohydr Polym 2012; 92:1086-90. [PMID: 23399132 DOI: 10.1016/j.carbpol.2012.10.057] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/28/2012] [Accepted: 10/22/2012] [Indexed: 11/24/2022]
Abstract
The crude tea polysaccharides were extracted from the leaves of Camellia sinensis using deionized water. The tea polysaccharides (TPS) were further separated and purified by anion exchange chromatograph on DEAE sepharose CL-6B column to afford TPS-1, TPS-2, TPS-3 and TPS-4. The high performance gel permeation chromatograph analysis showed that the average molecular weight of polysaccharides (TPS-1, TPS-2 and TPS-3) were 20,760, 24,230 and 250,643, respectively. TPS-4 was 689, 113 and 4150, suggesting it was heterogeneous. Monosaccharide analysis detected fucose, glucosamine, rhamnose, arabinose, galactosamine, galactose, glucose, xylose, mannose, ribose, galacturonic acid and glucuronic acid in the four polysaccharide fractions. Anticoagulant activities in vitro tests showed TPS-4 could significantly prolong APTT and TT, but not PT. The result indicated TPS-4 in the regulation of coagulation initiated via the intrinsic pathway. With current findings TPS-4 should be explored as a natural potential anticoagulant.
Collapse
Affiliation(s)
- Weirong Cai
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | | | | | | |
Collapse
|
12
|
Nie SP, Xie MY. A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocoll 2011. [DOI: 10.1016/j.foodhyd.2010.04.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|