1
|
Yu WJ, Zhang Z, Fu WZ, He JW, Wang C, Zhang ZL. Association between LGR4 polymorphisms and peak bone mineral density and body composition. J Bone Miner Metab 2020; 38:658-669. [PMID: 32399675 DOI: 10.1007/s00774-020-01106-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/01/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) could affect differentiation of osteoblasts and bone mass through potentiating Wnt/β-catenin signaling. LGR4 is also relevant to glycolipid metabolism. The present study aims to explore the relationship between genetic variations in LGR4 gene and peak bone mineral density (peak BMD) and body composition phenotypes in Chinese nuclear families. MATERIALS AND METHODS 22 single-nucleotide polymorphisms (SNPs) were selected and five blocks were constructed in LGR4. Body composition (lean mass and fat mass) and peak BMD were measured by dual-energy X-ray absorptiometry (DXA). Quantitative transmission disequilibrium test (QTDT) analysis was used to explore the relationship between LGR4 genotypes and the mentioned phenotypes. RESULTS For QTDT analysis after 1000 permutations, significant within-family associations were observed between rs11029986 and total fat mass (TFM) and percentage of TFM (PFM) (P = 0.014 and 0.011, respectively), rs12787344, rs4128868, rs4923445, and rs7936621 and body mass index (BMI) (P = 0.008, 0.003, 0.046, and 0.003, respectively), rs11029986 and total hip BMD (P = 0.026), and rs12796247, rs2219783, and lumbar spine BMD (P = 0.013 and 0.027, respectively). Haplotypes GCGT and AAGC (both in block 3) were observed in significant within-family association with BMI (P = 0.003 and 0.002, respectively). CONCLUSION It is the first family-based association analysis to explore and demonstrate significant associations between LGR4 genotypes and variations of peak BMD and body composition in young Chinese men. The results are consistent with the findings that recent studies revealed, and confirm the critical relationship between LGR4 gene and both BMD and body composition.
Collapse
Affiliation(s)
- Wei-Jia Yu
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated the Sixth People's Hospital, 600 Yi-Shan Rd, Shanghai, 200233, People's Republic of China
- Department of Osteoporosis, Research Section of Geriatric Metabolic Bone Disease, Huadong Hospital Affiliated To Fudan University, Shanghai, China
| | - Zeng Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated the Sixth People's Hospital, Shanghai, China
| | - Wen-Zhen Fu
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated the Sixth People's Hospital, 600 Yi-Shan Rd, Shanghai, 200233, People's Republic of China
| | - Jin-Wei He
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated the Sixth People's Hospital, 600 Yi-Shan Rd, Shanghai, 200233, People's Republic of China
| | - Chun Wang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated the Sixth People's Hospital, 600 Yi-Shan Rd, Shanghai, 200233, People's Republic of China.
| | - Zhen-Lin Zhang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated the Sixth People's Hospital, 600 Yi-Shan Rd, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
2
|
Sandhu HS, Puri S, Sharma R, Sokhi J, Singh G, Matharoo K, Bhanwer AJS. Associating genetic variation at Perilipin 1, Complement Factor D and Adiponectin loci to the bone health status in North Indian population. Gene 2017; 610:80-89. [DOI: 10.1016/j.gene.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/09/2017] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
|
3
|
Kim KC, Chun H, Lai C, Parnell LD, Jang Y, Lee J, Ordovas JM. The association between genetic variants of RUNX2, ADIPOQ and vertebral fracture in Korean postmenopausal women. J Bone Miner Metab 2015; 33:173-9. [PMID: 24570271 DOI: 10.1007/s00774-014-0570-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/16/2014] [Indexed: 01/10/2023]
Abstract
Contrary to the traditional belief that obesity acts as a protective factor for bone, recent epidemiologic studies have shown that body fat might be a risk factor for osteoporosis and bone fracture. Accordingly, we evaluated the association between the phenotypes of osteoporosis or vertebral fracture and variants of obesity-related genes, peroxisome proliferator-activated receptor-gamma (PPARG), runt-related transcription factor 2 (RUNX2), leptin receptor (LEPR), and adiponectin (ADIPOQ). In total, 907 postmenopausal healthy women, aged 60-79 years, were included in this study. BMD and biomarkers of bone health and adiposity were measured. We genotyped for four single nucleotide polymorphisms (SNPs) from four genes (PPARG, RUNX2, LEPR, ADIPOQ). A general linear model for continuous dependent variables and a logistic regression model for categorical dependent variables were used to analyze the statistical differences among genotype groups. Compared with the TT subjects at rs7771980 in RUNX2, C-carrier (TC + CC) subjects had a lower vertebral fracture risk after adjusting for age, smoking, alcohol, total calorie intake, total energy expenditure, total calcium intake, total fat intake, weight, body fat. Odds ratio (OR) and 95% interval (CI) for the vertebral fracture risk was 0.55 (95% CI 0.32-0.94). After adjusting for multiple variables, the prevalence of vertebral fracture was highest in GG subjects at rs1501299 in ADIPOQ (p = 0.0473). A high calcium intake (>1000 mg/day) contributed to a high bone mineral density (BMD) in GT + TT subjects at rs1501299 in ADIPOQ (p for interaction = 0.0295). Even if the mechanisms between obesity-related genes and bone health are not fully established, the results of our study revealed the association of certain SNPs from obesity-related genes with BMD or vertebral fracture risk in postmenopausal Korean women.
Collapse
Affiliation(s)
- Kyong-Chol Kim
- Department of Family Medicine, Chaum Hospital, Cha University, Seoul, Korea,
| | | | | | | | | | | | | |
Collapse
|
4
|
Xiao WJ, Ke YH, He JW, Zhang H, Yu JB, Hu WW, Gu JM, Gao G, Yue H, Wang C, Hu YQ, Li M, Liu YJ, Fu WZ, Zhang ZL. Polymorphisms in the human ALOX12 and ALOX15 genes are associated with peak bone mineral density in Chinese nuclear families. Osteoporos Int 2012; 23:1889-97. [PMID: 22089472 DOI: 10.1007/s00198-011-1835-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/06/2011] [Indexed: 10/15/2022]
Abstract
SUMMARY Association between ten single-nucleotide polymorphisms (SNPs) in the human ALOX12 and ALOX15 genes and variations in peak bone mineral density (BMD) in a large sample of Chinese nuclear families with female offspring using the quantitative transmission disequilibrium test (QTDT). Our results suggest that the genetic polymorphisms in both human ALOX12 and ALOX15 may contribute to variations in the peak BMD of Chinese women. INTRODUCTION The aim of this study was to investigate whether polymorphisms in the human ALOX12 and ALOX15 genes are associated with variations in peak BMD in Chinese nuclear families with female offspring. METHODS Each five SNPs in the ALOX12 and ALOX15 genes were genotyped in a total of 1,260 individuals from 401 Chinese nuclear families. The BMD of the lumbar spine, femoral neck and total hip was measured by dual-energy X-ray absorptiometry. We tested whether a single SNP or a haplotype was associated with peak BMD variations using the QTDT. RESULTS Using QTDT to measure within-family associations in ALOX15, we observed a significant association between rs916055 and BMD in the lumbar spine (p = 0.027 in the permutation 1,000 test). However, in ALOX12, rs312470 was significantly associated with BMD in the femoral neck (p = 0.029 and p = 0.036 in the permutation 1,000 test). The results of a haplotype analysis supported the findings of the single locus test for ALOX15. CONCLUSIONS Our results suggest that the genetic polymorphisms in both human ALOX12 and ALOX15 may contribute to variations in the peak BMD of Chinese women.
Collapse
Affiliation(s)
- W-J Xiao
- Metabolic Bone Disease and Genetics Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, 200233, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Yue H, He JW, Zhang H, Wang C, Hu WW, Gu JM, Ke YH, Fu WZ, Hu YQ, Li M, Liu YJ, Wu SH, Zhang ZL. Contribution of myostatin gene polymorphisms to normal variation in lean mass, fat mass and peak BMD in Chinese male offspring. Acta Pharmacol Sin 2012; 33:660-7. [PMID: 22426697 DOI: 10.1038/aps.2012.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIM Myostatin gene is a member of the transforming growth factor-β (TGF-β) family that negatively regulates skeletal muscle growth. Genetic polymorphisms in Myostatin were found to be associated with the peak bone mineral density (BMD) in Chinese women. The purpose of this study was to investigate whether myostatin played a role in the normal variation in peak BMD, lean mass (LM), and fat mass (FM) of Chinese men. METHODS Four hundred male-offspring nuclear families of Chinese Han ethnic group were recruited. Anthropometric measurements, including the peak BMD, body LM and FM were measured using dual-energy X-ray absorptiometry (DXA). The single nucleotide polymorphisms (SNPs) studied were tag-SNPs selected by sequencing. Both rs2293284 and +2278GA were genotyped using TaqMan assay, and rs3791783 was genotyped with PCR-restriction fragment length polymorphism (RFLP) analysis. The associations of the SNPs with anthropometric variations were analyzed using the quantitative transmission disequilibrium test (QTDT). RESULTS Using QTDT to detect within-family associations, neither single SNP nor haplotype was found to be associated with peak BMD at any bone site. However, rs3791783 was found to be significantly associated with fat mass of the trunk (P<0.001). Moreover, for within-family associations, haplotypes AGG, AAA, and TGG were found to be significantly associated with the trunk fat mass (all P<0.001). CONCLUSION Our results suggest that genetic variation within myostatin may play a role in regulating the variation in fat mass in Chinese males. Additionally, the myostatin gene may be a candidate that determines body fat mass in Chinese men.
Collapse
|
6
|
Association of ALOX15 gene polymorphisms with obesity-related phenotypes in Chinese nuclear families with male offspring. Acta Pharmacol Sin 2012; 33:201-7. [PMID: 22301860 DOI: 10.1038/aps.2011.167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM Genetic variation in ALOX12, which encoded human 12-lipoxygenase, was found to be associated with fat mass in young Chinese men. The objective of this study was to investigate the relationship between single nucleotide polymorphisms (SNPs) and haplotypes in the ALOX15 gene and obesity-related phenotypes in Chinese nuclear families with male offspring. METHODS We recruited 1,296 subjects from 427 nuclear families with male offspring and genotyped five SNPs (rs9894225, rs748694, rs2619112, rs2619118, and rs916055) in the ALOX15 gene locus. The total fat mass (TFM), trunk fat mass (tFM), leg fat mass (LFM) and arm fat mass (AFM) were measured using dual-energy X-ray absorptiometry (DXA). The percentage of fat mass (PFM) was the ratio of TFM and body weight. The association between SNPs and haplotypes of ALOX15 and obesity-related phenotypic variation was measured using quantitative transmission disequilibrium test (QTDT). RESULTS Using QTDT to measure family-based genetic association, we found that rs916055 had a statistically significant association with PFM (P=0.038), whereas rs916055 had a marginal but statistically insignificant association with tFM (P=0.093). The multiple-parameter 1000 permutations test agreed with the family-based association results: both showed that rs916055 had a statistically significant association with PFM (P=0.033). CONCLUSION rs916055 in ALOX15 gene was significantly associated with the percentage of fat mass in Chinese nuclear families with male offspring in the family-based association study using QTDT approach.
Collapse
|
7
|
Xiao WJ, He JW, Zhang H, Hu WW, Gu JM, Yue H, Gao G, Yu JB, Wang C, Ke YH, Fu WZ, Zhang ZL. ALOX12 polymorphisms are associated with fat mass but not peak bone mineral density in Chinese nuclear families. Int J Obes (Lond) 2010; 35:378-86. [PMID: 20697415 PMCID: PMC3061002 DOI: 10.1038/ijo.2010.157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Arachidonate 12-lipoxygenase (ALOX12) is a member of the lipoxygenase superfamily, which catalyzes the incorporation of molecular oxygen into polyunsaturated fatty acids. The products of ALOX12 reactions serve as endogenous ligands for peroxisome proliferator-activated receptor γ (PPARG). The activation of the PPARG pathway in marrow-derived mesenchymal progenitors stimulates adipogenesis and inhibits osteoblastogenesis. Our objective was to determine whether polymorphisms in the ALOX12 gene were associated with variations in peak bone mineral density (BMD) and obesity phenotypes in young Chinese men. METHODS All six tagging single-nucleotide polymorphisms (SNPs) in the ALOX12 gene were genotyped in a total of 1215 subjects from 400 Chinese nuclear families by allele-specific polymerase chain reaction. The BMD at the lumbar spine and hip, total fat mass (TFM) and total lean mass (TLM) were measured using dual-energy X-ray absorptiometry. The pairwise linkage disequilibrium among SNPs was measured, and the haplotype blocks were inferred. Both the individual SNP markers and the haplotypes were tested for an association with the peak BMD, body mass index, TFM, TLM and percentage fat mass (PFM) using the quantitative transmission disequilibrium test (QTDT). RESULTS Using the QTDT, significant within-family association was found between the rs2073438 polymorphism in the ALOX12 gene and the TFM and PFM (P=0.007 and 0.012, respectively). Haplotype analyses were combined with our individual SNP results and remained significant even after correction for multiple testing. However, we failed to find significant within-family associations between ALOX12 SNPs and the BMD at any bone site in young Chinese men. CONCLUSIONS Our present results suggest that the rs2073438 polymorphism of ALOX12 contributes to the variation of obesity phenotypes in young Chinese men, although we failed to replicate the association with the peak BMD variation in this sample. Further independent studies are needed to confirm our findings.
Collapse
Affiliation(s)
- W-J Xiao
- Department of Osteoporosis, Metabolic Bone Disease and Genetic Research Unit, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang H, He JW, Gao G, Yue H, Yu JB, Hu WW, Gu JM, Hu YQ, Li M, Fu WZ, Liu YJ, Zhang ZL. Polymorphisms in the HOXD4 gene are not associated with peak bone mineral density in Chinese nuclear families. Acta Pharmacol Sin 2010; 31:977-83. [PMID: 20686522 DOI: 10.1038/aps.2010.91] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM To determine the associations between HOXD4 gene polymorphisms with peak bone mineral density (BMD) throughing measuring three tagging single nucleotide polymorphisms (tagSNPs), including rs1867863, rs13418078, and rs4972504, in HOXD4. METHODS Four hundred Chinese nuclear families with male offspring (1215 subjects) and 401 Chinese nuclear families with female offspring (1260 subjects) were recruited. BMD of the lumbar spine 1-4 (L1-4) and left proximal femur including total hip and femoral neck were measured by dual-energy X-ray absorptiometry. The quantitative transmission disequilibrium test (QTDT) was performed to investigate the association among the tagging SNPs, haplotypes and peak BMD. RESULTS Only the CC genotype was identified in rs13418078 in the Chinese population, unlike other populations. We failed to find significant within-family association among these SNPs, haplotypes and peak BMD at any bone site in either male- or female-offspring nuclear families. CONCLUSION The results suggest that genetic polymorphisms in HOXD4 may not be a major contributor to the observed variability in peak BMD in the lumbar spine and the hip in Chinese men and women.
Collapse
|
9
|
Yue H, He JW, Zhang H, Hu WW, Hu YQ, Li M, Liu YJ, Wu SH, Zhang ZL. No association between polymorphisms of peroxisome [corrected] proliferator-activated receptor-gamma gene and peak bone mineral density variation in Chinese nuclear families. Osteoporos Int 2010; 21:873-82. [PMID: 19644638 DOI: 10.1007/s00198-009-1028-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 07/06/2009] [Indexed: 11/25/2022]
Abstract
UNLABELLED Association between SNPs in polymorphism in peroxisome [corrected] proliferator-activated receptor-gamma (PPARG) and peak bone mineral density (BMD) variation of women was measured in 401 Chinese nuclear families using quantitative transmission disequilibrium test (QTDT). The peak BMD variation was not attributable to PPARG in our sample. INTRODUCTION The purpose of this study is to test whether genetic PPARG might play a role in normal variation in peak BMD. METHODS We genotyped 10 tagging SNPs in PPARG using allele-specific polymerase chain reaction and further test whether these SNPs were associated with peak BMD variation at the lumbar spine and femoral neck of women in 401 Chinese nuclear families using QTDT. Furthermore, the association between these SNPs in PPARG and BMD in 710 postmenopausal Chinese women was measured. RESULTS Using QTDT for within-family association, we failed to find that single SNP and haplotype were significantly associated with peak BMD at the lumbar spine and femoral neck. Meanwhile, we found that only rs1801282 was significantly associated with BMD at the lumbar spine in postmenopausal women (P = 0.013). CONCLUSIONS Our present results suggest, for the first time, that the genetic polymorphism in PPARG is not a major contributor to the observed variability in peak BMD at the lumbar spine and femoral neck in Chinese women.
Collapse
Affiliation(s)
- H Yue
- The Department of Osteoporosis, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gu JM, Xiao WJ, He JW, Zhang H, Hu WW, Hu YQ, Li M, Liu YJ, Fu WZ, Yu JB, Gao G, Yue H, Ke YH, Zhang ZL. Association between VDR and ESR1 gene polymorphisms with bone and obesity phenotypes in Chinese male nuclear families. Acta Pharmacol Sin 2009; 30:1634-42. [PMID: 19960008 DOI: 10.1038/aps.2009.169] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIM The goal of this study was to determine whether polymorphisms in the vitamin D receptor (VDR) and estrogen receptor alpha (ESR1) genes are associated with variations of peak bone mineral density (BMD) and obesity phenotypes in young Chinese men. METHODS A total of 1215 subjects from 400 Chinese nuclear families were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele-specific multiple PCR (ASM-PCR) analysis at the ApaI, FokI, and CDX2 sites in the VDR gene and the PvuII and XbaI sites in the ESR1 gene. BMD at the lumbar spine and hip, total fat mass, and total lean mass were measured using dual energy X-ray absorptiometry. The associations between VDR and ESR1 gene polymorphisms with peak BMD, body mass index (BMI), total fat mass, total lean mass, and percentage fat mass (PFM) were determined using quantitative transmission disequilibrium tests (QTDTs). RESULTS Using QTDTs, no significant within-family associations were obtained between genotypes or haplotypes of the VDR and ESR1 genes and peak BMD. For the obesity phenotypes, the within-family associations were significant between CDX2 genotypes and BMI (P=0.046), fat mass (P=0.004), and PFM (P=0.020). Further, PvuII was significantly associated with the variation of fat mass and PFM (P=0.002 and P=0.039, respectively). A subsequent 1000 permutations were in agreement with these within-family association results. CONCLUSION Our findings showed that VDR and ESR1 polymorphisms were associated with total fat mass in young Chinese men, but we failed to find a significant association between VDR and ESR1 genotypes and peak BMD. These findings suggested that the VDR and ESR1 genes are quantitative trait loci (QTL) underlying fat mass variation in young Chinese men.
Collapse
|
11
|
Qin YJ, Zhang ZL, Zhang H, Hu WW, Liu YJ, Hu YQ, Li M, Gu JM, He JW. Age-related changes of serum tartrate-resistant acid phosphatase 5b and the relationship with bone mineral density in Chinese women. Acta Pharmacol Sin 2008; 29:1493-8. [PMID: 19026169 DOI: 10.1111/j.1745-7254.2008.00890.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Osteoclastic activity is mainly assessed by measurement of urinary markers (eg C-terminal cross-linked telopeptides of type I collagen, N-terminal crosslinked telopeptides of type I collagen, etc), the levels of which could often be affected by renal clearance. Recently, serum tartrate-resistant acid phosphatase 5b (TRACP5b) has been used as an alternative serum marker to evaluate osteoclastic activity. We investigated the age-related changes of TRACP5b level and its association with bone mineral density (BMD) in Chinese women. METHODS Seven-hundred and twenty-two Chinese mainland women aged 20-79 years were recruited in the study. Serum TRACP5b level was measured using immunoassay to evaluate the state of bone resorption. Bone mineral density (BMD) (g/cm2) at lumbar spine 1-4 and proximal femur were measured by duelenergy X-ray absorptiometry. RESULTS The serum TRACP5b level reached a bottom value in premenopausal women aged 30-39, gradually increased in women aged 40-49, rapidly rose in women aged 50-59, and culminated with a maximum value in women aged 60-69 before a slow drop in women aged 70- 79. The average level of TRACP5b was significantly higher in postmenopausal women [(3.29+/-1.07) U/L] than in premenopausal women ([1.70+/-0.59] U/L). The levels of TRACP5b were inversely correlated with BMD at all measured sites (P<0.001). Furthermore, the level of TRACP5b was obviously higher in women with osteoporosis and osteopenia than those with normal bone mass (P<0.001). CONCLUSION We have established the reference values of serum TRACP5b in Chinese mainland women, and found that postmenopausal women had higher TRACP5b concentration than younger women. The results showed that serum TRACP5b was a sensitive and useful parameter for the evaluation of age-related changes of bone absorption.
Collapse
Affiliation(s)
- Yue-juan Qin
- The Department of Osteoporosis, Osteoporosis Research Unit, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Guo Y, Yang TL, Pan F, Xu XH, Dong SS, Deng HW. Molecular genetic studies of gene identification for osteoporosis. Expert Rev Endocrinol Metab 2008; 3:223-267. [PMID: 30764094 DOI: 10.1586/17446651.3.2.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review comprehensively summarizes the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of September 2007. It is intended to constitute a sequential update of our previously published reviews covering the available data up to the end of 2004. Evidence from candidate gene-association studies, genome-wide linkage and association studies, as well as functional genomic studies (including gene-expression microarray and proteomics) on osteogenesis and osteoporosis, are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. The major results of all studies are tabulated for comparison and ease of reference. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yan Guo
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tie-Lin Yang
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Pan
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiang-Hong Xu
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shan-Shan Dong
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hong-Wen Deng
- b The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China and Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri - Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
13
|
Zhang ZL, He JW, Qin YJ, Hu YQ, Li M, Zhang H, Hu WW, Liu YJ, Gu JM. Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families. Osteoporos Int 2008; 19:39-47. [PMID: 17703271 DOI: 10.1007/s00198-007-0435-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 06/01/2007] [Indexed: 12/15/2022]
Abstract
UNLABELLED We identified 17 polymorphisms in myostatin by sequencing, and three informative single nucleotide polymorphisms (SNPs) were selected for further observation for their association with peak BMD of women in 401 Chinese nuclear families. Our results suggest that genetic polymorphisms in myostatin likely play a role in attainment of peak BMD in Chinese women. INTRODUCTION Myostatin is a TGF-beta family member that is a negative regulator of skeletal muscle growth. MATERIALS AND METHODS We identified SNPs in myostatin by direct sequencing. Furthermore, using a quantitative transmission disequilibrium test (QTDT). we tested and further test whether SNPs were associated with peak bone mineral density (BMD) variation at the spines and hips of 401 Chinese nuclear families. We identified 17 polymorphisms in myostatin by sequencing. Next, we selected three informative SNPs for further observation of an association with peak BMD of premenopausal women in 401 Chinese nuclear families. RESULTS Using QTDT for the within-family association, we found significant association between rs2293284 and total hip, femoral neck, and trochanter BMD (all p < 0.05), while rs7570532 was associated with total hip and trochanter BMD (p = 0.034 and p = 0.035, respectively). The within-family association was significant between BMI and +2278G > A (p = 0.022). Subsequent permutations were in agreement with these significant within-family association results. Moreover, analyses of the haplotypes confer further evidence for association of rs2293284 and rs7570532 with hip peak BMD variation. CONCLUSIONS These results suggest, for the first time, the genetic polymorphisms in myostatin likely play a role in attainment of peak BMD in Chinese women.
Collapse
Affiliation(s)
- Z-L Zhang
- The Department of Osteoporosis, Osteoporosis Research Unit, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 600 Yi-Shan Rd, Shanghai, 200233, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|