1
|
Korkmaz IN, Özdemir H. Synthesis and Anticancer Potential of New Hydroxamic Acid Derivatives as Chemotherapeutic Agents. Appl Biochem Biotechnol 2022; 194:6349-6366. [PMID: 35917102 DOI: 10.1007/s12010-022-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have been shown to induce differentiation, cell cycle arrest, and apoptosis due to their low toxicity, inhibiting migration, invasion, and angiogenesis in many cancer cells. Studies show that hydroxamic acids are generally used as anticancers. For this reason, it is aimed to synthesize new derivatives of hydroxamic acids, to examine the anticancer properties of these candidate inhibitors, and to investigate the inhibition effects on some enzymes that cause multidrug resistance in cancer cells. For this reason, new (4-amino-2-methoxy benzohydroxamic acid (a), 4-amino-3-methyl benzohydroxamic acid (b), 3-amino-5-methyl benzohydroxamic acid (c)) amino benzohydroxamic acid derivatives were synthesized in this study. The effects on healthy fibroblast, lung (A549), and cervical (HeLa) cancer cells were investigated. In addition, their effects on TRXR1, GST, and GR activities, which are important for the development of chemotherapeutic strategies, were also examined. It was determined that molecule b was the most effective molecule in HeLa cancer cells with the lowest IC50 value of 0.54. It was determined that molecule c was the most effective molecules for A549 and HeLa cancer cells, with the lowest IC50 values of 0.78 mM and 0.25 mM, respectively. It was determined that b and c molecules directed cancer cells to necrosis rather than apoptosis. c molecule showed anticancer effect in A549 and HeLa cancer cells. It was found that molecule c significantly suppressed both GR and TRXR1 activities. In GST activities, however, inhibitors did not have a significant effect on cancer cells.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Faculty of Science, Department of Chemistry, Atatürk University, Erzurum, 25240, Turkey
| | - Hasan Özdemir
- Faculty of Science, Department of Chemistry, Atatürk University, Erzurum, 25240, Turkey.
| |
Collapse
|
2
|
Nandy D, Rajam SM, Dutta D. A three layered histone epigenetics in breast cancer metastasis. Cell Biosci 2020; 10:52. [PMID: 32257110 PMCID: PMC7106732 DOI: 10.1186/s13578-020-00415-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thanks to the advancement in science and technology and a significant number of cancer research programs being carried out throughout the world, the prevention, prognosis and treatment of breast cancer are improving with a positive and steady pace. However, a stern thoughtful attention is required for the metastatic breast cancer cases—the deadliest of all types of breast cancer, with a character of relapse even when treated. In an effort to explore the less travelled avenues, we summarize here studies underlying the aspects of histone epigenetics in breast cancer metastasis. Authoritative reviews on breast cancer epigenetics are already available; however, there is an urgent need to focus on the epigenetics involved in metastatic character of this cancer. Here we put forward a comprehensive review on how different layers of histone epigenetics comprising of histone chaperones, histone variants and histone modifications interplay to create breast cancer metastasis landscape. Finally, we propose a hypothesis of integrating histone-epigenetic factors as biomarkers that encompass different breast cancer subtypes and hence could be exploited as a target of larger population.
Collapse
Affiliation(s)
- Debparna Nandy
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014 India
| | - Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014 India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014 India
| |
Collapse
|
3
|
Manikandakrishnan M, Palanisamy S, Vinosha M, Kalanjiaraja B, Mohandoss S, Manikandan R, Tabarsa M, You S, Prabhu NM. Facile green route synthesis of gold nanoparticles using Caulerpa racemosa for biomedical applications. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Biogenic synthesis of gold nanoparticles from Halymenia dilatata for pharmaceutical applications: Antioxidant, anti-cancer and antibacterial activities. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Targeting the Epigenome as a Novel Therapeutic Approach for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:287-313. [DOI: 10.1007/978-981-10-6020-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
|
7
|
You BR, Park WH. Down-Regulation of Thioredoxin1 Is Involved in Death of Calu-6 Lung Cancer Cells Treated With Suberoyl Bishydroxamic Acid. J Cell Biochem 2015; 117:1250-61. [PMID: 26460805 DOI: 10.1002/jcb.25409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022]
Abstract
Suberoyl bishydroxamic acid (SBHA), a histone deacetylase (HDAC) inhibitor, can show an anticancer effect. In this study, we investigated the effects of SBHA on the growth inhibition and death of Calu-6 and NCI-H1299 cells in relation to reactive oxygen species (ROS) and antioxidant levels. SBHA inhibited the growth of Calu-6 and NCI-H1299 lung cancer cells with an IC50 of 50 µM at 72 h. This agent induced apoptosis in Calu-6 cells and triggered to a G2/M phase arrest in NCI-H1299 cells. Although it also reduced the growth of normal human pulmonary fibroblast (HPF) cells, the susceptibility of Calu-6 cells to SBHA was higher than that of HPF cells. In addition, SBHA did not affect the growth of human small airway epithelial cells (HSAEC). Regarding ROS and antioxidant levels, SBHA increased ROS level and glutathione (GSH) depletion in Calu-6 and NCI-H1299 cells whereas it decreased ROS levels in HPF and HSAEC. SBHA also decreased thioredoxin1 (Trx1) level in Calu-6 cells. Although the down-regulation of Trx1 intensified apoptosis and ROS level in SBHA-treated Calu-6 cells, the overexpression of Trx1 attenuated apoptosis and ROS level in these cells. This down-regulation of Trx1 did not affect apoptosis-signaling regulating kinase1 (ASK1) activation. In conclusion, the down-regulation of Trx1 by SBHA was closely involved in cell death in Calu-6 cells.
Collapse
Affiliation(s)
- Bo Ra You
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, JeonJu, 561-180, Republic of Korea
| | - Woo Hyun Park
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, JeonJu, 561-180, Republic of Korea
| |
Collapse
|
8
|
Kasparkova J, Kostrhunova H, Novakova O, Křikavová R, Vančo J, Trávníček Z, Brabec V. A Photoactivatable Platinum(IV) Complex Targeting Genomic DNA and Histone Deacetylases. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Kasparkova J, Kostrhunova H, Novakova O, Křikavová R, Vančo J, Trávníček Z, Brabec V. A Photoactivatable Platinum(IV) Complex Targeting Genomic DNA and Histone Deacetylases. Angew Chem Int Ed Engl 2015; 54:14478-82. [PMID: 26458068 DOI: 10.1002/anie.201506533] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/24/2015] [Indexed: 11/07/2022]
Abstract
We report toxic effects of a photoactivatable platinum(IV) complex conjugated with suberoyl-bis-hydroxamic acid in tumor cells. The conjugate exerts, after photoactivation, two functions: activity as both a platinum(II) anticancer drug and histone deacetylase (HDAC) inhibitor in cancer cells. This approach relies on the use of a Pt(IV) pro-drug, acting by two independent mechanisms of biological action in a cooperative manner, which can be selectively photoactivated to a cytotoxic species in and around a tumor, thereby increasing selectivity towards cancer cells. These results suggest that this strategy is a valuable route to design new platinum agents with higher efficacy for photodynamic anticancer chemotherapy.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno (Czech Republic).
| | - Hana Kostrhunova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Olga Novakova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Radka Křikavová
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 77146 Olomouc (Czech Republic)
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 77146 Olomouc (Czech Republic)
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 77146 Olomouc (Czech Republic)
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno (Czech Republic).,Department of Biophysics, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 77146 Olomouc (Czech Republic)
| |
Collapse
|
10
|
Yang X, Zhang N, Shi Z, Yang Z, Hu X. Histone deacetylase inhibitor suberoyl bis-hydroxamic acid suppresses cell proliferation and induces apoptosis in breast cancer cells. Mol Med Rep 2014; 11:2908-12. [PMID: 25501628 DOI: 10.3892/mmr.2014.3076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 11/14/2014] [Indexed: 11/05/2022] Open
Abstract
Suberoyl bis‑hydroxamic acid (SBHA) is a histone deacetylase inhibitor that has shown anticancer activity against numerous types of human cancer. The aim of the current study was to explore the effects of SBHA on the proliferation and apoptosis of breast cancer cells. MCF‑7 breast cancer cells were treated with different concentrations of SBHA and tested for cell viability, apoptosis and gene expression changes. The results showed that SBHA significantly inhibited the proliferation of MCF‑7 cells in a concentration‑dependent manner, as determined using a Cell Counting kit‑8 assay. SBHA‑treated MCF‑7 cells showed G0/G1 cell‑cycle arrest, coupled with elevated expression levels of p21 and p27 proteins. Hoechst 33258 staining revealed cell shrinkage, chromosomal condensation and nuclear fragmentation in MCF‑7 cells treated with SBHA. Flow cytometric analysis of Annexin V‑stained cells showed that SBHA treatment induced apoptotic cell death in a concentration‑dependent manner. Western blot analysis confirmed the upregulation of Bax and the downregulation of Bcl‑2 by SBHA. In conclusion, these results indicate that SBHA exerts cytotoxic effects against human breast cancer cells, which involves the modulation of p21, p27 and Bcl‑2 family proteins, consequently leading to cell‑cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Xinmiao Yang
- Department of Medical Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Shanghai 200240, P.R. China
| | - Ning Zhang
- Department of Medical Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Shanghai 200240, P.R. China
| | - Zeliang Shi
- Department of Radiation Oncology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Zhangyu Yang
- Department of Radiation Oncology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Cancer Hospital, Shanghai 200032, P.R. China
| |
Collapse
|
11
|
Yang X, Shi Z, Zhang N, Ou Z, Fu S, Hu X, Shen Z. Suberoyl bis-hydroxamic acid enhances cytotoxicity induced by proteasome inhibitors in breast cancer cells. Cancer Cell Int 2014; 14:107. [PMID: 25729327 PMCID: PMC4342900 DOI: 10.1186/s12935-014-0107-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/14/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Suberoyl bis-hydroxamic acid (SBHA) is a histone deacetylase (HDAC) inhibitor and exerts anti-growth effects in several malignancies including breast cancer. Proteasome inhibitors such as Bortezomib and MG-132 constitute novel anticancer agents. In this study, we investigated the synergistic antitumour activity of SBHA in combination with proteasome inhibitors. METHODS MCF-7 and MDA-MB-231 breast cancer cells were treated with SBHA, Bortezomib, and MG-132 alone or in combination for 72 h. Cell proliferation, colony formation, apoptosis and gene expression changes were examined. RESULTS SBHA, Bortezomib, and MG-132 alone significantly inhibited the proliferation and colony formation and induced apoptosis in MCF-7 and MDA-MB-231 cells. Combined treatment showed a good synergistic antitumour effect against breast cancer cells. The p53 protein level was significantly elevated by combined treatment with SBHA and proteasome inhibitors. Moreover, combined treatment increased the expression of Bax, Bcl-xS, and Bak and decreased the expression of Bcl-2. Combination of SBHA with proteasome inhibitors causes synergistic anticancer effects on breast cancer cells. The potential molecular mechanism may involve induction of p53 and modulation of the Bcl-2 family proteins. CONCLUSION These findings warrant further investigation of the therapeutic benefits of combination of SBHA with proteasome inhibitors in breast cancer.
Collapse
Affiliation(s)
- Xinmiao Yang
- Department of Radiation Oncology, Shanghai Jiao Tong University affiliated Sixth People's Hospital, 600 Yi Shan Road, Xuhui District Shanghai, 200233 China
| | - Zeliang Shi
- Department of Radiation Oncology, Shanghai Jiao Tong University affiliated Sixth People's Hospital, 600 Yi Shan Road, Xuhui District Shanghai, 200233 China
| | - Ning Zhang
- Department of Medical Oncology, Minhang Branch of Fudan, University Shanghai Cancer Center, Shanghai, China
| | - Zhouluo Ou
- Department of Breast Surgery, Breast Cancer Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shen Fu
- Department of Radiation Oncology, Shanghai Jiao Tong University affiliated Sixth People's Hospital, 600 Yi Shan Road, Xuhui District Shanghai, 200233 China
| | - Xichun Hu
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhenzhou Shen
- Department of Breast Surgery, Breast Cancer Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Dell'Aversana C, Lepore I, Altucci L. HDAC modulation and cell death in the clinic. Exp Cell Res 2012; 318:1229-44. [PMID: 22336671 DOI: 10.1016/j.yexcr.2012.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/29/2023]
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are two opposing classes of enzymes, which finely regulate the balance of histone acetylation affecting chromatin packaging and gene expression. Imbalanced acetylation has been associated with carcinogenesis and cancer progression. In contrast to genetic mutations, epigenetic changes are potentially reversible. This implies that epigenetic alterations are amenable to pharmacological interventions. Accordingly, some epigenetic-based drugs (epidrugs) have been approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for cancer treatment. Here, we focus on the biological features of HDAC inhibitors (HDACis), analyzing the mechanism(s) of action and their current use in clinical practice.
Collapse
|
13
|
Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 2011; 125:462-72. [PMID: 22112499 DOI: 10.1093/toxsci/kfr319] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The toxicological effects of zinc oxide nanoparticles (ZnO-NPs) are attracting increasing concern as the field of nanotechnology progresses. Although the literature suggests that toxicity of ZnO-NPs may be related to their dissolution, the mechanism for ZnO-NP perturbation of cytosolic zinc concentration ([Zn(2+)](c)) homeostasis remains obscure. Using FluoZin-3 and RhodZin-3, this study investigated changes in both [Zn(2+)](c) and mitochondrial free Zn(2+) concentration ([Zn(2+)](m)) under conditions of ZnO-NP treatment in vivo and in vitro. In human leukemia Jurkat cells and human lung carcinoma H1355 cells, ZnO-NP treatment resulted in an elevation of both [Zn(2+)](c) and [Zn(2+)](m). In H1355 cells, ZnO-NP treatment induced depolarization of mitochondrial membrane potential, as well as caspase-3 activation and lactic dehydrogenase (LDH) release. In our in vivo experiments, when rats were exposed to ZnO-NPs, higher [Zn(2+)](c) and [Zn(2+)](m) were recorded in both broncho-alveolar lavage (BAL) cells and white blood cells isolated from ZnO-NP-exposed rats, compared with high efficiency particulate air-filter-protected controls LDH levels were also elevated in the BAL of ZnO-NP-exposed rats compared with controls. A mechanical toxicological pathway for ZnO-NP toxicity is suggested by these results: an elevation in [Zn(2+)](c) resulting from ZnO-NP dissolution in the intracellular endosome; cytosolic Zn(2+) sequestration by mitochondria; and elevated [Zn(2+)](m) leading to mitochondrial dysfunction, caspase activation, and cell apoptosis. We conclude that exposure to ZnO-NPs interferes with the homeostasis of [Zn(2+)](c,) and that elevated [Zn(2+)](c) results in cell apoptosis.
Collapse
Affiliation(s)
- Yi-Yun Kao
- Department of Microbiology, Soochow University, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
14
|
An improved non-enzymatic "DNA ladder assay" for more sensitive and early detection of apoptosis. Cytotechnology 2011; 64:9-14. [PMID: 21948063 DOI: 10.1007/s10616-011-9395-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022] Open
Abstract
Conventional DNA ladder assay has certain shortcomings such as loss of DNA fragments during sample processing, involvement of multiple steps and requirement of expensive reagents. The present study demonstrates a rapid, easy-to-perform cost-effective method for detection of apoptotic DNA fragments with considerable improvement in the sensitivity by avoiding loss of DNA fragments. It involves a few minutes of procedure involving direct lysis of cells with dimethyl sulphoxide (DMSO), brief vortexing, addition of 2% SDS-TE buffer, and a single step of centrifugation. This cost- and time-efficient method reduces the assay time considerably and can be used for a large number of samples with excellent sensitivity.
Collapse
|
15
|
Yeung A, Bhargava RK, Ahn R, Bahna S, Kang NH, Lacoul A, Niles LP. HDAC inhibitor M344 suppresses MCF-7 breast cancer cell proliferation. Biomed Pharmacother 2011; 66:232-6. [PMID: 22436652 DOI: 10.1016/j.biopha.2011.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/05/2011] [Indexed: 11/17/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors represent a novel class of drugs that selectively induce cell cycle arrest and apoptosis in transformed cells. This study examined, for the first time, the effects of the relatively new HDAC inhibitor, M344 [4-dimethylamino-N-(6-hydroxycarbamoylhexyl)-benzamide], on the proliferation of MCF-7 breast cancer cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays revealed significant concentration- and time-dependent decreases in MCF-7 cell proliferation following treatment with M344 (1-100μM). In contrast to the significant induction of p21(waf1/cip1) mRNA expression following treatment with M344 (10μM) for 1 or 3 days, there was a significant decrease in p53 mRNA expression, although p53 protein levels were unchanged. Similar treatment with M344 also induced expression of the pro-apoptotic genes, Puma and Bax, together with the morphological features of apoptosis, in MCF-7 cells. The results of this study reinforce previous findings indicating that HDAC inhibitors are an important group of oncostatic drugs, and show that M344 is a potent suppressor of breast cancer cell proliferation.
Collapse
Affiliation(s)
- Angie Yeung
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Suberoyl bishydroxamic acid inhibits the growth of A549 lung cancer cells via caspase-dependent apoptosis. Mol Cell Biochem 2010; 344:203-10. [PMID: 20652372 DOI: 10.1007/s11010-010-0543-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/14/2010] [Indexed: 02/02/2023]
Abstract
Suberoyl bishydroxamic acid (SBHA) as a histone deacetylase (HDAC) inhibitor has various cellular effects such as cell growth and apoptosis. In the present study, we evaluated the effects of SBHA on the growth and death of A549 lung cancer cells. SBHA inhibited the growth of A549 cells with an IC(50) of approximately 50 μM at 72 h in a dose-dependent manner. DNA flow cytometric analysis indicated that SBHA induced a G2/M phase arrest of the cell cycle. This agent also induced apoptosis, as evidenced by sub-G1 cells and annexin V-FITC staining cells. SBHA-induced apoptosis was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨ(m)), Bcl-2 decrease, Bax increase, and the activation of caspase-3. All of the tested caspase inhibitors significantly rescued some cells from SBHA-induced A549 cell death. However, none of the caspase inhibitors prevented the loss of MMP (ΔΨ(m)) induced by SBHA. Intracellular reactive oxygen species (ROS) levels including O(2)(•-) were increased in 50 μM SBHA-treated A549 cells. None of the caspase inhibitors attenuated ROS levels in these cells. SBHA also elevated the number of glutathione (GSH)-depleted cells in A549 cells, which was reduced by treatment with caspase inhibitors. In conclusion, this is the first report that SBHA inhibited the growth of A549 lung cancer cells via caspase-dependent apoptosis, which was related to GSH depletion rather than changes in ROS level.
Collapse
|
17
|
Kovacic P, Edwards CL. Hydroxamic acids (therapeutics and mechanism): chemistry, acyl nitroso, nitroxyl, reactive oxygen species, and cell signaling. J Recept Signal Transduct Res 2010; 31:10-9. [DOI: 10.3109/10799893.2010.497152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Zhou QM, Wang S, Zhang H, Lu YY, Wang XF, Motoo Y, Su SB. The combination of baicalin and baicalein enhances apoptosis via the ERK/p38 MAPK pathway in human breast cancer cells. Acta Pharmacol Sin 2009; 30:1648-58. [PMID: 19960010 DOI: 10.1038/aps.2009.166] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIM To examine whether the cell growth inhibitory effect of the combination of baicalin and baicalein is related to apoptosis. Moreover, to determine whether the expression of some apoptosis-related proteins is regulated by the ERK/p38 MAPK pathway. METHODS Cell viability was measured using a 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by acridine orange (AO) staining, DNA ladder assay and flow cytometric analysis. Apoptosis-related proteins were observed using Western blot analysis. RESULTS Compared with baicalin or baicalein alone, the combination treatment of baicalin (50 micromol/L) and baicalein (25 micromol/L) had an anti-proliferative effect in a time-dependent manner. Isobologram analysis demonstrated that the combination treatment had a synergistic effect. Moreover, apoptosis in MCF-7 cells was increased by 12% and 20% with the combination treatment at 24 h and 48 h, respectively. With the combination treatment in MCF-7 cells, cleaved caspase-3 and caspase-9 were observed, and the level of bcl-2 expression was decreased approximately 20% and 40% at 24 h and 48 h, respectively. The expression of bax and p53 were increased about 25% and 15% at 48 h, respectively. Moreover, the activation of caspase-3, -9 and the regulation of bcl-2, bax and p53 were related to ERK /p38 MAPK activation. CONCLUSION In this study, apoptosis was enhanced by the combination treatment of baicalin and baicalein, which activated caspases-3 and caspase-9, downregulated the level of bcl-2 and upregulated the level of bax or p53 via the ERK/p38 MAPK pathway.
Collapse
|