1
|
Lin CH, Hsieh YS, Sun YC, Huang WH, Chen SL, Weng ZK, Lin TH, Wu YR, Chang KH, Huang HJ, Lee GC, Hsieh-Li HM, Lee-Chen GJ. Virtual Screening and Testing of GSK-3 Inhibitors Using Human SH-SY5Y Cells Expressing Tau Folding Reporter and Mouse Hippocampal Primary Culture under Tau Cytotoxicity. Biomol Ther (Seoul) 2023; 31:127-138. [PMID: 35790892 PMCID: PMC9810448 DOI: 10.4062/biomolther.2022.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 01/13/2023] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3β from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3β activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3β Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogen-activated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3β kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.
Collapse
Affiliation(s)
- Chih-Hsin Lin
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-Shao Hsieh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wun-Han Huang
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shu-Ling Chen
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Zheng-Kui Weng
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei 11260, Taiwan
| | - Guan-Chiun Lee
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan,Corresponding Authors E-mail: (Lee GC), (Hsieh-Li HM), (Lee-Chen GJ), Tel:+886-2-7749-6351 (Lee GC), +886-2-7749-6354 (Hsieh-Li HM), +886-2-7749-6359 (Lee-Chen GJ), Fax:+886-2-2931-2904 (Lee GC), +886-2-2931-2904 (Hsieh-Li HM), +886-2-2931-2904 (Lee-Chen GJ)
| | - Hsiu Mei Hsieh-Li
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan,Corresponding Authors E-mail: (Lee GC), (Hsieh-Li HM), (Lee-Chen GJ), Tel:+886-2-7749-6351 (Lee GC), +886-2-7749-6354 (Hsieh-Li HM), +886-2-7749-6359 (Lee-Chen GJ), Fax:+886-2-2931-2904 (Lee GC), +886-2-2931-2904 (Hsieh-Li HM), +886-2-2931-2904 (Lee-Chen GJ)
| | - Guey-Jen Lee-Chen
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan,Corresponding Authors E-mail: (Lee GC), (Hsieh-Li HM), (Lee-Chen GJ), Tel:+886-2-7749-6351 (Lee GC), +886-2-7749-6354 (Hsieh-Li HM), +886-2-7749-6359 (Lee-Chen GJ), Fax:+886-2-2931-2904 (Lee GC), +886-2-2931-2904 (Hsieh-Li HM), +886-2-2931-2904 (Lee-Chen GJ)
| |
Collapse
|
2
|
Liu X, Song W, Yu Y, Su J, Shi X, Yang X, Wang H, Liu P, Zou L. Inhibition of NLRP1-Dependent Pyroptosis Prevents Glycogen Synthase Kinase-3β Overactivation-Induced Hyperphosphorylated Tau in Rats. Neurotox Res 2022; 40:1163-1173. [PMID: 35951283 DOI: 10.1007/s12640-022-00554-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Our previous study indicated that inhibition of NLRP1-dependent pyroptosis could decrease intracerebroventricular (ICV) injection of a protein kinase A (PKA) agonist- or streptozotocin (STZ)-induced hyperphosphorylated tau. In this study, we used a glycogen synthase kinase-3β (GSK-3β) overactivation rat model to reconfirm our previous results. ICV injection of wortmannin (WT, a PI3K inhibitor) and GF-109203X (GFX, a PKC inhibitor) was used to induce overactivation of GSK-3β in rats. We injected NLRP1 siRNA together with WT/GFX to evaluate the effect of the inhibition of NLRP1-dependent neuronal pyroptosis on hyperphosphorylated tau. Our results indicated that ICV injection of NLRP1 siRNA prevented ICV-WT/GFX-induced neuronal death, further improving the spatial memory of the rats in the Morris water maze test. ICV injection of NLRP1 siRNA downregulated the expression of ASC, caspase-1, and GSDMD and the contents of IL-1β and IL-18 in rat brains. ICV injection of NLRP1 siRNA also decreased hyperphosphorylated tau and the activity of GSK-3β. Thus, these results support our previous study that NLRP1-dependent pyroptosis could enhance hyperphosphorylation of tau protein.
Collapse
Affiliation(s)
- Xiangying Liu
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Wenjing Song
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ying Yu
- Liaoning Medical Device Test Institute, 600-1 Maizitun, Hunnan District, Shenyang, 110171, China
| | - Jianhua Su
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaoyan Shi
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xin Yang
- Department of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Honghui Wang
- Department of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Libo Zou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
3
|
Gan L, Wan X, Ma D, Yang FC, Zhu J, Rogers RS, Wheatley JL, Koch LG, Britton SL, Thyfault JP, Geiger PC, Stanford JA. Intrinsic Aerobic Capacity Affects Hippocampal pAkt and HSP72 Response to an Acute High Fat Diet and Heat Treatment in Rats. J Alzheimers Dis Rep 2021; 5:469-475. [PMID: 34368631 PMCID: PMC8293662 DOI: 10.3233/adr-200289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Aerobic capacity is associated with metabolic, cardiovascular, and neurological health. Low-capacity runner (LCR) rats display low aerobic capacity, metabolic dysfuction, and spatial memory deficits. A heat treatment (HT) can improve metabolic dysfunction in LCR peripheral organs after high fat diet (HFD). Little is known about metabolic changes in the brains of these rats following HT. OBJECTIVE Our objective was to examine the extent to which high or low aerobic capacity impacts Akt (a protein marker of metabolism) and heat shock protein 72 (HSP72, a marker of heat shock response) after HFD and HT in hippocampus. METHODS We measured phosphorylated Akt (pAkt) in the striatum and hippocampus, and HSP72 in the hippocampus, of HFD-fed and chow-fed LCR and high-capacity runner (HCR) rats with and without HT. RESULTS pAkt was lower in the hippocampus of chow-fed LCR than HCR rats. HFD resulted in greater pAkt in LCR but not HCR rats, but HT resulted in lower pAkt in the LCR HFD group. HSP72 was greater in both HCR and LCR rat hippocampus after HT. The HFD blunted this effect in LCR compared to HCR hippocampus. CONCLUSION The abnormal phosphorylation of Akt and diminished HSP response in the hippocampus of young adult LCR rats might indicate early vulnerability to metabolic challenges in this key brain region associated with learning and memory.
Collapse
Affiliation(s)
- Li Gan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xiaonan Wan
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Delin Ma
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fu-Chen Yang
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jingpeng Zhu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Robert S. Rogers
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Joshua L. Wheatley
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - John P. Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Research Service, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Paige C. Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John A. Stanford
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
4
|
Bordone MC, Barbosa-Morais NL. Unraveling Targetable Systemic and Cell-Type-Specific Molecular Phenotypes of Alzheimer's and Parkinson's Brains With Digital Cytometry. Front Neurosci 2020; 14:607215. [PMID: 33362460 PMCID: PMC7756021 DOI: 10.3389/fnins.2020.607215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative disorders worldwide, with age being their major risk factor. The increasing worldwide life expectancy, together with the scarcity of available treatment choices, makes it thus pressing to find the molecular basis of AD and PD so that the causing mechanisms can be targeted. To study these mechanisms, gene expression profiles have been compared between diseased and control brain tissues. However, this approach is limited by mRNA expression profiles derived for brain tissues highly reflecting their degeneration in cellular composition but not necessarily disease-related molecular states. We therefore propose to account for cell type composition when comparing transcriptomes of healthy and diseased brain samples, so that the loss of neurons can be decoupled from pathology-associated molecular effects. This approach allowed us to identify genes and pathways putatively altered systemically and in a cell-type-dependent manner in AD and PD brains. Moreover, using chemical perturbagen data, we computationally identified candidate small molecules for specifically targeting the profiled AD/PD-associated molecular alterations. Our approach therefore not only brings new insights into the disease-specific and common molecular etiologies of AD and PD but also, in these realms, foster the discovery of more specific targets for functional and therapeutic exploration.
Collapse
Affiliation(s)
- Marie C Bordone
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno L Barbosa-Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Gong YH, Hua N, Zang X, Huang T, He L. Melatonin ameliorates Aβ1-42-induced Alzheimer's cognitive deficits in mouse model. J Pharm Pharmacol 2017; 70:70-80. [DOI: 10.1111/jphp.12830] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/16/2017] [Indexed: 01/09/2023]
Abstract
Abstract
Objectives
The objective of this study was to evaluate whether melatonin could ameliorate cognitive function in Aβ1-42-induced mouse model and its underlying mechanisms.
Methods
Series behaviour tests were performed to demonstrate the amelioration of cognitive function of the Alzheimer's disease (AD) mice induced by Aβ1-42. Additionally, enzyme-linked immunosorbent assay was applied to detect the expression of Aβ1-42, BACE1 and p-tau protein in the brain of the AD mice. JC-1 was performed to investigate the role in alleviating mitochondrial damage by melatonin in vitro. Western blot was used to detect the expression of melatonin on apoptosis-related factors caspase-3 and Bcl-2, as well as the expressions of GSK-3β and PP2A to further determine the mechanisms of melatonin on the expression of p-tau protein.
Key findings
Melatonin significantly ameliorated the cognitive function and mitochondrial damage in AD mice, reduced the expression levels of GSK-3β, caspase-3, Aβ1-42, BACE1, p-tau protein and increased the expressions of PP2A and Bcl-2.
Conclusion
From the overall results, we concluded that melatonin alleviated the mitochondrial damage effectively and decreased the expressions of the p-tau and some key proteins of apoptosis, leading to the improvement of cognitive function of the mice induced by Aβ1-42.
Collapse
Affiliation(s)
- Yu-Hang Gong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Nan Hua
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xuan Zang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Tao Huang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Chang KH, Lin CH, Chen HC, Huang HY, Chen SL, Lin TH, Ramesh C, Huang CC, Fung HC, Wu YR, Huang HJ, Lee-Chen GJ, Hsieh-Li HM, Yao CF. The Potential of Indole/Indolylquinoline Compounds in Tau Misfolding Reduction by Enhancement of HSPB1. CNS Neurosci Ther 2016; 23:45-56. [PMID: 27424519 DOI: 10.1111/cns.12592] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Neurofibrillary tangles formed from tau misfolding have long been considered one of the pathological hallmarks of Alzheimer's disease (AD). The misfolding of tau in AD correlates with the clinical progression of AD and inhibition or reversal of tau misfolding may protect the affected neurons. METHODS We generated 293 and SH-SY5Y cells expressing DsRed-tagged pro-aggregation mutant of repeat domain of tau (ΔK280 tauRD ) to test indole/indolylquinoline derivatives for reducing tau misfolding and neuroprotection. RESULTS Four of the 10 derivatives tested displayed good misfolding-inhibitory effects on Tet-On 293 cells. Among them, NC009-1 and NC009-7 enhanced heat-shock 27 kDa protein 1 (HSPB1) expression to increase ∆K280 tauRD -DsRed solubility and promoted neurite outgrowth in Tet-On SH-SY5Y cells. Knockdown of HSPB1 resulted in decreased ∆K280 tauRD -DsRed solubility and reduced neurite outgrowth, which were rescued by addition of NC009-1/NC009-7. Treatment with indole/indolylquinoline derivatives also improved neuronal cell viability and neurite outgrowth in mouse hippocampal primary culture under tau cytotoxicity. CONCLUSION Our results demonstrate how indole/indolylquinoline derivatives are likely to work in tau misfolding reduction, providing insight into the possible working mechanism of indole and indolylquinoline derivatives in AD treatment.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsuan-Chiang Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Yu Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shu-Ling Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chintakunta Ramesh
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hon-Chung Fung
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
7
|
Liu J, Liu Z, Zhang Y, Yin F. Leptin signaling plays a critical role in the geniposide-induced decrease of tau phosphorylation. Acta Biochim Biophys Sin (Shanghai) 2015; 47:1018-22. [PMID: 26496899 DOI: 10.1093/abbs/gmv106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/22/2015] [Indexed: 01/03/2023] Open
Abstract
We have previously demonstrated that geniposide attenuates the production of Aβ1-42 both in vitro and in vivo via enhancing leptin receptor signaling. But the role played by geniposide in the phosphorylation of tau and its underlying molecular mechanisms remain unclear. In this study, we investigated the effect of geniposide on the phosphorylation of tau and the role of leptin signaling in this process. Our data suggested that, accompanied by the up-regulation of leptin receptor expression, geniposide significantly decreased the phosphorylation of tau in rat primary cultured cortical neurons and in APP/PS1 transgenic mice, and this geniposide-induced decrease of tau phosphorylation could be prevented by leptin antagonist (LA). Furthermore, LA also prevented the phosphorylation of Akt at Ser-473 site and GSK-3β at Ser-9 site induced by geniposide. All these results indicate that geniposide may regulate tau phosphorylation through leptin signaling, and geniposide may be a promising therapeutic compound for the treatment of Alzheimer's disease in the future.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zixuan Liu
- Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yonglan Zhang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fei Yin
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
8
|
Diabetes and Alzheimer disease, two overlapping pathologies with the same background: oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:985845. [PMID: 25815110 PMCID: PMC4357132 DOI: 10.1155/2015/985845] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/10/2015] [Indexed: 01/06/2023]
Abstract
There are several oxidative stress-related pathways interconnecting Alzheimer's disease and type II diabetes, two public health problems worldwide. Coincidences are so compelling that it is attractive to speculate they are the same disorder. However, some pathological mechanisms as observed in diabetes are not necessarily the same mechanisms related to Alzheimer's or the only ones related to Alzheimer's pathology. Oxidative stress is inherent to Alzheimer's and feeds a vicious cycle with other key pathological features, such as inflammation and Ca2+ dysregulation. Alzheimer's pathology by itself may lead to insulin resistance in brain, insulin resistance being an intervening variable in the neurodegenerative disorder. Hyperglycemia and insulin resistance from diabetes, overlapping with the Alzheimer's pathology, aggravate the progression of the neurodegenerative processes, indeed. But the same pathophysiological background is behind the consequences, oxidative stress. We emphasize oxidative stress and its detrimental role in some key regulatory enzymes.
Collapse
|
9
|
Prada CE, Grabowski GA. Neuronopathic lysosomal storage diseases: clinical and pathologic findings. ACTA ACUST UNITED AC 2014; 17:226-46. [PMID: 23798011 DOI: 10.1002/ddrr.1116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND The lysosomal-autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. METHODS Literature review provided insight into the current clinical neurological findings, phenotypic spectrum, and pathogenic mechanisms of LASDs with primary neurological involvement. CONCLUSIONS CNS signs and symptoms are variable and related to the disease-specific underlying pathogenesis. LAS dysfunction leads to diverse global cellular consequences in the CNS ranging from specific axonal and dendritic abnormalities to neuronal death. Pathogenic mechanisms for disease progression vary from impaired autophagy, massive storage, regional involvement, to end-stage inflammation. Some of these features are also found in adult neurodegenerative disorders, for example, Parkinson's and Alzheimer's diseases. Lack of effective therapies is a significant unmet medical need.
Collapse
Affiliation(s)
- Carlos E Prada
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Ohio, USA
| | | |
Collapse
|
10
|
Cornel Iridoid Glycoside Attenuates Tau Hyperphosphorylation by Inhibition of PP2A Demethylation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:108486. [PMID: 24454482 PMCID: PMC3880719 DOI: 10.1155/2013/108486] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/16/2013] [Indexed: 02/04/2023]
Abstract
Aim. The aim of the present study was to investigate the effect of cornel iridoid glycoside (CIG) on tau hyperphosphorylation induced by wortmannin (WT) and GF-109203X (GFX) and the underlying mechanisms. Methods. Human neuroblastoma SK-N-SH cells were preincubated with CIG (50, 100, and 200 µg/ml, resp.) for 24 h and then exposed to 10 µM WT and 10 µM GFX for 3 h after washing out CIG. Immunohistochemistry was used to observe the microtubular cytoskeleton of the cultured cells. Western blotting was used to measure the phosphorylation level of tau protein, glycogen synthase kinase 3β (GSK-3β), and protein phosphatase 2A (PP2A). The activity of PP2A was detected by a biochemical assay. Results. Preincubation of CIG significantly attenuated the WT/GFX-induced tau hyperphosphorylation at the sites of Thr205, Thr212, Ser214, Thr217, Ser396, and PHF-1 and improved the damage of morphology and microtubular cytoskeleton of the cells. CIG did not prevent the decrease in p-AKT-ser473 and p-GSK-3β-ser9 induced by WT/GFX. However, CIG significantly elevated the activity of PP2A by reducing the demethylation of PP2A catalytic subunit (PP2Ac) at Leu309 and the ratio of PME-1/LCMT in the WT/GFX-treated cells. The results suggest that CIG may be beneficial to the treatment of AD.
Collapse
|
11
|
Molecular Mechanisms Underlie Alzheimer-like Tau Hyperphosphorylation and Neurodegeneration*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2012.00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Bellettato CM, Scarpa M. Pathophysiology of neuropathic lysosomal storage disorders. J Inherit Metab Dis 2010; 33:347-62. [PMID: 20429032 DOI: 10.1007/s10545-010-9075-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/28/2010] [Accepted: 03/05/2010] [Indexed: 12/19/2022]
Abstract
Although neurodegenerative diseases are most prevalent in the elderly, in rare cases, they can also affect children. Lysosomal storage diseases (LSDs) are a group of inherited metabolic neurodegenerative disorders due to deficiency of a specific protein integral to lysosomal function, such as enzymes or lysosomal components, or to errors in enzyme trafficking/targeting and defective function of nonenzymatic lysosomal proteins, all preventing the complete degradation and recycling of macromolecules. This primary metabolic event determines a cascade of secondary events, inducing LSD's pathology. The accumulation of intermediate degradation affects the function of lysosomes and other cellular organelles. Accumulation begins in infancy and progressively worsens, often affecting several organs, including the central nervous system (CNS). Affected neurons may die through apoptosis or necrosis, although neuronal loss usually does not occur before advanced stages of the disease. CNS pathology causes mental retardation, progressive neurodegeneration, and premature death. Many of these features are also found in adult neurodegenerative disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. However, the nature of the secondary events and their exact contribution to mental retardation and dementia remains largely unknown. Recently, lysosomal involvement in the pathogenesis of these disorders has been described. Improved knowledge of secondary events may have impact on diagnosis, staging, and follow-up of affected children. Importantly, new insights may provide indications about possible disease reversal upon treatment. A discussion about the CNS pathophysiology involvement in LSDs is the aim of this review. The lysosomal involvement in adult neurodegenerative diseases will also be briefly described.
Collapse
Affiliation(s)
- Cinzia Maria Bellettato
- Department of Paediatrics, Centre for Rare Diseases, University of Padova, Via Giustiniani 3, 35128, Padova, Italy
| | | |
Collapse
|
13
|
Hyperphosphorylation of microtubule-associated tau protein plays dual role in neurodegeneration and neuroprotection. PATHOPHYSIOLOGY 2009; 16:311-6. [DOI: 10.1016/j.pathophys.2009.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
14
|
Zhang L, Sheng R, Qin Z. The lysosome and neurodegenerative diseases. Acta Biochim Biophys Sin (Shanghai) 2009; 41:437-45. [PMID: 19499146 DOI: 10.1093/abbs/gmp031] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has long been believed that the lysosome is an important digestive organelle. There is increasing evidence that the lysosome is also involved in pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Abnormal protein degradation and deposition induced by lysosomal dysfunction may be the primary contributor to age-related neurodegeneration. In this review, the possible relationship between lysosome and various neurodegenerative diseases is described.
Collapse
Affiliation(s)
- Lisha Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou 215123, China
| | | | | |
Collapse
|
15
|
Jackson TC, Rani A, Kumar A, Foster TC. Regional hippocampal differences in AKT survival signaling across the lifespan: implications for CA1 vulnerability with aging. Cell Death Differ 2008; 16:439-48. [PMID: 19039330 PMCID: PMC2680608 DOI: 10.1038/cdd.2008.171] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Distinct neuronal populations differ by the degree of damage caused from cellular stress. Hippocampal neurons of area CA1 are especially vulnerable to several stressors that increase as age advances. We show here that survival signaling, as measured by activated protein kinase B (AKT), was significantly reduced in the nuclear CA1 region across the lifespan compared with CA3. In agreement with these findings, the pro-apoptotic protein and AKT nuclear substrate, forkhead box O3a transcription factor (FOXO3a), were significantly higher in CA1. Further, regional differences in PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), a recently discovered inhibitor of AKT, inversely correlated with nuclear phosphorylated AKT at Ser473. Altogether, our data suggest that regional differences in nuclear levels of activated AKT may contribute to regional differences in hippocampal vulnerability and implicate PHLPP1 as a potential target for therapeutic intervention to improve hippocampal health.
Collapse
Affiliation(s)
- T C Jackson
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0244, USA
| | | | | | | |
Collapse
|
16
|
Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 2008; 85:148-75. [PMID: 18448228 DOI: 10.1016/j.pneurobio.2008.03.002] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 12/29/2007] [Accepted: 03/13/2008] [Indexed: 12/11/2022]
Abstract
As a principal neuronal microtubule-associated protein, tau has been recognized to play major roles in promoting microtubule assembly and stabilizing the microtubules and to maintain the normal morphology of the neurons. Recent studies suggest that tau, upon alternative mRNA splicing and multiple posttranslational modifications, may participate in the regulations of intracellular signal transduction, development and viability of the neurons. Furthermore, tau gene mutations, aberrant mRNA splicing and abnormal posttranslational modifications, such as hyperphosphorylation, have also been found in a number of neurodegenerative disorders, collectively known as tauopathies. Therefore, changes in expression of the tau gene, alternative splicing of its mRNA and its posttranslational modification can modulate the normal architecture and functions of neurons as well as in a situation of tauopathies, such as Alzheimer's disease. The primary aim of this review is to summarize the latest developments and perspectives in our understanding about the roles of tau, especially hyperphosphorylation, in the development, degeneration and protection of neurons.
Collapse
Affiliation(s)
- Jian-Zhi Wang
- Pathophysiology Department, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | | |
Collapse
|
17
|
Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Ramsey K, Caselli RJ, Kukull WA, McKeel D, Morris JC, Hulette CM, Schmechel D, Reiman EM, Rogers J, Stephan DA. Altered neuronal gene expression in brain regions differentially affected by Alzheimer's disease: a reference data set. Physiol Genomics 2008; 33:240-56. [PMID: 18270320 DOI: 10.1152/physiolgenomics.00242.2007] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's Disease (AD) is the most widespread form of dementia during the later stages of life. If improved therapeutics are not developed, the prevalence of AD will drastically increase in the coming years as the world's population ages. By identifying differences in neuronal gene expression profiles between healthy elderly persons and individuals diagnosed with AD, we may be able to better understand the molecular mechanisms that drive AD pathogenesis, including the formation of amyloid plaques and neurofibrillary tangles. In this study, we expression profiled histopathologically normal cortical neurons collected with laser capture microdissection (LCM) from six anatomically and functionally discrete postmortem brain regions in 34 AD-afflicted individuals, using Affymetrix Human Genome U133 Plus 2.0 microarrays. These regions include the entorhinal cortex, hippocampus, middle temporal gyrus, posterior cingulate cortex, superior frontal gyrus, and primary visual cortex. This study is predicated on previous parallel research on the postmortem brains of the same six regions in 14 healthy elderly individuals, for which LCM neurons were similarly processed for expression analysis. We identified significant regional differential expression in AD brains compared with control brains including expression changes of genes previously implicated in AD pathogenesis, particularly with regard to tangle and plaque formation. Pinpointing the expression of factors that may play a role in AD pathogenesis provides a foundation for future identification of new targets for improved AD therapeutics. We provide this carefully phenotyped, laser capture microdissected intraindividual brain region expression data set to the community as a public resource.
Collapse
Affiliation(s)
- Winnie S Liang
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Koh SH, Jung B, Song CW, Kim Y, Kim YS, Kim SH. 15-Deoxy-delta12,14-prostaglandin J2, a neuroprotectant or a neurotoxicant? Toxicology 2005; 216:232-43. [PMID: 16191461 DOI: 10.1016/j.tox.2005.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/09/2005] [Accepted: 08/12/2005] [Indexed: 01/22/2023]
Abstract
15-Deoxy-delta12,14-prostaglandin J2 (15d-PGJ2) is a potent ligand for peroxisome proliferators-activated receptor gamma (PPARgamma). However, its various effects independent of PPARgamma have recently been observed. The effect of 15d-PGJ2 on neuronal cells is still controversial. We investigated its effect on neuronal cells (N18D3 cells). When N18D3 cells were treated with 15d-PGJ2, the viability was not changed up to 8 microM, but decreased at higher than 8 microM. The expressions of survival signals, such as p85a phosphatidylinositol 3-kinase, phospho-Akt, and phospho-glycogen synthase kinase-3 beta (Ser-9), slightly increased up to 8 microM, however, decreased at higher than 8 microM. The levels of free radicals and membrane lipid peroxidation and the expression of c-Jun N-terminal Kinase increased in a dose-dependent manner, especially at higher than 8 microM. However, the expressions of death signals, such as cytosolic cytochrome c, activated caspase-3, and cleaved poly(ADP-ribose) polymerase, decreased up to 8 microM, however, increased at higher than 8 microM. In the study to evaluate whether low dose of 15d-PGJ2, up to 8 microM, had protective effect on oxidative stress-injured N18D3 cells, compared to the cells treated with only 100 microM H2O2, the pretreatment with 8 microM 15d-PGJ2 increased the viability and the expressions of the survival signals, but decreased them of the death signals. These results indicate that 15d-PGJ2 could be a neuroprotectant or a neurotoxicant, depending on its concentration. Therefore, some specific optimum dose of 15d-PGJ2 may be a new potential therapeutic candidate for oxidative stress-injury model of neurodegenerative diseases.
Collapse
Affiliation(s)
- Seong-Ho Koh
- Department of Neurology, Institute of Biomedical Science, College of Medicine, Hanyang University, #17 Haengdang-dong, Seongdong-ku, Seoul 133-791, Republic of Korea
| | | | | | | | | | | |
Collapse
|