1
|
Guo D, Lu M, Hu X, Xu J, Hu G, Zhu M, Zhang X, Li Q, Chang CCY, Chang T, Song B, Xiong Y, Li B. Low-level expression of human ACAT2 gene in monocytic cells is regulated by the C/EBP transcription factors. Acta Biochim Biophys Sin (Shanghai) 2016; 48:980-989. [PMID: 27688151 PMCID: PMC5091289 DOI: 10.1093/abbs/gmw091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/18/2016] [Accepted: 07/15/2016] [Indexed: 01/15/2023] Open
Abstract
Acyl-coenzyme A:cholesterol acyltransferases (ACATs) are the exclusive intracellular enzymes that catalyze the formation of cholesteryl/steryl esters (CE/SE). In our previous work, we found that the high-level expression of human ACAT2 gene with the CpG hypomethylation of its whole promoter was synergistically regulated by two transcription factors Cdx2 and HNF1α in the intestine and fetal liver. Here, we first observed that the specific CpG-hypomethylated promoter was correlated with the low expression of human ACAT2 gene in monocytic cell line THP-1. Then, two CCAAT/enhancer binding protein (C/EBP) elements within the activation domain in the specific CpG-hypomethylation promoter region were identified, and the expression of ACAT2 in THP-1 cells was evidently decreased when the C/EBP transcription factors were knock-downed using RNAi technology. Furthermore, ChIP assay confirmed that C/EBPs directly bind to their elements for low-level expression of human ACAT2 gene in THP-1 cells. Significantly, the increased expressions of ACAT2 and C/EBPs were also found in macrophages differentiated from both ATRA-treated THP-1 cells and cultured human blood monocytes. These results demonstrate that the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the C/EBP transcription factors in monocytic cells, and imply that the lowly expressed ACAT2 catalyzes the synthesis of certain CE/SE that are assembled into lipoproteins for the secretion.
Collapse
Affiliation(s)
- Dongqing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xihan Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangjing Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowei Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Tayuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Baoliang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ying Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Boliang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Castro-Chavez F. Escaping the cut by restriction enzymes through single-strand self-annealing of host-edited 12-bp and longer synthetic palindromes. DNA Cell Biol 2011; 31:151-63. [PMID: 21895510 DOI: 10.1089/dna.2011.1339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Palindromati, the massive host-edited synthetic palindromic contamination found in GenBank, is illustrated and exemplified. Millions of contaminated sequences with portions or tandems of such portions derived from the ZAP adaptor or related linkers are shown (1) by the 12-bp sequence reported elsewhere, exon Xb, 5' CCCGAATTCGGG 3', (2) by a 22-bp related sequence 5' CTCGTGCCGAATTCGGCACGAG 3', and (3) by a longer 44-bp related sequence: 5' CTCGTGCCGAATTCGGCACGAGCTCGTGCCGAATTCGGCACGAG 3'. Possible reasons for why those long contaminating sequences continue in the databases are presented here: (1) the recognition site for the plus strand (+) is single-strand self-annealed; (2) the recognition site for the minus strand (-) is not only single-strand self-annealed but also located far away from the single-strand self-annealed plus strand, rendering impossible the formation of the active EcoRI enzyme dimer to cut on 5' G/AATTC 3', its target sequence. As a possible solution, it is suggested to rely on at least two or three independent results, such as sequences obtained by independent laboratories with the use, preferably, of independent sequencing methodologies. This information may help to develop tools for bioinformatics capable to detect/remove these contaminants and to infer why some damaged sequences which cause genetic diseases escape detection by the molecular quality control mechanism of cells and organisms, being undesirably transferred unchecked through the generations.
Collapse
Affiliation(s)
- Fernando Castro-Chavez
- Atherosclerosis and Vascular Medicine Section, Department of Medicine, Methodist DeBakey Heart Center, Baylor College of Medicine, 6565 Fannin Street,Houston, TX 77030, USA.
| |
Collapse
|