1
|
Useini L, Mojić M, Laube M, Lönnecke P, Mijatović S, Maksimović-Ivanić D, Pietzsch J, Hey-Hawkins E. Carborane Analogues of Fenoprofen Exhibit Improved Antitumor Activity. ChemMedChem 2023; 18:e202200583. [PMID: 36583943 DOI: 10.1002/cmdc.202200583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
Fenoprofen is a widely used nonsteroidal anti-inflammatory drug (NSAID) against rheumatoid arthritis, degenerative joint disease, ankylosing spondylitis and gout. Like other NSAIDs, fenoprofen inhibits the synthesis of prostaglandins by blocking both cyclooxygenase (COX) isoforms, COX-1 the "house-keeping" enzyme and COX-2 the induced isoform from pathological stimuli. Unselective inhibition of both COX isoforms results in many side effects, but off-target effects have also been reported. The steric modifications of the drugs could afford the desired COX-2 selectivity. Furthermore, NSAIDs have shown promising cytotoxic properties. The structural modification of fenoprofen using bulky dicarba-closo-dodecaborane(12) (carborane) clusters and the biological evaluation of the carborane analogues for COX inhibition and antitumor potential showed that the carborane analogues exhibit stronger antitumor potential compared to their respective aryl-based compounds.
Collapse
Affiliation(s)
- Liridona Useini
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| | - Marija Mojić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| | - Sanja Mijatović
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Patra I, Naser RH, Hussam F, Hameed NM, Kadhim MM, Ahmad I, Awadh SA, Hamad DA, Parra RMR, Mustafa YF. Ketoprofen suppresses triple negative breast cancer cell growth by inducing apoptosis and inhibiting autophagy. Mol Biol Rep 2023; 50:85-95. [PMID: 36309613 DOI: 10.1007/s11033-022-07921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/05/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an invasive phenotype with undesirable clinical features, poor prognosis, and therapy resistance. Ketoprofen is a Non-steroidal anti-inflammatory drug (NSAID) with anti-tumor properties. AIM To investigate the effects of Ketoprofen on apoptosis and autophagy in TNBC cell line MDA-MB-231. METHODS The cytotoxic activity of Ketoprofen was assayed by the MTS method. Flowcytometry was utilized to measure the number of apoptotic MDA-MB-231 cells. The expression levels of apoptosis and autophagy markers, JAK2 and STAT3 were determined using quantitative real time-PCR (qRT-PCR) and western blotting methods. RESULTS Ketoprofen significantly decreased the proliferation of MDA-MB-231 cells compared to control cells. It also considerably induced apoptosis and apoptotic markers in these cells in comparison to controls. Treating the MADA-MB-231 cell line with Ketoprofen had an inhibitory effect on autophagy markers in this cell line. The use of FasL, as a death ligand, and ZB4, as an antibody that blocks the extrinsic pathway of apoptosis, revealed the involvement of the extrinsic pathway in the apoptosis-stimulating effect of Ketoprofen in the MADA-MB-231 cell line. Ketoprofen also hindered the phosphorylation and activation of JAK2 and STAT molecules leading to the inhibition of the JAK/STAT pathway in this TNBC cell line. CONCLUSION The outcomes of this study uncovered the anti-TNBC activity of Ketoprofen by inducing apoptosis and inhibiting viability and autophagy in MADA-MB-231 cells. Our data also suggested that Ketoprofen impedes apoptosis in TNBC cells by two different mechanisms including the induction of the extrinsic apoptotic pathway and inhibition of the JAK/STAT signaling.
Collapse
Affiliation(s)
| | - Rana Hussein Naser
- Science Department, College of Basic Education, University of Diyala, Diyala, Iraq
| | - Fadhil Hussam
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Baghdad, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Al-Nisour, Iraq
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq.
- Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq.
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sura A Awadh
- Department of Anesthesia, Al-mustaqbal University, Babylon, Iraq
| | - Doaa A Hamad
- Nursing Department, Hilla University College, Babylon, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, 41001, Mosul, Iraq
| |
Collapse
|
3
|
Abourehab MAS, Alqahtani AM, Almalki FA, Zaher DM, Abdalla AN, Gouda AM, Beshr EAM. Pyrrolizine/Indolizine-NSAID Hybrids: Design, Synthesis, Biological Evaluation, and Molecular Docking Studies. Molecules 2021; 26:6582. [PMID: 34770990 PMCID: PMC8588198 DOI: 10.3390/molecules26216582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
In the current study, eight new hybrids of the NSAIDs, ibuprofen and ketoprofen with five pyrrolizine/indolizine derivatives were designed and synthesized. The chemical structures of these hybrids were confirmed by spectral and elemental analyses. The antiproliferative activities of these hybrids (5 μM) was investigated against MCF-7, A549, and HT-29 cancer cell lines using the cell viability assay, MTT assay. The results revealed 4-71% inhibition of the growth of the three cancer cell lines, where 8a,e,f were the most active. In addition, an investigation of the antiproliferative activity of 8a,e,f against MCF-7 cells revealed IC50 values of 7.61, 1.07, and 3.16 μM, respectively. Cell cycle analysis of MCF-7 cells treated with the three hybrids at 5 μM revealed a pro-apoptotic increase in cells at preG1 and cell cycle arrest at the G1 and S phases. In addition, the three hybrids induced early apoptotic events in MCF-7 cells. The results of the molecular docking of the three hybrids into COX-1/2 revealed higher binding free energies than their parent compounds 5a,c and the co-crystallized ligands, ibuprofen and SC-558. The results also indicated higher binding free energies toward COX-2 over COX-1. Moreover, analysis of the binding modes of 8a,e,f into COX-2 revealed partial superposition with the co-crystallized ligand, SC-558 with the formation of essential hydrogen bonds, electrostatic, or hydrophobic interactions with the key amino acid His90 and Arg513. The new hybrids also showed drug-likeness scores in the range of 1.06-2.03 compared to ibuprofen (0.65) and ketoprofen (0.57). These results above indicated that compounds 8a,e,f deserve additional investigation as potential anticancer candidates.
Collapse
Affiliation(s)
- Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Alaa M. Alqahtani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.M.A.); (F.A.A.)
| | - Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.M.A.); (F.A.A.)
| | - Dana M. Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Department of Pharmacology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Ahmed M. Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Eman A. M. Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| |
Collapse
|
4
|
Noori S, Rajabi S, Tavirani MR, Shokri B, Zarghi A. Anti-Breast Cancer Activities of Ketoprofen-RGD Conjugate by Targeting Breast Cancer Stem-Like Cells and Parental Cells. Anticancer Agents Med Chem 2021; 21:1027-1036. [PMID: 32900351 DOI: 10.2174/1871520620666200908105416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer Stem Cells (CSCs) play an important role in various stages of cancer development, advancement, and therapy resistance. Ketoprofen-RGD has been revealed to act as an anti-cancer agent against some tumors. OBJECTIVE We aimed to explore the effects of a novel Ketoprofen-RGD compound on the suppression of Breast Cancer Stem-like Cells (BCSCs) and their parental cells. METHODS Mammospheres were developed from MCF-7 cells and assessed by CSC surface markers through flowcytometry. The anti-proliferative and pro-apoptotic activities of Ketoprofen-RGD were measured by MTS assay and flowcytometry. The expression levels of stemness markers and JAK2/STAT proteins were measured by quantitative Real Time-PCR (qRT-PCR) and western blotting, respectively. Intracellular Reactive Oxygen Species (ROS) was measured using a cell permeable, oxidant-sensitive fluorescence probe (carboxy-H2DCFDA). RESULTS Ketoprofen-RGD significantly reduced the mammosphere formation rate and the expression of three out of six stemness markers and remarkably decreased viability and induced apoptosis of spheroidal and parental cells compared to controls. Further experiments using CD95L, as a death ligand, and ZB4 antibody, as an extrinsic apoptotic pathway blocker, showed that Ketoprofen-RGD induced intrinsic pathway, suggesting a mechanism by which Ketoprofen-RGD triggers apoptosis. ROS production was also another way to induce apoptosis. Results of western blot analysis also revealed a marked diminish in the phosphorylation of JAK2 and STAT proteins. CONCLUSION Our study, for the first time, elucidated an anti-BCSC activity for Ketoprofen-RGD via declining stemness markers, inducing toxicity, and apoptosis in these cells and parental cells. These findings may suggest this compound as a promising anti-breast cancer.
Collapse
Affiliation(s)
- Shokoofe Noori
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center (TMRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa R Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Shokri
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gouda AM, Beshr EA, Almalki FA, Halawah HH, Taj BF, Alnafaei AF, Alharazi RS, Kazi WM, AlMatrafi MM. Arylpropionic acid-derived NSAIDs: New insights on derivatization, anticancer activity and potential mechanism of action. Bioorg Chem 2019; 92:103224. [PMID: 31491568 DOI: 10.1016/j.bioorg.2019.103224] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022]
Abstract
NSAIDs displayed chemopreventive and anticancer effects against several types of cancers. Moreover, combination of NSAIDs with anticancer agents resulted in enhanced anticancer activity. These findings have attracted much attention of researchers working in this field. The 2-arylpropionic acid-derived NSAIDs represent one of the most widely used anti-inflammatory agents. Additionally, they displayed antiproliferative activities against different types of cancer cells. Large volume of research was performed to identify molecular targets responsible for this activity. However, the exact mechanism underlying the anticancer activity of profens is still unclear. In this review article, the anticancer potential, structure activity relationship and synthesis of selected profen derivatives were summarized. This review is focused also on non-COX targets which can mediate the anticancer activity of this derivatives. The data in this review highlighted profens as promising lead compounds in future research to develop potent and safe anticancer agents.
Collapse
Affiliation(s)
- Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Eman A Beshr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hadeel H Halawah
- B-Pharmacy Program, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Batool Fawzi Taj
- B-Pharmacy Program, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Athir Faiz Alnafaei
- B-Pharmacy Program, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Weam Mahmood Kazi
- B-Pharmacy Program, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Malak M AlMatrafi
- B-Pharmacy Program, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
6
|
Buzharevski A, Paskas S, Laube M, Lönnecke P, Neumann W, Murganic B, Mijatovic S, Maksimovic-Ivanic D, Pietzsch J, Hey-Hawkins E. Carboranyl Analogues of Ketoprofen with Cytostatic Activity against Human Melanoma and Colon Cancer Cell Lines. ACS OMEGA 2019; 4:8824-8833. [PMID: 31459970 PMCID: PMC6648485 DOI: 10.1021/acsomega.9b00412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/17/2019] [Indexed: 05/04/2023]
Abstract
Ketoprofen is a widely used nonsteroidal anti-inflammatory drug (NSAID) that also exhibits cytotoxic activity against various cancers. This makes ketoprofen an attractive structural lead for the development of new NSAIDs and cytotoxic agents. Recently, the incorporation of carboranes as phenyl mimetics in structures of established drugs has emerged as an attractive strategy in drug design. Herein, we report the synthesis and evaluation of four novel carborane-containing derivatives of ketoprofen, two of which are prodrug esters with an nitric oxide-releasing moiety. One of these prodrug esters exhibited high cytostatic activity against melanoma and colon cancer cell lines. The most pronounced activity was found in cell lines that are sensitive to oxidative stress, which was apparently induced by the ketoprofen analogue.
Collapse
Affiliation(s)
- Antonio Buzharevski
- Institut
für Anorganische Chemie, Universität
Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Svetlana Paskas
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”, Belgrade University, Belgrade 11060, Serbia
| | - Markus Laube
- Institut
für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden, Germany
| | - Peter Lönnecke
- Institut
für Anorganische Chemie, Universität
Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Wilma Neumann
- Institut
für Anorganische Chemie, Universität
Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Blagoje Murganic
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”, Belgrade University, Belgrade 11060, Serbia
| | - Sanja Mijatovic
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”, Belgrade University, Belgrade 11060, Serbia
| | - Danijela Maksimovic-Ivanic
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”, Belgrade University, Belgrade 11060, Serbia
| | - Jens Pietzsch
- Institut
für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden, Germany
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, Mommsenstrasse 4, D-01062 Dresden, Germany
| | - Evamarie Hey-Hawkins
- Institut
für Anorganische Chemie, Universität
Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
- E-mail: . Fax: (+49)341-9739319
| |
Collapse
|
7
|
Ashraf Z, Mahmood T, Hassan M, Afzal S, Rafique H, Afzal K, Latip J. Dexibuprofen amide derivatives as potential anticancer agents: synthesis, in silico docking, bioevaluation, and molecular dynamic simulation. Drug Des Devel Ther 2019; 13:1643-1657. [PMID: 31190743 PMCID: PMC6524612 DOI: 10.2147/dddt.s178595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The amide derivatives of nonsteroidal anti-inflammatory drugs have been reported to possess antitumor activity. The present work describes the synthesis of dexibuprofen amide analogues (4a-j) as potential anticancer agents. METHODS The title amides (4a-j) were obtained by simple nucleophilic substitution reaction of dexibuprofen acid chloride with substituted amines in good yield and chemical structures were confirmed by FTIR, 1H NMR, 13C NMR and mass spectral data. RESULTS The brine shrimp lethality assay results showed that all of the synthesized compounds are non-toxic to shrimp larvae. The inhibitory effects on tumor growth were evaluated and it was observed that N-(2,5-dichlorophenyl)-2-(4-isobutylphenyl) propionamide (4e) and N-(2-chlorophenyl)-2-(4-isobutylphenyl) propionamide (4g) exhibited excellent antitumor activity compared to all other derivatives. The compound 4e bearing 2,5-dichloro substituted phenyl ring and 4g possesses 2-chloro substituted phenyl ring exhibited 100% inhibition of the tumor growth. The anticancer activity was evaluated against breast carcinoma cell line (MCF-7) and it was observed that derivative 4e exhibited excellent growth inhibition of cancer cells with IC50 value of 0.01±0.002 µm, which is better than the standard drugs. The docking studies against breast cancer type 1 susceptibility protein BRCA1 (PDBID 3K0H) exhibited good binding affinities, which are in good agreement with the wet lab results. The compounds 4e and 4g showed the binding energy values of -6.39 and -6.34 Kcal/mol, respectively. The molecular dynamic (MD) simulation was also carried out to evaluate the residual flexibility of the best docking complexes of compounds 4e and 4g. The MD simulation analysis assured that the 4e formed a more stable complex with the target protein than the 4g. The synthesized amide derivatives exhibited were devoid of gastrointestinal side effects and no cytotoxic effects against human normal epithelial breast cell line (MCF-12A) were found. CONCLUSION Based upon our wet lab and dry lab findings we propose that dexibuprofen analogue 4e may serve as a lead structure for the design of more potent anticancer drugs.
Collapse
Affiliation(s)
- Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Tariq Mahmood
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Mubashir Hassan
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Samina Afzal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakria University, Multan, Pakistan
| | - Hummera Rafique
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Khurram Afzal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakria University, Multan, Pakistan
| | - Jalifah Latip
- Department of Pharmaceutical Chemistry, School of Chemical Sciences & Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia,
| |
Collapse
|
8
|
Inhibition of SIRT1 deacetylase and p53 activation uncouples the anti-inflammatory and chemopreventive actions of NSAIDs. Br J Cancer 2019; 120:537-546. [PMID: 30739913 PMCID: PMC6461760 DOI: 10.1038/s41416-018-0372-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/28/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Background Nonsteroidal anti-inflammatory drugs (NSAIDs) have been proposed as chemopreventive agents for many tumours; however, the mechanism responsible for their anti-neoplastic activity remains elusive and the side effects due to cyclooxygenase (COX) inhibition prevent this clinical application. Methods Molecular biology, in silico, cellular and in vivo tools, including innovative in vivo imaging and classical biochemical assays, were applied to identify and characterise the COX-independent anti-cancer mechanism of NSAIDs. Results Here, we show that tumour-protective functions of NSAIDs and exisulind (a sulindac metabolite lacking anti-inflammatory activity) occur through a COX-independent mechanism. We demonstrate these NSAIDs counteract carcinogen-induced proliferation by inhibiting the sirtuin 1 (SIRT1) deacetylase activity, augmenting acetylation and activity of the tumour suppressor p53 and increasing the expression of the antiproliferative gene p21. These properties are shared by all NSAIDs except for ketoprofen lacking anti-cancer properties. The clinical interest of the mechanism identified is underlined by our finding that p53 is activated in mastectomy patients undergoing intraoperative ketorolac, a treatment associated with decreased relapse risk and increased survival. Conclusion Our study, for the first-time, links NSAID chemopreventive activity with direct SIRT1 inhibition and activation of the p53/p21 anti-oncogenic pathway, suggesting a novel strategy for the design of tumour-protective drugs.
Collapse
|
9
|
Subramamiam P, Ramasubbu C, Athiramu S, Arumugam S, Alagumuthu M. Pharmacological explorations of eco-friendly amide substituted (Z
)-β-enaminones as anti-breast cancer drugs. Arch Pharm (Weinheim) 2018; 352:e1800244. [DOI: 10.1002/ardp.201800244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Palaniraja Subramamiam
- Sigma-Aldrich Chemicals Pvt. Ltd.; (Subsidiary of Merck KGaA); Bangalore-560100 India
- Research and Development Center; Bharathiar University; Coimbatore India
| | | | - Selvaraj Athiramu
- Research and Development Center; Bharathiar University; Coimbatore India
| | - Sivakumar Arumugam
- Department of Biotechnology, School of Bio-Science and Technology; VIT University; Vellore India
| | - Manikandan Alagumuthu
- Department of Biotechnology, School of Bio-Science and Technology; VIT University; Vellore India
| |
Collapse
|
10
|
Mathew B, Hobrath JV, Lu W, Li Y, Reynolds RC. Synthesis and preliminary assessment of the anticancer and Wnt/β-catenin inhibitory activity of small amide libraries of fenamates and profens. Med Chem Res 2017; 26:3038-3045. [PMID: 29104411 PMCID: PMC5656725 DOI: 10.1007/s00044-017-2001-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
As part of an ongoing program to study the anticancer activity of non-steroidal anti-inflammatory drugs (NSAIDs) through generating diversity libraries of multiple NSAID scaffolds, we synthesized a series of NSAID amide derivatives and screened these sets against three cancer cell lines (prostate, colon and breast) and Wnt/β-catenin signaling. The evaluated amide analog libraries show significant anticancer activity/cell proliferation inhibition, and specific members of the sets show inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Bini Mathew
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205 USA
| | - Judith V. Hobrath
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Wenyan Lu
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205 USA
| | - Yonghe Li
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205 USA
| | - Robert C. Reynolds
- Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| |
Collapse
|
11
|
Abstract
Now clear evidences are available to support the hypothesis that inflammation accelerates the conditions including events and molecules that reach to various types of cancers. Inflammation is a normal response to infection containing the innate and adaptive immune systems. However, when allowed to continue, unresolved, perturbation of cellular microenvironment takes place; therefore, it leads to adaptations in genes that are linked to cancer. In addition, a lot of data are accessible confirming the concept that tumour microenvironment is orchestrated by various inflammatory cells and goes to neoplastic process and finally invasion, migration and metastasis. However, infiltrations of leucocytes lead to angiogenesis, propagation and invasion. An inflammatory microenvironment that perhaps fostering impact of angiogenesis include cytokines, chemokines, enzymes and growth factors that play key role for expansion and invasion of cancer cells. This insight highlights the pathogenesis of inflammation-associated cancers and also touches and fosters the role of acetamides for the treatment and chemoprevention of carcinomas that are allied with inflammation.
Collapse
Affiliation(s)
- Priyanka Rani
- a Department of Chemistry , School of Sciences, IFTM University Moradabad , Uttar Pradesh , India
| | - Dilipkumar Pal
- b Department of Pharmaceutical Sciences , Guru Ghasidas Vishwavidyalaya (A Central University) , Koni, Bilaspur , CG , India
| | - Rahul Rama Hegde
- c Department of Pharmaceutics , School of Pharmaceutical Sciences, IFTM University Moradabad , Uttar Pradesh , India
| | - Syed Riaz Hashim
- d Department of Chemistry , School of Pharmaceutical Sciences, IFTM University Moradabad , Uttar Pradesh , India
| |
Collapse
|
12
|
Souza C, Auler P, Reis D, Lavalle G, Ferreira E, Cassali G. Subcutaneous administration of ketoprofen delays Ehrlich solid tumor growth in mice. ARQ BRAS MED VET ZOO 2014. [DOI: 10.1590/1678-6729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ketoprofen, a nonsteroidal anti-inflammatory drug (NSAID) has proven to exert anti-inflammatory, anti-proliferative and anti-angiogenic activities in both neoplastic and non-neoplastic conditions. We investigated the effects of this compound on tumor development in Swiss mice previously inoculated with Ehrlich tumor cells. To carry out this study the solid tumor was obtained from cells of the ascites fluid of Ehrlich tumor re-suspended in physiological saline to give 2.5x106cells in 0.05mL. After tumor inoculation, the animals were separated into two groups (n = 10). The animals treated with ketoprofen 0.1µg/100µL/animal were injected intraperitoneally at intervals of 24h for 10 consecutive days. Animals from the control group received saline. At the end of the experiment the mice were killed and the tumor removed. We analyzed tumor growth, histomorphological and immunohistochemical characteristics for CDC47 (cellular proliferation marker) and for CD31 (blood vessel marker). Animals treated with the ketoprofen 0.1µg/100µL/animal showed lower tumor growth. The treatment did not significantly influence the size of the areas of cancer, inflammation, necrosis and hemorrhage. Moreover, lower rates of tumor cell proliferation were observed in animals treated with ketoprofen compared with the untreated control group. The participation of ketoprofen in controlling tumor malignant cell proliferation would open prospects for its use in clinical and antineoplasic therapy.
Collapse
Affiliation(s)
| | | | - D.C. Reis
- Universidade Federal de Minas Gerais
| | | | | | | |
Collapse
|
13
|
Ahmed MA, Azam F, Rghigh AM, Gbaj A, Zetrini AE. Structure-based design, synthesis, molecular docking, and biological activities of 2-(3-benzoylphenyl) propanoic acid derivatives as dual mechanism drugs. J Pharm Bioallied Sci 2013; 4:43-50. [PMID: 22368397 PMCID: PMC3283955 DOI: 10.4103/0975-7406.92728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/05/2011] [Accepted: 10/05/2011] [Indexed: 12/28/2022] Open
Abstract
Purpose: 2-(3-benzoyl phenyl)propanohydroxamic acid (2) and 2-{3-[(hydroxyimino)(phenyl)methyl]phenyl}propanoic acid (3) were synthesized from non-steroidal anti-inflammatory drug, ketoprofen as dual-mechanism drugs. Materials and Methods: Structures of the synthesized compounds were established by IR, 1H NMR, and mass spectroscopy. Both compounds were screened for their anti-inflammatory activity in rat paw edema model and in vitro antitumor activity against 60 human tumor cell lines. Flexible ligand docking studies were performed with different matrix metalloproteinases and cyclooxygenases to gain an insight into the structural preferences for their inhibition. Results: Compound (2) proved out to be more potent than ketoprofen in rat paw edema model. Both compounds showed moderate anticancer activity ranging from 1% to 23% inhibition of growth in 38 cell lines of 8 tumor subpanels at 10 μM concentration in a single dose experiment. Hydroxamic acid analogue was found to be more potent than ketoximic analogue in terms of its antitumor activity. Conclusion: Analysis of docking results together with experimental findings provide a good explanation for the biological activities associated with synthesized compounds which may be fruitful in designing dual-target-directed drugs that may inhibit cyclooxygenases and MMPs for the treatment of cancer.
Collapse
Affiliation(s)
- Musa A Ahmed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Garyounis University, Benghazi, Libya
| | | | | | | | | |
Collapse
|
14
|
Buil ML, Cadierno V, Esteruelas MA, Gimeno J, Herrero J, Izquierdo S, Oñate E. Selective Hydration of Nitriles to Amides Promoted by an Os–NHC Catalyst: Formation and X-ray Characterization of κ2-Amidate Intermediates. Organometallics 2012. [DOI: 10.1021/om3006799] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- María L. Buil
- Departamento de Quı́mica Inorgánica, Instituto de Síntesis Quı́mica y Catálisis
Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Victorio Cadierno
- Laboratorio de Compuestos Organometálicos y Catálisis
(Unidad Asociada al CSIC), Departamento
de Quı́mica Orgánica e Inorgánica, IUQOEM, Universidad de Oviedo, 33006
Oviedo, Spain
| | - Miguel A. Esteruelas
- Departamento de Quı́mica Inorgánica, Instituto de Síntesis Quı́mica y Catálisis
Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - José Gimeno
- Laboratorio de Compuestos Organometálicos y Catálisis
(Unidad Asociada al CSIC), Departamento
de Quı́mica Orgánica e Inorgánica, IUQOEM, Universidad de Oviedo, 33006
Oviedo, Spain
| | - Juana Herrero
- Departamento de Ingeniería Quı́mica
y Quı́mica Inorgánica, ETSIIYT, Universidad de Cantabria, 39005 Santander, Spain
| | - Susana Izquierdo
- Departamento de Quı́mica Inorgánica, Instituto de Síntesis Quı́mica y Catálisis
Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Quı́mica Inorgánica, Instituto de Síntesis Quı́mica y Catálisis
Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
15
|
Qian X, Wu Q, Xu F, Lin X. Amphiphilic mPEG-block-poly (profen amide-co-esters) copolymers: One pot biocatalytic synthesis, self-assembly in water and drug release. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
García-Álvarez R, Díez J, Crochet P, Cadierno V. Arene–Ruthenium(II) Complexes Containing Inexpensive Tris(dimethylamino)phosphine: Highly Efficient Catalysts for the Selective Hydration of Nitriles into Amides. Organometallics 2011. [DOI: 10.1021/om2006563] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rocío García-Álvarez
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (Unidad Asociada al CSIC), Facultad de Química, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain
| | - Josefina Díez
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (Unidad Asociada al CSIC), Facultad de Química, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain
| | - Pascale Crochet
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (Unidad Asociada al CSIC), Facultad de Química, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain
| | - Victorio Cadierno
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (Unidad Asociada al CSIC), Facultad de Química, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain
| |
Collapse
|
17
|
Rajić Z, Hadjipavlou-Litina D, Pontiki E, Kralj M, Šuman L, Zorc B. The Novel Ketoprofen Amides - Synthesis and Biological Evaluation as Antioxidants, Lipoxygenase Inhibitors and Cytostatic Agents. Chem Biol Drug Des 2010; 75:641-52. [DOI: 10.1111/j.1747-0285.2010.00963.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
The novel amidocarbamate derivatives of ketoprofen: synthesis and biological activity. Med Chem Res 2010; 20:210-219. [PMID: 32214761 PMCID: PMC7079954 DOI: 10.1007/s00044-010-9309-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 01/13/2010] [Indexed: 11/24/2022]
Abstract
A series of novel ketoprofen derivatives 4a–j bearing both amide and carbamate functionalities were prepared using the benzotriazole method of carboxylic and hydroxy group activation. Selective reduction of ketoprofen produced hydroxy derivative 2, which in the reaction with one or two moles of 1-benzotriazole carboxylic acid chloride (1) gave benzotriazole derivatives 3a and 3b, respectively. Compounds 3a and 3b with various amines afforded amidocarbamates 4a–j. Antioxidative screenings revealed that the prepared compounds 3b and 4a–j possess excellent lipid peroxidation inhibition at 0.1 mM concentration, higher than 95% for the derivatives bearing aromatic, cycloalkyl or heterocyclic substituents. Two of the compounds, 3b and 4g, also show high soybean lipoxygenase inhibition activity (95 and 83.5%, respectively). On the other hand, the amidocarbamate derivatives of ketoprofen show only weak reducing activity against 1,1-diphenyl-2-picrylhydrazyl radicals. No selective antiviral effects were noted for the tested compounds against a broad variety of DNA and RNA viruses. Most compounds were endowed with a moderate (IC50: 10–25 μM) cytostatic activity.
Collapse
|
19
|
Simunović M, Perković I, Zorc B, Ester K, Kralj M, Hadjipavlou-Litina D, Pontiki E. Urea and carbamate derivatives of primaquine: synthesis, cytostatic and antioxidant activities. Bioorg Med Chem 2009; 17:5605-13. [PMID: 19581098 DOI: 10.1016/j.bmc.2009.06.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/04/2009] [Accepted: 06/12/2009] [Indexed: 11/26/2022]
Abstract
The novel urea primaquine derivatives 3 were prepared by aminolysis of primaquine benzotriazolide 2 with several hydroxyamines and ethylendiamine, while carbamates 4 were synthesized from the same precursor 2 and alcohols. All compounds are fully chemically characterized and evaluated for their cytostatic and antioxidant activities. The most prominent antiproliferative activity was obtained by compounds 3c, 3d, 3g, and 5b (IC(50)=9-40 microM). 1-(5-Hydroxypentyl)-3-[4-(6-methoxy-quinolin-8-ylamino)-pentyl]urea (3c) showed extreme selectivity toward SW 620 colon cancer cells (IC(50)=0.2 microM) and a bit less toward lung cancer cells H 460. Hydroxyurea 3h showed the highest interaction with DPPH. Primaquine twin drug 3g showed very significant inhibition on LOX soybean (IC(50)=62 microM). Almost all the tested derivatives highly inhibited lipid peroxidation, significantly stronger than primaquine phosphate.
Collapse
Affiliation(s)
- M Simunović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | | | | | | | | | | | | |
Collapse
|
20
|
Rajic Z, Butula I, Zorc B, Kraljevic Pavelic S, Hock K, Pavelic K, Naesens L, De Clercq E, Balzarini J, Przyborowska M, Ossowski T, Mintas M. Cytostatic and Antiviral Activity Evaluations of Hydroxamic Derivatives of Some Non-steroidal Anti-inflammatory Drugs. Chem Biol Drug Des 2009; 73:328-38. [DOI: 10.1111/j.1747-0285.2009.00774.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Hyde CAC, Missailidis S. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int Immunopharmacol 2009; 9:701-15. [PMID: 19239926 DOI: 10.1016/j.intimp.2009.02.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/03/2009] [Accepted: 02/03/2009] [Indexed: 12/17/2022]
Abstract
Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention.
Collapse
Affiliation(s)
- C A C Hyde
- Department of Chemistry and Analytical Sciences, The Open University, Walton Hall, Milton Keynes, MK5 7AS, UK
| | | |
Collapse
|